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a b s t r a c t

Compartmental and aggregated modeling is used to derive low-order (reduced) dynamic models from
detailed models of staged processes. In this study, the aggregated modeling method of [Lévine, J., & Rou-
chon, P. (1991). Quality control of binary distillation columns via nonlinear aggregated models. Automatica,
27, 463] is revised with the objective of deriving computationally efficient models for real-time control
and optimization applications. A simple implementation of the original method not requiring the spec-
ification of compartments is presented. The resulting DAE models are converted into ODE models by
pre-solving and substituting the algebraic equations resulting from the reduction procedure, which is the
key step to increase simulation speed. To study this, the performances of several full and reduced distilla-
tion models, with and without base-layer controllers, are compared using different numerical integrators.
It is found that while the reduced DAE models are computationally not advantageous, the reduced ODE
models decrease the simulation time by a factor of 5–10.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

With the establishment of dynamic real-time optimization and
model predictive control as state-of-the-art methods to efficiently
operate industrial processes, reduced models with low computa-
tional complexity are in the focus of current research (Allgöwer
& Zheng, 2000; Marquardt, 2001; van den Berg, 2005). In par-
ticular, reduced nonlinear physically based models are of high
interest for the prediction of the system behavior over a wide
range of operating conditions. Many model reduction techniques
have been developed for nonlinear systems (Marquardt, 2001;
van den Berg, 2005), most of which produce models of lower
order. This, however, does not guarantee that the reduced mod-
els show a computationally better performance than the original
models they were derived from (van den Berg, 2005). This is
because a reduced model is most likely less accurate than the
original full model, and because the numerical complexity of
the full model is often retained in the equations of the reduced
model.

For nonlinear model reduction of distillation columns, several
model reduction and simplification methods have been developed
in the past (Benallou, Seborg, & Mellichamp, 1986; Cho & Joseph,
1983; Khowinij, Bian, Henson, Belanger, & Megan, 2004; Khowinij,
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Henson, Belanger, & Megan, 2005; Kienle, 2000; Kumar & Daoutidis,
2003; Lévine & Rouchon, 1991; Marquardt, 1990; Skogestad, 1997).
Among these are the method of compartmental modeling (Benallou
et al., 1986) and later the improved variant of aggregated mod-
eling by Lévine and Rouchon (1991). The latter method is used
for deriving the reduced models investigated in this study. It is
based on partitioning a distillation column into “compartments”
consisting of “steady-state” trays and dynamic “aggregation” trays,
and using a singular perturbation argument (Kokotovic, Khalil, &
O’Reilly, 1986) to derive a reduced-order model. Among its advan-
tages is the perfect steady-state agreement with the original model,
a simple derivation, and good control of the reduced model com-
plexity.

Originally, these methods were intended for nonlinear con-
troller design, for which a low-order model is necessary. More
recently, they have been used to reduce the simulation time in
real-time applications (Bian, Khowinij, Henson, Belanger, & Megan,
2005; Khowinij et al., 2004, 2005). However, it is shown in this study
that while only transforming the original system into a reduced sys-
tem in differential-algebraic equation (DAE) form does not improve
the simulation speed of the reduced model, a subsequent elimina-
tion of the algebraic equations is necessary to obtain a reduced
model in ordinary differential equation (ODE) form, which shows
a significantly improved computational performance compared to
the original model. On a more fundamental level, it is shown that
the notion of compartments is not necessary in the derivation of the
reduction method. This greatly simplifies the derivation and makes
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the extension of the method to more complex systems straightfor-
ward.

The paper is organized as follows: In Section 2, the full model for
a binary distillation column, and the derivation of reduced models
from this using aggregated modeling is described. Important imple-
mentation details and properties of the models are given. In Section
3, the framework for testing the computational performance of the
models is explained, discussing the input signal, the model param-
eters and the numerical solvers used for simulating the models. The
results of the simulations are given in Section 4. Section 5 discusses
the results of the simulations, and details and possible extensions
of the reduction method. A summary and conclusions are given in
Section 6.

2. Models

2.1. System and modeling assumptions

The system investigated is a binary distillation column with 72
trays plus reboiler and condenser. Two variants of this system are
studied:

1. An “uncontrolled” column with level controllers for condenser
and reboiler, but with no temperature or composition control.
The reflux L and the boil-up V remain as degrees of freedom (“LV-
configuration”).

2. A “controlled” column with an additional composition controller
in the lower column part that manipulates the boil-up rate V.

The controlled column is shown schematically in Fig. 1. In the
following, the uncontrolled system is used to explain the system
equations and the reduction procedure. Later, in Section 2.4, the
inclusion of the composition controller is explained.

All assumptions made in this simplified distillation model are
discussed in detail by Skogestad (1997). The major modeling
assumptions are: Ideal trays, which means that liquid and vapor
are in equilibrium at each tray; ideal mixture, which means that
the vapor composition y can be expressed as a function of the liquid
composition x assuming the constant relative volatility

y = k(x) = ˛x

1 + (˛ − 1)x
, (1)

where ˛ is the relative volatility; constant molar flows, which
means that the energy balance is simplified; constant molar holdup
on each tray and negligible mass in the vapor phase.

The assumption of constant molar flows may not be good if the
model is to be used for control purposes (Skogestad, 1997), but the
focus here is on longer time scales.

The column has one feed flow F at tray number nF . zF denotes
the concentration of the first (light) component in the feed. A liq-
uid flow L (or L + F for trays below the feed tray) and a vapor
flow V enter and leave each tray. The condenser and reboiler
levels are assumed to be controlled using the distillate flow D
and bottom flow B, respectively. For simplicity, perfect level con-
trol is assumed, such that D = V − L and B = L + F − V . Note that
the assumption of perfect level control is not important with
the LV-configuration. The concentrations in these flows deter-
mine the purity of the distillation products and are therefore the
most important output variables in the process. The feed flow
rate F and the feed concentration zF can be seen as disturbance
variables, and the flows L and V are manipulated variables for
control.

2.2. Full uncontrolled model

The full model consists of one component material balance for
each tray and the condenser and reboiler. For ease of notation, the
condenser and reboiler are written as tray 1 and N:

H1ẋ1 = Vy2 − Vx1, (2)

Hiẋi = Lxi−1 + Vyi+1 − Lxi − Vyi, i = 2, . . . , nF − 1 (3)

HnF ẋnF = Lxi−1 + Vyi+1 − (L + F)xi − Vyi + FzF , (4)

Hiẋi = (L + F)xi−1 + Vyi+1 − (L + F)xi − Vyi,

i = nF + 1, . . . , N − 1 (5)

HNẋN = (L + F)xN−1 − (L + F − V)xN − VyN, (6)

where Hi is the total liquid molar holdup, xi and yi = k(xi) are the
concentrations of the first component in the liquid and vapor phase,
respectively, of tray i, N is the number of trays including the con-
denser and reboiler, nF is the index of the feed tray, and V, L, F, zF

are as described above.

Fig. 1. Schematic diagram of a binary distillation column with a composition con-
troller in the lower column section.
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Table 1
Parameters of the full model.

Parameter Value

N 74
nF 36
H1 20 mol
HN 20 mol
Hi, i = 2, . . . , N − 1 1 mol
F 0.04 mol/s
˛ 1.33

Input Nominal value

zF 0.45
L 0.12 mol/s
V 0.14 mol/s

The parameters for the system used in this study are given
in Table 1. For the input variables, nominal values are given. The
parameters are scaled average values of a real industrial distillation
column, such that the dynamic behavior and the time constants are
similar. SI units (mol, mol/s, s, etc.) are used for all variables.

2.3. Reduced models

The reduced models investigated in this study are derived via
the aggregated modeling method of Lévine and Rouchon (1991).
The method is based on partitioning the column into Nc “com-
partments”, where each compartment comprises a number of
consecutive trays. By assigning the total holdup of all trays of a com-
partment to a single “aggregation” tray within the compartment, a
time-scale separation caused by the difference between the large
compartment holdup and the small tray holdups is made explicit
in the model. This time-scale separation can be used for reduc-
ing the dynamic order of the model by applying quasi-steady-state
assumptions to the trays within each compartment.

In their derivation of the method, Lévine and Rouchon (1991)
perform one uncommented simplification step, which results from
a mathematically inaccurate treatment of a term when applying
the quasi-steady-state assumption. In Remark 3 in their paper, they
note that the reduction procedure can be described much sim-
pler. This simplification step has the major consequence for the
resulting reduced model that only the compartment holdups, but
not their boundaries appear in the model equations. Due to this
simplification, the reduction procedure is not a true singular per-
turbation method (Kokotovic et al., 1986). However, the structure
of the reduced model, which retains the tridiagonal Jacobian struc-
ture of the original model, is numerically favorable. Extensions to
more complex models, as will be discussed in Section 5, are also
much more straightforward. In the following, the derivation of the
method is therefore described in some detail. First, the original
derivation of Lévine and Rouchon is explained for one compart-
ment. Then, the alternative, much simpler derivation is explained,
and the relationship to the original derivation is shown. A “true”
singular perturbation model, resulting from the derivation with-
out the simplification step, is then compared to the reduced model
of Lévine and Rouchon.

2.3.1. Original derivation of reduced compartment model by
Lévine and Rouchon

The following derivation considers a certain compartment j,
which is formed from a number m of consecutive trays (in this
case not including a feed). For simplicity of notation, the number-
ing of the trays starts with 1 and ends with m. It is assumed here
for simplicity that the holdups H of all individual trays are equal.
Then, H = (1/m)H̄, where H̄ is the total compartment holdup. The

original model is

1
m

H̄ẋ1 = Lx0 + Vk(x2) − Lx1 − Vk(x1), (7)

1
m

H̄ẋ2 = Lx1 + Vk(x3) − Lx2 − Vk(x2), (8)

. . .

1
m

H̄ẋm = Lxm−1 + Vk(xm+1) − Lxm − Vk(xm), (9)

with the same notation as in Eqs. (1)–(6).
A coordinate transformation is applied by introducing the aver-

age concentration of the compartment x̄s, where s is the index of the
“aggregation tray” of the compartment, and leaving the remaining
m − 1 variables unchanged:

x̄s = 1
m

m∑
i=1

xi, (10)

x̄i = xi, i = 1, . . . , m, i /= s. (11)

The transformed system now reads

1
m

H̄ ˙̄x1 = Lx0 + Vk(x̄2) − Lx̄1 − Vk(x̄1), (12)

1
m

H̄ ˙̄x2 = Lx̄1 + Vk(x̄3) − Lx̄2 − Vk(x̄2), (13)

. . .

1
m

H̄ ˙̄xs−1 = Lx̄s−2 + Vk

⎛
⎝mx̄s −

∑
i /= s

x̄i

⎞
⎠ − Lx̄s−1 − Vk(x̄s−1), (14)

H̄ ˙̄xs = Lx0 + Vk(xm+1) − Lx̄m − Vk(x̄1), (15)

1
m

H̄ ˙̄xs+1 = L

⎛
⎝mx̄s −

∑
i /= s

x̄i

⎞
⎠ + Vk(x̄s+2) − Lx̄s+1 − Vk(x̄s+1), (16)

. . .

1
m

H̄ ˙̄xm = Lx̄m−1 + Vk(xm+1) − Lx̄m − Vk(x̄m). (17)

This system is now in the standard form of singular perturbation
(Kokotovic et al., 1986) with ε:=(1/m) as a small parameter, and
a reduced model can be derived by making the quasi-steady-state
assumption ε → 0. In this way, all trays except for the aggregation
tray are converted into “steady-state” trays, and are described by
algebraic equations.

The term mx̄s −
∑

i /= sx̄i that appears in Eqs. (14) and (16) is
replaced by x̄s as a result of the quasi-steady-state assumption
ε → 0. Lévine and Rouchon (1991) use a slightly more complex
formulation that admits nonuniform tray holdups. The derived
reduced system then reads

0 = Lx0 + Vk(x̄2) − Lx̄1 − Vk(x̄1), (18)

. . .

0 = Lx̄s−2 + Vk(x̄s) − Lx̄s−1 − Vk(x̄s−1), (19)

H̄ ˙̄xs = Lx0 + Vk(xm+1) − Lx̄m − Vk(x̄1), (20)

0 = Lx̄s + Vk(x̄s+2) − Lx̄s+1 − Vk(x̄s+1), (21)

. . .

0 = Lx̄m−1 + Vk(xm+1) − Lx̄m − Vk(x̄m). (22)
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2.3.2. Simplified derivation
Lévine and Rouchon observe that the derivation of a reduced

compartment model can be done much simpler in less mathe-
matical form: The trays i /= s have no holdup (Hi → 0), and the
aggregation tray s has the compartment holdup (Hs =

∑m
i=1Hi).

This can be seen from Eqs. (18) to (22) by subtracting all remain-
ing equations from Eq. (20). Then, Eq. (20) can be replaced by
equation

H̄ ˙̄xs = Lx̄s−1 + Vk(x̄s+1) − Lx̄s − Vk(x̄s). (23)

This is the same as shifting the compartment boundaries to the
aggregation trays, as illustrated in Fig. 2.

The whole model reduction procedure can therefore be sim-
plified to multiplying the left-hand sides of the aggregation tray
equations with a constant � 1, and setting the remaining left-hand
sides to 0. As it will be explained later, the scalar multiplying the
left-hand side of the aggregation tray equation can be chosen arbi-
trarily without changing the steady-state of the model. Because of
this and the fact that the compartment boundaries do not appear
in the model anymore, the notion of “compartments” is not needed
in the derivation of the method. It is sufficient to select some aggre-
gation trays and assign them a large holdup.

Fig. 2. Schematic diagram of two compartments. Since the trays between two
aggregation trays are in steady-state, balance boundaries can be moved arbitrarily
between the aggregation trays without changing the balances.

Fig. 3. Responses of the top concentration of the full model, the model of Lévine
and Rouchon (dashed line), and the “true” singular perturbation model (dash-dotted
line) with five compartments to a step change in zF from 0.45 to 0.55.

This is somewhat surprising, since the original derivation starts
with the transformation (10) and (11), where the compartment
boundaries are clearly specified (here trays 1 and m). The reason
that these compartment boundaries dissappear during the deriva-
tion is the treatment of the term mx̄s − ∑

i /= sx̄i in Eqs. (14) and
(16) while performing the quasi-steady-state approximation ε → 0.
Mathematically, since mx̄s −

∑
i /= sx̄i = xs, this term is invariant

under the operation ε → 0. If this term is left unchanged, the result-
ing model differs from the above model in Eqs. (19) and (21), which
then read

0 = Lx̄s−2 + Vk

⎛
⎝mx̄s −

∑
i /= s

x̄i

⎞
⎠ − Lx̄s−1 − Vk(x̄s−1) (24)

and

0 = L

⎛
⎝mx̄s −

∑
i /= s

x̄i

⎞
⎠ + Vk(x̄s+2) − Lx̄s+1 − Vk(x̄s+1). (25)

In this model, the compartment boundaries appear explicitly in
the summation terms. This model variant is a “true” singular per-
turbation model in a sense that first the model is transformed into
the standard form of singular perturbation, and then the quasi-
steady-state assumption is applied. In the derivation of Lévine and
Rouchon, an additional step simplifying the transformed model is
taken. This, however, has major advantages: first, the derivation
of the reduced model is greatly simplified, as described above. Sec-
ondly, the resulting reduced model retains the tridiagonal structure
of the Jacobian of the original model. This is advantageous from
a numerical point of view, and allows for the elimination of the
algebraic equations from the model as will be described in Section
2.3.4.

Fig. 3 shows the response of both models to a step change in
the feed concentration zF . The “true” singular perturbation model
shows an inverse response which is not present in the response
of the full model. Except for this, the approximation quality of the
“true” singular perturbation model is better than that of the model
of Lévine and Rouchon. Both models yield the same steady-state
values of the output variables. This is obvious from the facts that
the right-hand side of the model of Lévine and Rouchon coincides
with the right-hand side of the full model, and that the “true”
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singular perturbation model results from a variable transformation
that leaves the top and bottom variables unchanged.

Because of the favorable structure of the model of Lévine and
Rouchon, and the wrong inverse response of the “true” singular
perturbation model, only the reduced model as derived by Lévine
and Rouchon will be investigated in the rest of this paper. Instead of
the term “compartment”, the term “aggregation tray” is used, since
the method is basically “compartment-free”, as explained above.
Although the term “stage” is more general than “tray”, the term
“aggregation tray” is used throughout the paper to stay consistent
with the terminology used by Lévine and Rouchon (1991).

2.3.3. Reduced model in DAE form
In this study, reduced models with between three and seven

aggregation trays are used. The reboiler and condenser are always
chosen as aggregation trays due to their large holdups. Applying
the reduction method described above, the resulting DAE system
for a reduced model with five aggregation trays reads

H̄1 ˙̄x1 = Vk(x̄2) − Vx̄1, (26)

0 = Lx̄i−1 + Vk(x̄i+1) − Lx̄i − Vk(x̄i), i = 2, . . . , s2 − 1, (27)

H̄2 ˙̄xs2 = Lx̄s2−1 + Vk(x̄s2+1) − Lx̄s2 − Vk(x̄s2 ), (28)

0 = Lx̄i−1 + Vk(x̄i+1) − Lx̄i − Vk(x̄i), i = s2 + 1, . . . , s3 − 1, (29)

H̄3 ˙̄xs3 = Lx̄s3−1 + Vk(x̄s3+1) − (L + F)x̄s3 − Vk(x̄s3 ) + FzF , (30)

0 = (L + F)x̄i−1 + Vk(x̄i+1) − (L + F)x̄i − Vk(x̄i),

i = s3 + 1, . . . , s4 − 1, (31)

H̄4 ˙̄xs4 = (L + F)x̄s4−1 + Vk(x̄s4+1) − (L + F)x̄s4 − Vk(x̄s4 ), (32)

0 = (L + F)x̄i−1 + Vk(x̄i+1) − (L + F)x̄i − Vk(x̄i),

i = s4 + 1, . . . , N − 1, (33)

H̄5 ˙̄xN = (L + F)x̄N−1 − (L + F − V)x̄N − VyN, (34)

where H̄j and sj are the aggregated holdup and the index of aggre-
gation tray j, respectively. The x̄ notation is used to distinguish the
variables in Eqs. (26)–(34), which are partially algebraic and par-
tially dynamic, from the purely dynamic variables in the full model
(2)–(6).

2.3.4. Reduced model in ODE form
The equations of the steady-state trays between two aggrega-

tion trays contain only the algebraic variables of the steady-state
trays, the state variables of the two aggregation trays, and either
the ratio L/V or (L + F)/V . By writing the mass balance around
each aggregation tray and all “steady-state” trays above it, the
reduced model can be formulated such that the only algebraic
variables appearing in the dynamic equations are the vapor con-
centrations of the trays directly below each aggregation tray, i.e.
ysj+1, j = 1, . . . , Nc (Fig. 2). By pre-solving the systems of algebraic
equations for these variables as a function of the dynamic variables
and the ratio V/L, ysj+1 = Yj(xsj

, xsj+1 , V/L), and by substituting them
into Eqs. (26)–(34), the DAE system can be cast in ODE form as

H̄1 ˙̃x1 = VY1(x̃1, x̃2, V/L) − Vx̃1, (35)

H̄2 ˙̃x2 = Lx̃1 + VY2(x̃2, x̃3, V/L) − Lx̃2 − VY1(x̃1, x̃2, V/L), (36)

H̄3 ˙̃x3 = Lx̃2 + VY3(x̃3, x̃4, V/(L + F)) − (L + F)x̃3 − VY2(x̃2, x̃3, V/L)

+ FzF , (37)

H̄4 ˙̃x4 = (L + F)x̃3 + VY4(x̃4, x̃5, V/(L + F)) − (L + F)x̃4

− VY3(x̃3, x̃4, V/(L + F)), (38)

H̄5 ˙̃x5 = (L + F)x̃4 − (L + F − V)x̃5 − VY4(x̃4, x̃5, V/(L + F)). (39)

The x̃ notation is used to distinguish the variables in Eqs.
(35)–(39) from the variables in the full model (2)–(6). The func-
tions Yj, j = 1, . . . , Nc can be calculated off-line and stored and later
retrieved in a suitable way. In this study, look-up tables as described
in Section 2.7 are used for this purpose.

2.4. Model with composition controller

To stabilize the composition profile, it is common in distillation
control to use the boil-up or reflux rate to control the temperature
at a certain location inside the column. The setpoint can serve as a
manipulated variable for a higher control or optimization layer. In
this study, composition is controlled instead of temperature, which
is equivalent for a binary mixture.

If the boil-up rate is used, a proportional-integral control law for
the concentration at the controlled tray c reads

V(t) = Kc(xc(t) − xs
c(t) + xI(t)/TI), (40)

xI(t) =
∫ t

−∞
(xc(�) − xs

c(�)) d�, (41)

where Kc is the gain of the controller, xs
c is the composition setpoint,

xI is the state of the integral part of the controller, and TI is the
integral time. This control law can be used directly in the full model
Eqs. (2)–(6) and the reduced models Eqs. (26)–(34) and (35)–(39).

In this study, Kc = 0.5 and TI = 400 s were chosen using the
Skogestad IMC tuning rules for PI-controllers (Skogestad, 2003) to
achieve a closed-loop response of the controlled concentration with
a time-constant of 100 s, assuming an effective delay of 0 s for the
boil-up.

The reduced model can be further simplified when perfect com-
position control, that is

xc = xs
c, (42)

where the setpoint is (piecewise) constant, ẋc = ẋs
c = 0, is assumed.

Then, the equilibrium relation

0 = (L + F)xc−1 + Vk(xc+1) − (L + F)xs
c − Vk(xs

c), (43)

⇔ V/(L + F) = (xs
c − xc−1)

k(xc+1) − k(xs
c)

(44)

can be derived. Here, the liquid flow is (L + F), because the con-
trolled tray is assumed to be in in the lower column section below
the feed.

Eqs. (42) and (44) can be used in the reduced DAE model
(26)–(34) to eliminate one concentration and either the reflux rate
L or boil-up rate V. If the controlled tray is chosen as an aggre-
gation tray, its concentration variable will change from dynamic
to algebraic, thereby reducing the dynamic model order by one.
Compared to the corresponding PI-controlled reduced model, the
dynamic order is reduced by two, since the dynamic I-part of the
controller is not needed.

The model can be converted again into ODE form as described
in Section 2.3.4 by solving the algebraic equations of the model off-
line. For the part of the model containing the perfectly controlled
tray, a separate table containing

Yc = Yc(xk, xN, xs
c) (45)

and

V/(L + F) = f (xk, xN, xs
c), (46)
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Fig. 4. Responses of the reboiler concentration of the full PI-controlled model (full
line), a reduced PI-controlled model (dashed line) and a perfectly controlled model
(dashed-dotted line), with seven and six aggregation trays, respectively, to a step
change in zF from 0.35 to 0.3 and back (left part of the plot), and in xs

c from 0.105
to 0.1125 and back (right part of the plot). While the PI-controlled model shows a
more accurate response to the change in zF than the perfectly controlled model, it
displays a too large overshoot as response to the change in xs

c .

where k is the index of the aggregation tray above the controlled
aggregation tray, is needed.

Fig. 4 shows the responses of the PI-controlled model and the
perfectly controlled model, both with seven equally sized compart-
ments, to step changes in zF and in xs

c . While the PI-controlled model
is closer to the full model response for the step change in zF , it shows
a fast response with large overshoot and succeeding oscillations
for the setpoint change in xs

c . Note that the PI-controller was not
retuned, leading to a much faster response of the reduced system
because of the neglected dynamics.

2.5. Stiffness analysis

An approximate stiffness analysis is done by linearising the
uncontrolled full and a five-aggregation tray model around a
steady-state for a constant zF , and by comparing the largest and
smallest eigenvalue � of the linearised systems. Fig. 5 shows the

Fig. 5. Plots of the absolute values of the largest and smallest eigenvalues (plot a) of
the uncontrolled full and a five-aggregation tray reduced model linearised around
a constant zF , and of their ratios (plot b).

largest and smallest eigenvalues (plot a), and their ratio (plot b), of
the full and the reduced model for the full range 0 ≤ zF ≤ 1.

It can be seen that the full model is quite stiff with a maximal
eigenvalue ratio (condition number) at zF = 0.5 of 7.7 × 104. The
reduced system does not contain the fast modes of the full system,
which is indicated by the fact that the absolute values of the small-
est eigenvalues of the full system are about 300 times larger than of
the reduced system. The maximal eigenvalue ratio of the reduced
system is therefore reduced to 198, which indicates that there is still
some stiffness present in the system. This remaining stiffness is cre-
ated by a sharp minimum for the smallest eigenvalue at zF = 0.5,
which is present in both full and reduced system. This phenomenon
is described by Skogestad and Morari (1987). However, this slowest
time-scale is actually not interesting for control, because a tem-
perature or composition controller will cause the system to move
to steady-state much faster. Therefore, for the numerical perfor-
mance only the fastest eigenvalue, which dictates the step size of
the integration, is of interest.

2.6. Choice of reduced model parameters

To the knowledge of the authors, no systematic procedure to
determine compartment parameters that are optimal for a certain
application is available. Khowinij et al. (2005) report that the accu-
racy of the compartmental models is not strongly affected by the
location of the aggregation trays. They place the aggregation trays
at the middle of the respective compartments. In order to investi-
gate the influence of the reduced model parameter choice on the
accuracy of the reduced model, a straightforward choice and an
optimized choice of parameters are compared in this study.

It is worth noticing that although requiring that the sum of
the aggregation tray holdups is equal to the sum of the tray plus
condenser and reboiler holdups is physically meaningful, it is not
necessary for obtaining dynamically functional models. Any choice
of the aggregation tray holdups (that leads to a stable model) will
yield a model that approaches the same steady-state as the full
model. Thus the holdups can be used as degrees of freedom to opti-
mize the dynamic behavior of the reduced model. In this study,
however, models are restricted to the “physical” choice of aggre-
gation tray holdups such that the reduced column model has the
same holdup as the full column model.

For the study of the uncontrolled model, two versions of models
with five and seven aggregation trays are compared: a straightfor-
ward version with equally sized and spaced aggregation trays, and
an optimized version, where the parameters are determined by an
optimization procedure to minimize the reduced model error.

In all models, the feed tray was chosen to be an aggregation tray.
In this way, the input appears only in the dynamic part of the model,
but not in the algebraic equations.

With this choice, the three-aggregation tray model is completely
determined, because there is no freedom of choice for the aggre-
gation tray parameters: condenser, reboiler, and the feed tray are
the aggregation trays. For the study of the controlled model, the
location of the controlled tray was fixed to be 62, and the last
aggregation tray before the reboiler was positioned there as well,
allowing a straightforward implementation of the controller. The
parameter values for the five- and seven-aggregation tray models
used in this study are given in Table 2.

2.7. Implementation details of reduced models

The steady-state functions Yj(xsj
, xsj+1 , V/L) were calculated off-

line and stored in a look-up table with 30 × 40 × 200 entries, and
the functions Yc(xsl

, xreboiler , xs
ic

) and V/(L + F) = f (xsl
, xreboiler, xs

ic
)

in tables with 60 × 20 × 200 entries. From the tables, function
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Table 2
Positions and holdups of the aggregation trays of the reduced models.

Aggregation tray index j 1 2 3 4 5 6 7

Uncontrolled models
Three aggregation trays

sj 1 36 74
H̄ 20 72 20

Optimized
sj 1 14 36 60 74
H̄ 20 21 28 23 20
sj 1 8 20 36 53 67 74
H̄ 20 10 15 19 18 10 20

Equally sized
sj 1 13 36 62 74
H̄ 20 24 24 24 20
sj 1 8 22 36 53 67 74
H̄ 20 14 14 16 14 14 20

Controlled models
Optimized

sj 1 13 36 62 74
H̄ 20 21 45 10 20

Equally sized
sj 1 13 36 62 74
H̄ 20 24 24 24 20
sj 1 8 22 36 53 62 74
H̄ 20 14 14 16 14 14 20

values are obtained by applying three-dimensional interpolation.
In this study, multi-linear and multi-cubic interpolation was used
(Press, Teukolsky, Vetterling, & Flannery, 2007). Investigations
on the table interpolation accuracy showed deviations in the
fourth digit (less than 1%) for linear interpolation and in the
sixth digit (less than 0.01%) for cubic interpolation. The table
formats are the outcome of an optimization procedure, where
the minimum average interpolation error was identified among
possible entry number combinations all yielding the same table
size. The obtained optimal combinations reflect the fact that the
function shows stronger curvature in some dimensions than in
others. For example, the function Yj(xsj

, xsj+1 , V/L) is almost linear
in the first variable, because of the dominant influence of the liquid
concentration from above on the function value.

3. Framework for evaluation of reduced model
performance

The computational performance of the different models was
assessed by multiple simulation runs, where the models were sim-
ulated with different solvers at varying simulation tolerances. The
simulation time for a given model and solver depends on the
simulation tolerance, which also influences the simulation error
compared to the exact solution (Section 3.3.2). The performance of
the models can therefore only be compared by considering both
simulation time and simulation accuracy.

In this study, only the open-loop performance of the various
models was assessed. This means that the input signals (zF , L and
V for the uncontrolled column; or zF , L and xs

c for the controlled
column) to the system were fixed at predetermined profiles during
the simulations.

The input profile was selected with the aim of exposing the sys-
tem to step changes in the disturbance and control variables over
a wide range of operating conditions. The simulation accuracy was
measured using the average two-norm of the output deviations
from the exact solution.

3.1. Selection of input profile

The input profiles for zF , L and V to test the performance of
the uncontrolled models are shown in Fig. 6. They include changes

Fig. 6. Step input signals used for simulating the uncontrolled models and output
trajectories of the full model to this input. The stepwise changing curves are the feed
concentration zF , the reflux L and the boil-up rage V. V is always 0.02 higher that L.
The curves on top and bottom are the concentrations of condenser and reboiler,
respectively.

of two different magnitudes in the feed concentration zF and the
reflux rate L and vapor flow V. The two latter are changed simultane-
ously, such that their difference is constantly half of the feed flow F.
This kind of simultaneous change is likely to appear in closed-loop
optimal control of a high-purity column, because then the split

Fig. 7. Step input signals used for simulating the controlled models and output tra-
jectories of the full model to this input. Plot (a) shows the input signal where zF and
V is varied, and plot (b) shows the input signal where zF and xs

c is varied. The curves
on top and bottom of both plots are the concentrations of condenser and reboiler,
respectively. In both cases, V is manipulated by the composition controller.
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is approximately constant (Shinskey, 1984). Nevertheless, we see
from the simulations that the variations in product compositions
(xD, xB) are large, because there is no compensation for changes in
the feed composition (zF ). In the case of the controlled model, the
same input signal was used, but the boil-up rate V was determined
by the composition controller. The variation in product composi-
tion is here much less (Fig. 7). The time interval between changes in
each variable was chosen to 104 s (about 3 h). To take into account
fast and slowly varying input signals, both stepwise changes and
slowly changing cubic B-spline signals (Schlegel, 2005) have been
used. The cubic B-splines yield a continuously differentiable input
signal, where the rate of change form one stationary value ut to the
next ut+1 is determined by a time constant ı. The total transition
time is 2ı with a maximum slope of (ut+1 − ut)/ı. A value of 3000 s
was chosen for ı.

The input profiles for zF , L and xs
c for the controlled column are

shown in Fig. 7. Since the setpoint of the composition controller can
be used as an additional manipulated variable for control, two sets
of input profiles, one with step changes in zF and L (plot a), and one
with step changes in zF and xs

c (plot b) were used.

3.2. Selection of accuracy measure

As a measure for model accuracy, the condenser and reboiler
concentrations, which are the most important variables for control,
are evaluated by taking the average of the 2-norm of the devia-
tions from the exact solution (see Section 3.3.2) over the whole
simulation period:

ε = 1
tend

∫ tend

0

√(
xexact

condenser
− xcondenser

)2 +
(

xexact
reboiler

− xreboiler

)2
dt,

(47)

where xcondenser and xreboiler are the condenser and reboiler concen-
trations, respectively, of either the full or the reduced model, and
of the exact solution.

3.3. Simulation details

3.3.1. Solvers
In this study, the following four solvers have been used to simu-

late the full model and the different versions of the reduced models:

• LIMEX: This solver is an extrapolation scheme for the solution of
linearly implicit differential-algebraic systems (Ehrig & Nowak,
2000; Hairer & Wanner, 2002). In this study, version 4.2A by Ehrig
and Nowak (2000) for systems with dense or banded Jacobian was
used. With this solver, all full and reduced uncontrolled model
versions have been simulated. This solver is attractive for the use
in real-time optimization, because of its good restarting qualities
for problems involving frequent discontinuities (Brenan, Campell,
& Petzold, 1996). It is used, for example, in the real-time optimiza-
tion software DyOS (Schlegel, Stockmann, Binder, & Marquardt,
2005; Würth, Linhart, Preisig, & Marquardt, 2007).

• RADAU: This solver is an implicit Runge–Kutta scheme with coeffi-
cients based on Radau IIA quadrature formulas (Hairer & Wanner,
2002). The code used in this study is the classic fifth-order code
RADAU5 by Hairer and Wanner (1996). It is suitable to solve
stiff equations and was used to integrate the full model and the
reduced models in ODE form.

• DOPRI: This solver is an embedded explicit Runge–Kutta scheme
based on the Dormand–Prince pair for step control (Hairer,
Nørsett, & Wanner, 2000). The code used in this study is the
classic fifth-order code DOPRI5 by Hairer and Wanner (1996).
It is a solver for non-stiff equations and was used to integrate

the reduced models in ODE form. This is possible because of the
reduced stiffness of the reduced models. The same integration
scheme is used in the MATLAB solver ode45 (Shampine & Reichelt,
1997). The higher-order code DOPRI853 has also been tested, but
showed comparable performance to the fifth-order solver and
was therefore not included into the detailed study.

• DASPK: This solver is an implicit multistep integrator based on
the backward differentiation formula (Ascher & Petzold, 1998).
Version 3.0 by Li and Petzold (2000) was used in this study. It
was used to integrate the full and the reduced controlled models
in this study. A similar integration scheme is used in the MATLAB
solver ode15s (Shampine & Reichelt, 1997).

All solvers provide dense output, that is, interpolated solution
values can be obtained at any desired point within the simula-
tion period (Hairer et al., 2000). The LIMEX and DASPK codes were
restarted after every change in the input signal. The RADAU and
DOPRI codes were only started once at the beginning of a simula-
tion, because restarting did not have any effect on their execution
time.

The numerical properties of the controlled and the uncontrolled
models are significantly different. The reason for this is a change of
the Jacobian structure, which is caused by the composition con-
troller. Fig. 8 shows the Jacobian structure of the full controlled
model. The two vertical columns of entries on the right side of the
plot reflect the influence of the state of the controlled tray (left
column) and the I-state of the PI-controller (right column) on the
equations of each tray via the vapor flow V. In contrast to this, the
Jacobian of the uncontrolled model is purely tridiagonal because
of the absence of the composition controller. This has important
numerical consequences. The Jacobian of the uncontrolled models
and the solution of the linear equations arising from the implicit
integration schemes using this Jacobian can be done numerically
efficient by exploiting the tridiagonally banded structure of the
Jacobian. The Jacobian of the controlled models is, however, no
longer banded. This implies that the calculation of a numerical
Jacobian and the linear algebra is much slower. To avoid this loss
in performance, the Jacobian for the controlled models was cal-
culated analytically, and a specialized solver for the linear algebra
which takes into account both banded structure and vertical lines
in the Jacobian was used. To simulate the controlled systems, the

Fig. 8. Plot of the Jacobian structure of the full controlled model.
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solver DASPK (Li & Petzold, 2000) was used, since this solver allows
for the straightforward use of external linear algebra routines.

For all solvers, integration tolerances AbsTol = RelTol in the
range 10−1 to 10−5 were used.

3.3.2. Calculation of “exact” solution
As “exact” solutions, simulations with very tight simulation tol-

erances (10−13) were performed, using the RADAU code for the
uncontrolled models and the DASPK code for the controlled models.

4. Results

4.1. Accuracy vs. simulation time

4.1.1. Uncontrolled models and general observations
Figs. 9 and 10 show the performance of the uncontrolled full

and different optimized reduced models with linear table interpo-
lation in combination with different solvers, simulated at varying
tolerances, for the “slow” (cubic spline) and the “fast” (step) input
signals, respectively. For better readability, the plots were split into
three subplots, each of which shows the results for one solver. For
the “fast” input signal, the following observations can be made:

• The reduction error limits the best achievable accuracy of the
reduced models. As can be expected, these accuracies increase

Fig. 9. Comparison of the performance of the uncontrolled models, simulated with
three different solvers at different simulation tolerances, and with a stepwise input
signal (Fig. 6). Part (a) shows simulations with the LIMEX solver, (b) with the RADAU
solver and (c) with the DOPRI solver. Simulations of the same model with different
simulation tolerances are connected with a line. Full lines are used for ODE models,
and dashed lines for DAE models. In all simulations, linear table interpolation was
used. Due to its high stiffness, the full model could not be simulated with the DOPRI-
solver.

Fig. 10. Comparison of the performance of the uncontrolled models, simulated with
various solvers and at various simulation tolerances, and with the “slow” input
signal.

with increasing reduced model order. For crude simulation tol-
erances (low accuracy simulations), the accuracy of the reduced
models is dominated by the simulation error. For tight simulation
tolerances, the reduction error dominates and no further gain in
accuracy can be achieved by increasing the simulation accuracy.
Typically, for the LIMEX solver, tighter tolerances than 10−3 will
mostly increase the simulation time, but not the accuracy.

• While the reduced models in DAE form do not show any improve-
ment in computational speed, the reduced models in ODE form
can be simulated much faster. This is explainable with the fact
that a general-purpose DAE solver works basically like a stiff ODE
solver (Hairer & Wanner, 2002), where the algebraic equations are
treated similarly to fast dynamic equations. This means that there
is no computational gain to be expected from converting dynamic
equations into algebraic equations, although the use of special-
ized sparse DAE solvers and control algorithms might change this
situation (Bian et al., 2005; Khowinij et al., 2005).

• For every model and solver, the accuracy curve intersects at a
certain accuracy with the curve of the model of the next lower
order. From this accuracy on downwards, it is computationally
favorable to use the model of lower order. However, the seven-
aggregation tray model is still performing well at low accuracies
in some cases (LIMEX solver), such that it could be a more robust
choice when there is doubt about the proper choice of simulation
accuracy.

• Compared to the full model at the same accuracy, the highest
achievable gain in simulation speed is between eight and 10.

For the “slow” input signal, similar observations can be made,
but the performance of the individual solvers is different and the
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Fig. 11. Comparison of the performance of the full and four reduced controlled
models, simulated with various simulation tolerances and input signals with step
changes in zF and L (a), and in zF and xs

c (b) (Fig. 7).

maximum gain in simulation speed is not as significant as in the
stepwise case.

4.1.2. Controlled models
Fig. 11 shows the performances of four reduced models for step-

wise input changes in zF and L (plot a), and in zF and xs
c (plot b).

The reduced models are models with five and seven equally sized
aggregation trays, respectively, an optimized five-aggregation tray
model, and a perfectly controlled model with six aggregation trays,
where the reboiler and the controlled aggregation tray are merged
together.

The following observations can be made:

• The general trends of the performance of the controlled model
are the same as for the uncontrolled models.

• The optimal five-aggregation tray model has a lower reduction
error than the equally sized model, but shows slightly worse
performance at lower accuracies for changes in zF and L.

• The perfectly controlled model shows slightly better performance
than the seven-aggregation tray model at higher accuracies. The
situation reverses at lower accuracies.

• At intermediate accuracies, the gain in computational speed is
roughly of factor six.

Fig. 12 shows numerical statistics of the simulation runs for
the full, the PI-controlled seven-aggregation tray model, and the
perfectly controlled model with six aggregation trays. The numer-
ical behavior of the PI-controlled model is very similar to that of
the full model. The perfectly controlled model shows significantly
lower numbers of steps for intermediate and tight tolerances, and
accordingly low numbers for the other values as well. The number
of residuum calculations is increased, since the Jacobian is calcu-
lated numerically. A possible explanation for this behavior is that
the perfect model does not include the comparably fast dynamics
of the composition controller in the bottom, allowing the integrator
to take larger integration steps.

Fig. 12. Comparison of the numerical behavior of the full, the seven-aggregation
tray PI-controlled reduced model, and the six-aggregation tray perfectly controlled
model.

Fig. 13 shows the percentage of simulation time that is spent in
the computationally most intensive parts of the integration for the
full, the seven-aggregation tray model and the perfectly controlled
model with six aggregation trays. For the full model, the functions
for the solution of the linear equations dominate the simulation
time. For the reduced model, residual and Jacobian evaluation time
dominate. This is because of the computationally expensive look-
up table interpolation that is used in the reduced models, and the
reduction of the number of dynamic variables of the models. The
perfectly controlled model is simulated with numerically calcu-
lated Jacobians, therefore the time of the Jacobian calculation is
included in the residual calculation time. The remaining 40–50%

Fig. 13. Comparison of the percentage of simulation time of the computationally
most intensive parts of the integration for the full, the seven-aggregation tray model
and the perfectly controlled model with six aggregation trays.
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Table 3
Reduction errors of the reduced models for input signals with step changes in zF and
L.

A B C D Reduction error

Uncontrolled models
3 Lin. 9.55 1e −3
3 Cub. 9.33 1e −3
5 Eqs. Lin. 2.57 1e −3
5 Opt. Lin. 2.00 1e −3
5 Eqs. Cub. 2.45 1e −3
5 Opt. Cub. 1.91 1e −3
7 Eqs. Lin. 1.35 1e −3
7 Opt. Lin. 8.13 1e −4
7 Eqs. Cub. 1.26 1e −3
7 Opt. Cub. 7.08 1e −4

Controlled models
4 Eqs. Lin. pc 6.07 1e −3
4 Eqs. Cub. pc 5.34 1e −3
5 Eqs. Lin. PI 9.54 1e −3
5 Opt. Lin. PI 6.09 1e −3
5 Eqs. Cub. PI 8.09 1e −3
5 Opt. Cub. PI 5.23 1e −3
6 Eqs. Lin. pc 3.29 1e −3
6 Eqs. Cub. pc 2.44 1e −3
7 Eqs. Lin. PI 3.72 1e −3
7 Eqs. Cub. PI 2.64 1e −3

Column A gives the number of aggregation trays, column B gives the choice of posi-
tion and size of the aggregation trays (equally sized or optimal), column C gives
the type of interpolation used (linear or cubic), and column D gives the type of
concentration control (PI or perfect control).

of the simulation time is spent in other parts of the solver. In the
reduced models, the time spent for the linear look-up table interpo-
lation amounts to about half of the time spent for the residual and
Jacobian computations, which is about 20% of the total simulation
time.

4.2. Choice of compartments

In Table 3, the reduction error of the reduced model variants
are shown. The error of the optimized models is roughly between
50% and 80% of the models with equally sized aggregation trays.
For higher-order reduced models, the ratio gets better in favor of
the optimized variants, reflecting the increased number of degrees
of freedom for optimization.

4.3. Solver performances

It has been observed before that the LIMEX solver performs well
in simulations with low accuracy, while it is usually outperformed
by other solvers at high accuracies (Schlegel, 2005). The same ten-
dency can be observed in this study when comparing the full model
being simulated with LIMEX and RADAU codes, respectively.

For the uncontrolled reduced models at low accuracies, in case
of a stepwise input signal, the LIMEX solver shows a performance
that is far superior to that of the RADAU solver. The DOPRI code
shows comparable performance to the LIMEX code for high accu-
racies. While the LIMEX solver shows a gradual trade-off between
accuracy and simulation time, the DOPRI solver rather abruptly
looses performance when the simulation accuracy is not close to
the maximal achievable accuracy. During simulations with crude
tolerances, the DOPRI solver usually finds the problem to be stiff.
This is probably the cause for the loss in performance.

In the “slow” input case, the performance of the RADAU solver
is superior to the other solvers. A possible explanation is that the
advantage of the LIMEX code when applied to discontinuous input
signals cannot be exploited in this case. The DOPRI code again looses
performance abruptly because of the problem becoming stiff for
crude simulation tolerances.

The performance of the DASPK solver as the only solver used
for integrating the controlled models cannot be compared to the
other solvers. Still, the same gradual trade-off between accuracy
and simulation time as with the LIMEX solver for the uncontrolled
models can be observed.

5. Discussion

5.1. Reduction method

It was shown in Section 2.3.1 that due to a simplification
step in the original derivation of Lévine and Rouchon (1991), the
reduction method is a very simple procedure that can be applied
without specifying any compartments, but only aggregation trays.
Furthermore, it was shown that the algebraic equations resulting
from the quasi-steady-state approximation can be eliminated from
the model, resulting in significantly more compact reduced mod-
els that can be simulated several times faster than the original
model.

The main bottleneck of the method lies in the second step,
where the DAE system is converted into an ODE system. The off-
line computed solutions of the algebraic equations have to be
stored and retrieved as functions of the state variables of the
aggregation trays encompassing the steady-state trays in a suitable
way. In this study, this was done in a rather straightforward way
by tabulating the relevant solutions and retrieve them by multi-
dimensional interpolation of the table values. Since both table
size and interpolation intensiveness increases exponentially with
the number of independent variables, a high number of indepen-
dent variables will lead to computationally expensive right-hand
sides of the reduced models. In this study, the time spent for
the linear look-up table interpolation is about 20% of the total
simulation time. With every additional independent variable, this
number will double, in case of linear interpolation, and increase
four times, in case of cubic interpolation. The gain in computa-
tional performance will therefore depend on how computationally
intensive the table interpolation is compared to the computational
intensiveness of the residual and Jacobian calculation of the full
model.

5.2. Relationship to singular perturbation methods

As described in Section 2.3.1, the model reduction method was
originally derived as a singular perturbation method. However,
since an additional modification of the equations is performed,
the derivation is different from a standard singular perturbation
approach, where the model is taken into the standard form of
singular perturbation by some state transformation, and then a
quasi-steady-state approximation is performed (Kokotovic et al.,
1986). In Section 2.3.2, these “true” singular perturbation systems
have been compared to the reduced models by Lévine and Rouchon
(1991). Their reduced models still show a typical “slow model”
behavior. This means that the model is getting the more accurate,
the closer it is to steady-state. The initial response to a fast input
change is typically faster than the response of the original model,
because the fast dynamics of the original model are replaced by
“instantaneous dynamics” by the quasi-steady-state approxima-
tions in the reduced model. The method of Lévine and Rouchon can
therefore be described as a “singular perturbation-related” method.
The physical interpretation of the method is also slightly different:
Instead of exploiting the time-scale separation between slow com-
partments and fast trays, the method works by making the signal
transport between the aggregation trays infinitely fast, and slowing
the dynamics down again by increasing the time-constants of the
aggregation trays.
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5.3. Validity of investigated system

The distillation model used in this study is very simple. The
constant molar holdup assumption is generally not a good assump-
tion for the initial response to a change in reflux and for control
purposes (Skogestad, 1997), but is acceptable in this study where
only one control loop in the bottom is closed. The model is, how-
ever, well suited to demonstrate the application and performance of
the model reduction method. It can be expected that the obtained
results possess some predictive quality for more complex cases,
since the dynamics and time-constants are similar.

5.4. Extension and generalization of reduction method

The simple derivation of reduced models presented in this paper
makes it straightforward to extend the reduction method to more
complex distillation models, and to generalize it to general one-
dimensionally distributed systems.

In more realistic distillation models, each tray comprises a total
mass balance (tray hydraulics), an energy balance, and possibly sev-
eral component balances. These can be treated in the same way as
the single component mass balance equations used in this study.
The resulting algebraic equations are treated in the same way as
well. However, the number of independent variables, which deter-
mine the solution of the algebraic equations, is larger than in the
models in this study, yielding more complex functions that have to
be approximated. Indeed, the reduction method has been success-
fully applied to a binary distillation column with energy balances
and complex thermodynamic and hydraulic relationships. These
results will be published separately.

Furthermore, it is possible to generalize the reduction method
to general one-dimensionally spatially distributed systems, such
as plug-flow reactors or heat exchangers. If the system consists of
discrete units, such as the trays in a distillation column, or a model
resulting from the discretization of a partial differential equation,
the reduction method can be applied in exactly the same way. A
detailed description of this method is in preparation.

5.5. Computational performance of reduced models

It has been found that for a given accuracy a gain in simulation
speed of a factor five to ten can be achieved using the reduced mod-
els proposed in this study. The accuracy measure is the integrated
deviation from a reference trajectory, when the model is exposed
to step changes in the inputs, where the interval between two step
changes is long enough to allow the system to come close to steady-
state again. However, the performance of a reduced model will
strongly depend on the application. In model predictive control, for
example, the model will be exposed to step changes in the inputs at
intervals of a few hundred seconds. Since the reduced models pre-
sented here are relatively slow models, their response in the initial
period after an input change is possibly rather inaccurate (compare
Fig. 3). However, the reduced models might be well suited for an
application that emphasizes the long-term behavior of the system,
such as in optimal trajectory planning. This is confirmed by a study
by Würth et al. (2007), who found that reduced aggregated models
yield significant savings in computation time for dynamic real-time
optimization.

5.6. Tabulation of steady-state tray solutions

Multi-linear and multi-cubic interpolation has been used in
this study to obtain continuous function values from the look-up
tables of the steady-state tray solutions. Multi-linear interpolation
is recommended because multi-cubic interpolation will be compu-

tationally expensive for a high number of independent variables as
can be expected for models with more components. For a low num-
ber of independent variables, an increased accuracy (see Table 3)
can instead be achieved by multi-linear interpolation with a higher
table resolution.

5.7. Comparison with other model reduction methods for
distillation columns

Besides tray aggregation, wave propagation theory (Hankins,
2007; Kienle, 2000; Marquardt, 1990) and orthogonal collocation
methods (Cho & Joseph, 1983; Dalouti & Seferlis, 2006) have been
proposed as alternative methods for deriving reduced distillation
models. Wave propagation approximates the system dynamics by
traveling wave profiles in response to input changes. Kienle (2000)
reports very good dynamic and steady-state approximation qual-
ities of the wave models, assuming constant molar flow rates,
holdups and pressure in the system. Hankins (2007) presents exten-
sions of the method to systems with energy balances and hydraulic
effects. Khowinij et al. (2004) compare the performance of a wave
model to that of a compartment model. They report that the approx-
imation quality of the wave model is rather poor compared to that
of the compartment model, which, however, might be due to the
different assumptions incorporated in the two models.

Orthogonal collocation approximates the state variable profile
as sums of orthogonal polynomials. For this, a discrete column
model is first transformed into continuous partial differential
equations. By enforcing the approximating profile to satisfy the
differential equations at a number of collocation points, discrete
dynamic equations are obtained. The approximation quality of col-
location methods depend on the choice and number of collocation
points. Dalaouti and Seferlis (2006) apply the approach to complex
staged reactive separation processes. Their reduced models show
good approximation quality, while a gain in simulation speed of
several times is reported.

Of the three methods, tray aggregation is conceptually probably
the simplest. However, the implementation requires some effort,
as is described in this study. In terms of accuracy, each method
has its strengths and weaknesses. The advantage of tray aggre-
gation compared to the other methods is the perfect match of
steady-states, making it interesting for applications where the long-
term behavior is important. Wave propagation, on the other hand,
seems to yield a good approximation of initial system responses to
fast changing inputs. Collocation methods are probably the most
widely used methods to obtain reduced distillation models. Since
the method can be applied to complex systems without many
restrictive assumptions, the accuracy is suitable for most applica-
tions. Of the three methods, wave propagation is computationally
probably the least intensive. However, a detailed comparison of the
three methods with careful implementations taking the application
of the models into account has yet to be done in order to assess their
strengths and weaknesses for that particular application.

6. Summary and conclusions

In this study, the tray aggregation method of Lévine and Rouchon
(1991) has been used to derive reduced models of a binary distilla-
tion column model. It has been shown that the original derivation,
which partitions the column into “compartments” of consecutive
trays, can be simplified to a procedure which only requires the spec-
ification of aggregation trays and is independent of the choice of
compartment boundaries. This gives the resulting reduced model
a favorable numerical structure and makes the extension to more
complex models straightforward. The original method yields a DAE
model with the same number of variables as the original model.
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Because of the banded Jacobian structure of the reduced model, the
algebraic equations of the DAE models can be eliminated from the
model by off-line solution and substitution of the tabulated solution
values as functions of the dynamic variables into the dynamic equa-
tions, yielding low-order ODE models. The numerical performance
of these models has been assessed by simulations using four dif-
ferent numerical integrators. While simulation of the DAE models
showed no gain in simulation speed, the reduced models yielded
an improvement of up to factor 10. Due to the reduced stiffness
of the models, a non-stiff integrator can be used for integration.
The inclusion of a controller in the bottom section of the column
has been investigated. While the application of a PI-controller to
the reduced model is easily possible, the controller can also be
directly incorporated into the reduced model assuming perfect con-
trol. Both variants show good performance, decreasing simulation
time about six times.

The computational gains that can be achieved by the reduced
models form make these kind of models attractive for use in
real-time optimization applications. In more complex models, the
performance of the reduced models will depend on the complex-
ity of the right hand sides as well as the number of independent
variables for the tabulation of the steady-state tray solutions.
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