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Abstract— In this paper we use bilevel programming to
find the maximum difference between a reference controller
and a low-complexity controller in terms of the infinity-
norm difference of their control laws. A nominal MPC for
linear systems with constraints, and a robust MPC for linear
systems with bounded additive noise are considered as reference
controllers. For possible low-complexity controllers we discuss
partial enumeration (PE), Voronoi/closest point, triangulation,
linear controller with saturation, and others. A small difference
in the norm between a low-complexity controller and a robust
MPC may be used to guarantee closed-loop stability of the
low-complexity controller and indicate that the behaviour or
performance of the low-complexity controller will be similar
to that of the reference one. We further discuss how bilevel
programming may be used for closed-loop analysis of model
reduction.

Index Terms— bilevel programming, closed-loop analysis,
optimal control

I. INTRODUCTION

Bemporad et. al. [1] introduced an explicit solution of the

model predictive control (MPC) problem for control of linear

systems with constraints using a quadratic performance in-

dex. Later these results have been extended to cover a broader

class of systems and performance objectives, see [2] for a

survey.

The main drawback of explicit MPC is that the control

law, due to the combinatorial nature of the problem, can grow

exponentially with the size of the optimal control problem

[3].

Alessio and Bemporad [2] proposed to reduce complexity

of explicit MPC by either storing only the L regions with

the highest Chebysev radius (if a full explicit solution is

available), or to run extensive simulations of closed-loop

MPC and collect the L most recurrent combinations of active

constraints for implementation, similar to [4]. (Storing only

a subset of the possible regions of a MPC and using them

for implementation is called partial enumeration (PE).)

Pannocchia et. al. [4] recently reported that by using a PE

policy on an industrial example with more than 250 states,

32 inputs and a 25-sample control horizon, small look-up

tables with only 25-200 entries gave a control that was less

than 0.01% suboptimal compared to the full model predictive
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controller (MPC) for the same example. The MPC could

theoretically enter 3800 = 4.977 × 10381 regions.

In this paper we use bilevel programming to investigate

the PE-schemes described above, but also more general

low-complexity policies. The main idea is to calculate the

maximum difference between a either a nominal or a robust

MPC and the low-complexity policy, and then, based on

this difference, draw conclusions about the proposed low-

complexity controller.

In addition to guarantees of feasibility and stability the

method can be used to give bounds on the sub-optimality

of the low-complexity scheme, by using the value of the

objective function of the reference controller as a difference-

metric of the reference and low-complexity controller.

II. NOTATION AND PRELIMINARIES

A polyhedron is the intersection of a finite number of

halfspaces and a polytope is a bounded polyhedron. Given

two sets S1, S2 ⊆ R
n the Minkowski sum is defined as

S1 ⊕ S2 , {s1 + s2|s1 ∈ S1, s2 ∈ S2}, and the Pontryagin

difference as S1 ⊖ S2 , {s1|s1 + s2 ∈ S1, s2 ∈ S2}. Bold-

face x and u means the sequences x = (x0, x1, . . . , xN ) and

u = (u0, u1, . . . , uN−1), while boldface 1 is a vector of 1’s

of appropriate length.

We consider control of the following discrete-time linear

system

x+ = Ax + Bu, (1)

where x ∈ R
nx are the states and u ∈ R

nu are the inputs, and

x+ above is a short-hand notation for xk+1 = Axk + Buk.

In addition we have constraints such that x ∈ X and u ∈ U,

where X = {x | Fx ≤ f} ⊂ R
nx and U = {u | Gu ≤ g} ⊂

R
nu are polytopic sets.

The solution of an explicit MPC with quadratic objective,

linear process and polytopic constraints, can be written

as a piecewise affine function of the state. A piecewise

affine function u(x) : X 7→ R
nu , where X ⊂ R

nx is

a polyhedral set, is piecewise affine if it is possible to

partition X into convex polyhedral regions, CRi, and z(x) =
Kix + ci, ∀x ∈ CRi [1]. In this paper “region” denotes

CRi, written “region i”, and (Ki, ci) is the corresponding

optimal control law, i.e. the part of u(x) that belongs to

CRi. In order to conform with notation used in [2], we use

Li =
{
x ∈ R

nx | Aix ≤ bi
}

in the place of CRi.

III. BILEVEL OPTIMIZATION

The main focus of this paper is the application of bilevel

optimization for analysis of low-complexity controllers. Here

we give an introduction to bilevel optimization and solution
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methods, following [5]. For more background details the

reader is referred to a recent survey [6].

Bilevel problems are hierarchical in that the optimization

variables (y, z) are split into upper y and lower z parts,

with the lower level variables constrained to be an optimal

solution to a secondary optimization problem:

min
y

VU (y, z)

subject to GU (y, z) ≤ 0

z = arg min
z

VL(y, z)

subject to GL(y, z) ≤ 0

(2)

In this paper we will only consider problems where the

lower-level problem has an unique optimizer. Moreover, we

will usually have two low-level problems, one for the refer-

ence controller and one for the low-complexity controller.

A. Solution methods

If the lower level problem is convex and regular, then it

can be replaced by its necessary and sufficient Karush-Kuhn-

Tucker (KKT) conditions, yielding a standard single-level

optimization problem [5]:

min
y,z,λ

VU (y, z)

subject to GU (y, z) ≤ 0

GL(y, z) ≤ 0

λ ≥ 0

λTGL(y, z) = 0

∇zL(y, z, λ) = 0

(3)

where L(y, z, λ) := GL(y, z)+λTGL(y, z) is the Lagrangian

function associated with the lower-level problem. For the

special case of linear constraints and a quadratic cost, all

constraints of (3) are linear and the complimentary condition

λTGL(y, z) = 0 is a set of disjunctive linear constraints,

which can be described using binary variables, and thus leads

to a mixed-integer linear problem.

B. Bilevel optimization for analysis of controllers

In this paper we use bilevel programming to find the

maximal difference between a reference controller and a low-

order controller. Hence, for a subset X ⊂ R
nx , we solve

max
x∈X

d(uref, ulow-complexity)

subject to KKT(reference controller)

KKT(low-complexity controller)

(4)

Typically, X is the intersection of the feasible states for the

reference and the low-complexity controller.

Note that explicit solutions of neither the reference nor the

low-complexity controllers are needed, because the solutions

are implicitly given by the KKT conditions.

The distance measure d(uref, ulow-complexity) can be, for

example, the difference between the next state,

d(uref, ulow-complexity) =

‖x+
ref(x, uref) − x+

low-complexity(x, ulow-complexity)‖∞ =

‖Buref − Bulow-complexity‖∞,

(5)

but also differences between trajectories of either states or

inputs.

Remark 1: We observe that (5) renders (4) non-convex

due to the term max ‖t‖∞ (where t is a convex function

of (uref, ulow-complexity)) . However, the problem may be

converted into a mixed integer linear program (MILP) using

a standard technique (e.g. [7]), in which we introduce binary

variables ni, pi for each element of t and add the condition

that the binary variable pi is one if ‖t‖∞ = ti and ni is

one if ‖t‖∞ = −ti. The method adds only linear and binary

conditions to (4) and therefore the overall problem remains

a MILP [5].

IV. APPLICATIONS OF BILEVEL PROGRAMMING

FOR ANALYSIS OF LOW-COMPLEXITY

CONTROLLERS

We first present a nominal MPC policy based on opti-

mizing a quadratic performance objective subject to a linear

model of the process at and a set of polytopic constraints on

both states and inputs. We thereafter present a robust MPC,

where the process is subject to bounded disturbances on the

states. Both these schemes fit into the bilevel problem as a

reference controller.

The choice of which reference controller to use depends on

the problem at hand, as this defines a benchmark for control

of the process. The robust MPC scheme can be used to give

a feasibility and stability certificate of the low-complexity

scheme. However, in some cases the robust MPC can be

quite conservative, and the nominal MPC may be a better

benchmark.

Thereafter we show how several low-complexity polices

can be expressed in the bilevel framework. The main “tool”

we use here is to represent any logic and bilinear terms in

the KKT-conditions with mixed integer linear constraints in

order to let the resulting problem be a MILP.

A. Nominal MPC as reference controller

Consider the following semi-infinite horizon optimal con-

trol problem [5]:

min
x,u

J(x,u) =
1

2
xT

NPxN + . . .

+
1

2

N−1∑

i=0

uT
i Rui + xT

i Qxi,

subject to xi+1 = Axi + Bui, ∀i = 0, . . . , N − 1,

xi ∈ X, ∀i = 1, . . . , N − 1,

ui ∈ U, ∀i = 0, . . . , N − 1,

xN ∈ XN ,

x0 = x.

(6)

Here XN = {x | Hx ≤ h} ⊂ X is a polytopic invariant set

for the system x+ = Ax+Bµ(x) for some given control law

µ : R
nx 7→ R

nu . Further P ∈ R
nx×nx and Q ∈ R

nx×nx

are positive definite matrices and R ∈ R
nu×nu is a positive

semi-definite matrix. We define X ⊂ R
nx to be the set of

states x for which there exists a feasible solution to (6).
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If u
∗(x) is the optimal input sequence of (6) for the state

x, and u∗
0(x) is the resulting control law, then stability of

the system x+ = Ax+Bu∗
0(x) can be established under the

assumption that VN (x) = xTPx is a Lyapunov function for

the system x+ = Ax+Bµ(x) and that the decay rate of VN

is greater than the stage cost l(u, x) = uTRu+xTQx within

the set XN [5].

By using xk = Akx0 +
∑k−1

j=0 AjBuk−1−j the MPC

problem (6) can be rewritten as [1]:

V (x0) =
1

2
xT

0Y x0 + . . .

+ min
U

{
1

2
UTHU + xT

0FU,

subject to GU ≤ W + Ex0},

(7)

where UT =
[
uT

0 uT
1 · · · uT

N−1

]
.

We want to use (7) as a lower-level problem in bilevel

programming. The following equations define the KKT con-

ditions for this problem:

HU + F Tx0 + GTλ = 0

GU − W − Ex0 ≤ 0

λ ≥ 0

λ ≤ Ms

GU − W − Ex0 ≥ −M(1 − s)

(8)

Here s ∈ {0, 1}
nW , where nW is the number of inequality

constraints in (7). The two last equations in (8) correspond to

the complementary condition λTGL(y, z) = 0 in the general

bilevel problem, here described with binary variables s. M

is a constant that is large enough such that the solution to (8)

corresponds to the solution of (7). (This is called a “big-M”

formulation.)

B. Robust MPC as reference controller

In this subsection the results are from Mayne et. al. [8]

unless otherwise noted.

Consider control of the linear system (1) with additive

disturbances w on the states:

x+ = Ax + Bu + w. (9)

The disturbance is assumed to be bounded,

w ∈ W, (10)

where W is compact and contains the origin (but may not

have an interior).

Suppose K ∈ R
nu×nx is such that AK , A + BK is

stable. Let Z be a disturbance invariant set for the controlled

uncertain system x+ = AKx + w satisfying, therefore

AKZ ⊕ W ⊆ Z. (11)

We use the following proposition as a basis for the robust

MPC:

Proposition 1: Suppose Z is disturbance invariant for

x+ = AKx + w. If x ∈ x̄⊕Z and u = ū + K(x− x̄), then

x+ ∈ x̄+ ⊕ Z for all w ∈ W where x+ = Ax + Bu + w

and x̄+ = Ax̄ + Bū.

Proposition 1 states that the feedback policy u = ū +
K(x − x̄) keeps the states x of the uncertain system (9)

close to the states x̄ of the so-called nominal system x̄+ =
Ax̄ + Bū.

We can now define the robust MPC problem:

min
x̄,ū

J(x̄, ū) =
1

2
x̄T

NP x̄N + . . .

+
1

2

N−1∑

i=0

ūT
i Rūi + x̄T

i Qx̄i,

subject to x̄i+1 = Ax̄i + Būi, ∀i = 0, . . . , N − 1,

x̄i ∈ X ⊖ Z, ∀i = 1, . . . , N − 1,

ūi ∈ U ⊖ KZ, ∀i = 0, . . . , N − 1,

x̄N ∈ Xf ,

x̄0 = x ⊕ Z.

(12)

In order to achieve closed loop robust stability, the ter-

minal constraint set Xf must satisfy the following axioms

[8]:

A1 : AKXf ⊂ Xf , Xf ⊂ X ⊖ Z, KXf ⊂ U ⊖ KZ

A2 : Vf (Akx) + l(x,Kx) ≤ Vf (x), ∀x ∈ Xf ,
(13)

where Vf (v) = vTPv and l(v, z) = vTQv + uTRu in the

scope of this paper.

Assume that Z is a polytopic set such that

{v ∈ R
nx | Hzv ≤ kz}.

As for the nominal MPC, we can rewrite the robust MPC

problem as:

min
(U,x̄0)

[
UT

x̄T
0

]T [
H F T

F 2Y

]

︸ ︷︷ ︸

H̃

[
U

x̄0

]

subject to

[
G −E

0 −Hz

]

︸ ︷︷ ︸

G̃

[
U

x̄0

]

≤

[
W

kz

]

︸ ︷︷ ︸

W̃

+

[
0

−Hz

]

︸ ︷︷ ︸

Ẽ

x

(14)

Let v = (U, x̄0). The KKT-conditions corresponding to (14)

are

H̃v + G̃λ = 0

G̃v ≤ W̃ + Ẽx

λ ≥ 0

λ ≤ Ms

G̃v ≥ W + Ex − M(1 − s)

(15)

Note that the KKT conditions in (8) are a special case of

the KKT-conditions above, since above x̄0 is included as a

degree of freedom. For both nominal and robust MPC the

current state x is a parameter driving the controller, but for

the nominal MPC we have substituted this with x0, as x0 = x

is a constraint in the nominal MPC formulation.

The main motivation for using robust MPC as a reference

rather than nominal MPC is because the robust MPC can be

used to prove feasibility and stability of the low-complexity

WeAIn5.3

948



scheme. Both properties can be established using the follow-

ing proposition:

Proposition 2: Consider the linear system for which ro-

bust stability and feasibility are guaranteed by the robust

MPC:

x+ = Ax + Bu + w, w ∈ W,

and that

W = {w ∈ R
nx | ‖w‖∞ ≤ ε}

Let ul-c be the control input from the low-complexity

controller, and urMPC the input from the robust MPC. The fol-

lowing holds for the system controlled by the low-complexity

controller:

x+ = Ax + Bul-c

= Ax + Bul-c − BurMPC + BurMPC

= Ax + BurMPC + B(ul-c − urMPC).

(16)

Hence, if

‖B(ul-c − urMPC)‖∞ ≤ ε, (17)

the low-complexity controller is both feasible and stable.

C. Low-complexity controllers as low-level problems in

bilevel programming

In this section we describe various low-complexity con-

trollers that fit into the bilevel programming framework. Sev-

eral more are possible, but not included for space restrictions.

1) Linear quadratic regulator with saturation: A simple

low-complexity control policy is the linear quadratic regu-

lator (LQR) with saturation. In the “unconstrained region”

this is optimal, and its behaviour can be modelled using

few binary variables. First, we define ûLQR = −Kx. For

simplicity we assume that the constraints on u may be written

as

ul
i ≤ ui ≤ uh

i , i = 1, . . . , nu (18)

Now, for each row in (18), we define a corresponding binary

vector di ∈ {0, 1}
3
. The saturation can now be modelled

using

ui ≤ uh
i + Mdi

1,

ui ≥ ul
i − Mdi

3,

di
1 + di

2 + di
3 = 1,

−M(1 − di
k) ≤ sat(ui) − {ui}k ≤ M(1 − di

k),

k = 1, 2, 3,

(19)

where {ui} =
{
uh

i , ui, u
l
i

}
, and {ui}k is the k’th element

of {ui}.

2) Partial enumeration (PE): Here we follow the ideas of

[4] and [2], and we store only a subset of the possible active

sets. The controller implementation is here to first locate the

closest region to the current state x, and then use the control

law from the corresponding region. In order to satisfy u ∈ U,

we saturate the input before applying the input to the plant.

Here we use the minimal-violation distance from Christo-

phersen et. al. [9] to find the closest region for a set L of

stored polytopes.

Definition 1: (Minimal-violation distance [9]) Let the

collection L be the set L = {Li}
NL

i=1, where Li :=
{
x ∈ R

nx | Aix ≤ bi
}

are full-dimensional polyhedra in

R
nx . We assume that Aix ≤ bi are on Hessian normal form,

i.e. each row [Ai]r of Ai is normalized with ‖[Ai]r‖2 = 1.

The minimal-violation distance dMV of x to L is given by

dMV := min
i

{α∗
i (x)} , (20)

where

α∗
i (x) = arg min

{
αi ∈ R | Aix ≤ bi + αi1

}
, (21)

for all i = 1, . . . , NL and 1 = [1 · · · 1]T.

The solution of the LP (21) can be found using the KKT

conditions:

1 − 1
Tλi = 0,

0 ≤ λi ≤ Msi,

0 ≤ b + αi1 − Aix ≤ M(1 − si),

(22)

where si ∈ {0, 1}
n

bi is a vector of binary variables of length

corresponding to the number of faces in the polytope Li =
{
x ∈ R

nx | Aix ≤ bi
}

.

Let β ∈ {0, 1}
nL be binary variables such that

βi = 1 ↔ αi ≤ αj ∀j 6= i, (23)

which implies that
∑

βi = 1. We can then define the PE

control law as

û = sat

{
nL∑

i=1

βi

(
Kix + ci

)

}

, (24)

where (Ki, ci) is the optimal feedback in region i, and

sat {·} is a normal saturation function. Equation (24) is

bilinear in the optimization variables βi, x, and can be

implemented in the bilevel framework with the following

equations (added as constraints in the problem):

−M(1 − βi) ≤ û − (Kix + ci) ≤ M(1 − βi). (25)

Remark 2: The proposed PE-scheme, which follows from

[9], can be implemented on-line as follows:

αi = max
{
Aix − bi

}
, i = 1, . . . , L

i∗ = arg min
i

{αi}
(26)

3) Delaunay triangulation: Assume that for some points

(x1, . . . , xnL
) we precompute a Delaunay triangulation. In

addition we store the optimal input (u∗
1, . . . , u

∗
nL

) at those

points. A Delaunay triangulation can be understood by the

empty circle method [10]: Consider all triangles formed by

the points such that the circumcircle of each triangle is empty

of other sites, where the sites in this case are the stored points

(x1, . . . , xnL
).

The Delaunay triangulation of the points (x1, . . . , xnD
)

can be used to find an interpolated control law:

• Denote the triangles from the Delaunay triangulation by

L1, . . . , LnD
.

• For a given state x:

1) Find the current triangle Li that containts x.
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2) Express x as a convex combination of the vertices

of Li, x =
∑

λkxi
k, where xi

k denotes the vertices

of Li

• Implement the following interpolated control law:

uDelaunay =
∑

λku
∗,i
k , (27)

where u
∗,i
k are the optimal inputs corresponding to the

points xi
k.

The Delaunay triangulation itself can be implicitly defined

using the following set of equations, which can be added as

mixed-integer linear constraints to the overall problem:

x =
∑

λixi, , λi ≥ 0,
∑

λi = 1,

λ ≤ σi,
∑

σi = n + 1

‖c − xi‖
2
2 ≤ ‖c − xj‖

2
2 + Mσj + M(1 − σi),

(28)

where the last equation can be rewritten as

�
�cTc−2xT

i
︸ ︷︷ ︸

aT
i

c + xT
i xi

︸︷︷︸

bi

≤�
�cTc−2xT

j
︸ ︷︷ ︸

aT
j

c + xT
j xj

︸︷︷︸

bj

+ . . .

· · · + Mσj + M(1 − σi)

aT
i c + bi ≤ aT

j c + bj + Mσj + M(1 − σi)

(29)

Here c ∈ R
nx is an extra optimization variable, σ ∈ {0, 1}

nL

is a vector of binaries and M is a large constant.

We note that the last equation of (28) is an expression for

the “empty-circle method”.

V. EXAMPLES

In this section we show two examples where we use

the bilevel programming to identify the worst-case dis-

tance between a reference controller and a proposed low-

complexity controller. The calculations where done using

ILOG CPLEX R© and the problems were written in YALMIP

[7]. Set calculations and explicit solution of MPC’s were

done using Multi-Parametric Toolbox (MPT) [11].

Example 1: Double integrator with nominal MPC as refer-

ence controller and PE as low-complexity controller

In this example we consider the double integrator de-

scribed in [1], example 7.3, but with a sample time of

Ts = 0.1 in order to match the conditions in [2]. The process

is hence

x+ =

[
1 0.1
0 1

]

︸ ︷︷ ︸

A

x +

[
0

0.1

]

︸ ︷︷ ︸

B

u, −1 ≤ u ≤ 1
(30)

The control parameters are N = 8, Q = [ 1 0
0 0 ] and R =

0.1. The final weight P corresponding to the LQR controller

is P = [ 8.98 3.59
3.59 2.86 ]

The nominal MPC problem is now:

min
x,u

xT
8Px8 +

7∑

i=0

xT
i Qxi + Ru2

i

subject to xk+1 = Axk + Buk, k = 0, . . . , 7

x0 = x

−1 ≤ uk ≤ 1, k = 0, 1 . . . , 7

(31)

We do not add any terminal constraint on xN as we want to

compare our results with [2].

We want to compare the nominal MPC to a PE-scheme,

hence we want to solve

max
x∈X

‖B(u∗ − û)‖∞

subject to αi = arg min
α

α

subject to Aix ≤ bi + αi1

βi =

{

1, αi ≤ αj ∀j 6= i

0, otherwise

ũ =
∑

i=1,··· ,L

βi(K
ix + ci),

û = sat(ũ)

u∗ = arg min (31)

(32)

This problem can be rewritten to a MILP using (22) for

the minimal violation distance.

The main focus of this paper is to calculate the difference

between two controllers, but we may also use this method

for controller synthesis. This can be achieved by:

• Solve (32) to get the worst point in the state space x∗

and the worst case norm ‖B(u∗ − û)‖∞ = ‖x∗,+ −
x̂+‖∞.

• Add the corresponding region and corresponding opti-

mal control law to the PE-controller.

• Resolve (32) and add the corresponding worst-case

region until the worst-case norm is less than a user-

defined value or the number of regions in the PE is

larger than a user-defined value.

This example can be solved explicitly using MPT. The

full enumeration is shown in the upper right part of figure

1. In order to test our software we started out with an initial

PE controller using the 3 largest regions, shown in the top-

left part of figure 1. The lower part of the figure shows

the maximum difference between the reference controller

(nominal MPC) and the PE-controller. We then performed

iterations as described above, at each iteration we added

the region corresponding to the worst case point x∗. One

observes that initially the difference is equal to the maximum

possible difference, as B = [ 0
0.1 ] and ‖u‖ ≤ 1. However, as

we add regions to the PE controller the difference decreases

to quite low levels.

Note that even though the full enumeration was available

for this example, we do not use this solution while solving

(32), rather we use the KKT-conditions of the corresponding

MPC problem.

Closed-loop simulations, even from the worst case points,

shows very small difference between the nominal MPC and

the PE, also for quite high values of the worst-case norm,

and are not included here for brevity.

Example 2: Double integrator with robust MPC as reference

controller

For the same process as in Example 1, with the same

objectives for the controller, we designed a robust MPC using
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Fig. 1. Example 1: double integrator.

the method described in section IV-B, and we use this one as

the reference controller. The motivation for using the robust

MPC rather than the nominal MPC is because we can verify

closed-loop stability of the low-complexity scheme, given

that ‖B(urobust − ulow-complexity)‖∞ ≤ ‖w‖∞.

A box constraint on w was used such that ‖w‖∞ ≤ 0.01,

and we used the algorithm from Rakovic̀ et. al. [12] to

compute Z, and in order to compute Xf we used MPT.

We wanted to use this robust controller to prove closed-

loop nominal stability of the PE-controller from Example

1. However, we observed that maxx∈X ‖B(urobust MPC −
unominal MPC)‖∞ was growing faster than ‖w‖∞, i.e. the

robust MPC was very conservative with increasing ‖w‖∞.

Since the PE-controller from Example 1 is close to the

nominal MPC, it is clear that we cannot use the robust MPC

scheme to prove stability of the PE-scheme, moreover we can

not even use it to prove closed-loop stability of the nominal

MPC.

One reason for why ‖B(urobust MPC − unominal MPC)‖∞ is

growing faster than ‖w‖∞ is that the scalar input u can

only act on the process in the direction B, while the vector

w is acting directly on both states (through the identity

transformation I). Changing the formulation of the robust

MPC to restrict w to act only in the direction B is planned

as further work in this project.

VI. CONCLUSIONS

A bilevel framework for closed loop comparison of dif-

ferent control schemes has been presented. Many challenges

still remain, but it seems like this framework will be useful

for proving stability for some “ad-hoc” low complexity

control schemes, and moreover it seems to have potential

in the field of model reduction.
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