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Abstract: Optimal operation of chemical processes becomes increasingly important in order
to be able to compete in the international markets and to minimize environmental impact. A
well established tool to achieve this goal is real-time optimization (RTO), where the optimal
set-points are computed on-line based on measurements taken at given sample times. This
involves setting up and maintaining an real-time computation system, which can be very
expensive and time consuming. In this article we present a different approach for achieving
optimal operation, by performing all calculations off-line and by determining optimally invariant
variable combinations, which when kept constant, yield optimal operation. Once these variable
combinations have been identified and the control structure is set up, there is no need for on-line
optimization.
The procedure presented here is applicable to nonlinear steady state optimization problems
and consists of four steps. First, regions of constant active constraints are defined. Second,
optimally invariant nonlinear variable combinations are determined for each of the regions.
Third, the unknown internal variables and disturbances are eliminated from the invariants to
obtain variable combinations containing only known variable (measurements). Finally a strategy
to detect changes in the active set is found in order to be able to operate the process over a
large disturbance range. The method is tested on a model of a four component isothermal CSTR
taken from Srinivasan and Bonvin (2008).

Keywords: Optimizing control, Nonlinear control systems, Real-time optimization,
Self-optmizing control, Optimally invariant measurement combinations

1. INTRODUCTION

Strong competition, high commodity prices and environ-
ment protection issues have raised the importance of op-
erating chemical plants as close to optimality as possible
while satisfying the several constraints as equipment limits
or environmental regulations.

In order to operate a chemical process optimally in pres-
ence of changing disturbances, two main approaches are
currently found in industry and literature. The first ap-
proach is Real-Time Optimization (RTO). This strategy
involves using a nonlinear process model to calculate the
optimal set-points for the system on-line at certain sample
times based on the last available measurements. Setting up
and solving the optimization problem online can be very
complex, as the usually large optimization problem has to
be solved within a certain time interval.

The second approach is to minimize or avoid all com-
plex on-line computations, and to find optimally invariant
variable combinations (self-optimizing variable combina-
tions). Controlling these variable combinations to their
setpoints guarantees to operate the process optimal or
close to optimal, with a certain acceptable loss (Skogestad
(2000)). After these invariant variables have been identi-
fied, a simple, control structure based on PI controllers
can be set up to control them to their setpoints yielding
optimal process operation. The conventional Real-Time

Optimization problem can either be replaced completely
or partially by controlling the invariants.

In practice many processes are operated by the second
approach, although not always deliberately. Often the
optimization problem is not formulated explicitly and
the control variables are chosen from experience and
engineering intuition.

To the authors knowledge, optimally invariant variable
combinations have been considered systematically only for
linear plants with quadratic performance index (Alstad
et al. (2008)). This contribution extends the idea of self-
optimizing control from unconstrained, linear models to
constrained nonlinear models. This extension to nonlinear
constrained optimization problems makes this systematic
method relevant for Real-Time Optimization applications,
where nonlinear models are optimized for large distur-
bance variations and where the optimum generally is un-
constrained.

The paper is structured as follows. First the concept of
using invariant variable combinations for obtaining opti-
mal operation in regions defined by active constraints is
described. Then we show how optimally invariant variable
combinations can be found for a well-posed system. If it
is possible to eliminate the unknown disturbances and in-
ternal variables from the invariant variable combinations,
the obtained measurement combinations can be used for



control. Finally we present and example of how these
results are applied to a nonlinear model of an isothermal
CSTR from Srinivasan and Bonvin (2008).

2. PROCEDURE FOR FINDING INVARIANT
MEASUREMENT COMBINATIONS

We consider a plant at steady state and assume the plant
performance can be modelled as an optimization problem
with a performance index J together with equality and
inequality constraints, g(u,x,d) and h(u,x,d):

min f

s.t

g(u,x,d) = 0

h(u,x,d) ≤ 0

(1)

The variables u, x, d denote the manipulated input vari-
ables, the internal states, and the disturbance variables,
respectively. In addition there we assume that there are
measurements y = p(x,u,d) which provide information
about the internal states and the disturbance of the pro-
cess.

In order to obtain optimal operation we do not optimize
the model on-line at given sample times. Instead, we use
the structure of the problem in order to find optimally
invariant variable combinations. Using PI or any other
kind of controller to keep these variable combinations at
their setpoints will result in optimal operation without re-
optimizing when disturbances occur.

Since the available number of degrees of freedom changes
when an inequality constraint becomes active, we have
to find a new set of invariant measurement combinations
for each set of constraints that becomes active during
operation of the plant. This makes it necessary to define
separate control structures for each region. Therefore, the
first step is to partition the operating space into regions
defined by the set of active constraints, i.e. the system
is optimized for all possible disturbances and the active
constraints in each region are identified.

In the second step, we determine (nonlinear) variable
combinations which yield optimal operation when kept
at their constant setpoint. The variables resulting from
this first step cannot yet be used for control, because they
contain unknown disturbance variables and internal states
which are not directly known.

To be able to use the invariant measurement variables
for control we eliminate the unknown variables using
the equations from the active set and the measurements.
After all unknown variables are eliminated from these
expressions, the measurement invariants can be used for
control in feedback loops.

The last step in this procedure is do define rules to detect
and to switch region when the active constraints change. In
many cases this can be done by monitoring the controlled
variables of the neighbouring region and switching when
the controlled variable of the neighbouring region reaches
its optimal value. However, this assumes that it is not
possible to skip regions and that the controlled variables
are monotone rising or falling in the current region, which
not always is the case. However for the CSTR example

studied here, this method is applicable and gives good
results.

2.1 Invariants for quadratic objective with linear constraints
and measurements

To illustrate the idea of finding invariant variable combi-
nations we will first consider a problem with a quadratic
objective and linear constraints. Later we will extend the
result to nonlinear problems. After having defined nr re-
gions we can define an equality constrained optimization
problem for each region, by only considering the active
constraints. In the following we will consider a problem
with a quadratic objective and linear constraints. Later
we will extend the result to nonlinear problems. For each
of the nr regions of active constraints we have:

Theorem 1. (Linear invariants). Let u ∈ R
nu×1,x ∈

R
nx×1,d ∈ R

nd×1, and let A ∈ R
(nc×nu+nx) have full

rank and let nc < nu + nx. Furthermore let Ad ∈ R
nc×nd ,

b ∈ R
nc×1, and let Q ∈ R

(nu+nx+nd)×(nu+nx+nd) be a pos-
itive definite matrix made up of submatrices DJ,Jud,Jxd

and Jdd of suitable dimensions.

Consider the optimization problem:

min [uTxTdT]

[
DJ

Jud
T Jxd

T Jdd

]

︸ ︷︷ ︸

Q

[
u
x
d

]

s.t. [A ,Ad]





[
u
x

]

d



 = b

with measurements y = G̃y

[
u
x
d

]

.

If the problem is feasible, Q > 0, and G̃y invertible, we
can find c = Hy such that controlling c to zero yields
optimal operation.

Proof. To obtain an optimally invariant variable combi-
nation we first write down the Karush-Kuhn-Tucker con-
ditions:

0 = [A ,Ad]





[
u
x

]

d



 − b

∇L = DJ

[
u
x
d

]

+ ATλ = 0

(2)

We can write the second equation as

ATλ = DJ

[
u
x
d

]

︸ ︷︷ ︸

B

= B (3)

Note that (3) is linear and overdetermined in λ, since
λ ∈ R

nc×1 and AT ∈ R
nu+nx×nc . Hence, depending on

the right hand side of (3), there is either none or one
unique solution for λ. From linear algebra it is known that
the system is solvable if and only if yTB = 0 whenever
yTAT = 0. The feasible right hand side is therefore
obtained by setting

NTAT

︸ ︷︷ ︸

= 0

λ + NTB
︸ ︷︷ ︸

:= cv

= 0. (4)



Where N is a basis for the null space of A. At the
same time this is the desired optimally invariant variable
combination since keeping it constant yields unique λ
which satisfy the KKT conditions. As a consequence it is
found that c = NTB ∈ R

nu+nx−nc×1, making the system

cv = NTB = 0

[A, Ad]





[
u
x

]

d



 = b
(5)

fully specified.

The unknown variables can now be eliminated from B us-
ing the measurements to yield the measurement invariant
cv

s :

cv
s = NTB = NTDJ

[
u
x
d

]

= NTDJ[G̃y]−1y (6)

2

2.2 Invariants for nonlinear systems

An analog approach may be taken for obtaining invariant
variable combinations for more general systems described
by nonlinear equations. Initially all regions defined by
constant sets of active constraints are determined. For each
region we then have:

Theorem 2. (Nonlinear invariants). Given u,x,d as in the-
orem 1, consider the nonlinear optimization problem

min J(u,x,d)

s.t

pc,i(u,x,d) = 0, i = 1 . . . nc

(7)

and nj implicit measurement relations py,j(y,u,x,d) = 0.
If the transposed of the Jacobian AT = [∇pc,i] has con-
stant rank nc there are nDOF = nu +nx −nc independent
invariant variable combinations cv

s .

If it is possible to eliminate the unknown variables and
disturbances using measurements, these measurements can
be used for controlling the system optimally.

Proof. Calculate the Jacobian

A =






∇pc,1(u,x,d)
...

∇pc,nc
(u,x,d)




 (8)

and calculate its null space N. Since the rows of A are
independent, the null space has constant dimension. Apart
from that A and N now are functions, the proof is analog
to the proof of theorem 1. Set up the KKT conditions
and use the fact that the KKT conditions are linear in λ.
The KKT conditions and the conditions for existence and
uniqueness for λ are:

∇J(u,x,d) + ATλ = 0

NT∇J = NTATλ = 0
(9)

The invariant variable combination is then given by:

cv = NT∇J(x,u,d) (10)

If the unknown variables (x,d) can be eliminated from
(10) we have obtained the desired measurement invariants
which when controlled at their setpoints yield optimal
operation. 2

Remark 1. When calculating the matrix N = N (A) it is
important that the rank remains constant (i.e. that the
rows of A remain linear independent for every realization
of A in the operating region). If this is not the case
at some point, the N will change dimension implying
that the number of degrees of freedom for the problem
changes (increases). Such phenomena are not covered by
this method.

Remark 2. If for every cv
s there exist some hc,i, gy,j such it

can be written in the form cv
s =

∑

i,j (hc,ipc,i + gy,jpy,j)+

r(y), the term r(y) is the desired measurement invariant
cy
s . This follows from the implicit relations pc,i = 0 and

py,j = 0. This is in particular useful for polynomial sys-
tems, where cv

s can be obtained by polynomial reduction.

3. EXAMPLE

As an application example, we consider the model of
an isothermal CSTR with two parallel reactions, Fig. 1
(Srinivasan and Bonvin (2008)). Two feed streams FA and
FB with the concentrations cA and cB react in a tank
to the desired product C and the undesired side product
D. The tank is equipped with one outflow in which all
components are present. In order to enable isothermal
reaction conditions a temperature loop is closed such that
the correct amount of heat is removed from the system.
The temperature control is assumed to be perfect.

In the CSTR, the reaction products C and D are formed
according to following reaction equations:

A + B
k1−→ C

2 B
k2−→ D

(11)

As optimization objective we wish to maximize the de-
sired product (FA + FB)cC weighted by the yield factor
(FA + FB)cC/(FAcA,in). Due to the installed equipment
the amount of heat to remove and the maximum flow rate
are limited to some upper bound. The corresponding op-
timization problem of the system is formulated as follows:

max
FA,FB

(FA + FB)cC

FAcAin

(FA + FB)cC (12)

subject to

FAcAin
− (FA + FB)cA − k1cAcBV = 0

FBcBin
− (FA + FB)cB − k1cAcBV − 2k2c

2
BV = 0

−(FA + FB)cC + k1cAcBV = 0

FA + FB − F = 0

k1cAcBV (−∆H1) + 2k2cBV (−∆H2) − q = 0

q − qmax ≤ 0

F − Fmax ≤ 0

(13)

The variables k1 and k2 are the isothermal rate constants
for the two reactions, (−∆H1) and (−∆H2) are the
corresponding reaction enthalpies, q the heat produced
by the reactions, V the reactor volume. The measured
variables (y), the manipulated variables (MV) and the
disturbance variable (d) are listed in table 1, and the
parameter values of the system are listed in table 2.

3.1 Identifying operational regions

The first step of the procedure, optimizing the system off-
line for all possible values shows that the system operation
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Fig. 1. CSTR with two reactions

space can be divided into three regions defined by the set of
active constraints. In region 1, for values of k1 below about
0.65 only the flow constraint is active (Fig. 2). In region 2
for values between 0.65 and 0.8 both constraints are active,
and in region 3 above 0.8 only the heat constraint is active.
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Fig. 2. Optimal values of the constrained variables

After satisfying the active constraints in the regions we are
left with NDOF,1 = 1 for region 1, NDOF,2 = 0 for region
2, and NDOF,1 = 1 for region 3.

In region 1, one of the MVs (flow rates) is used to control
the active constraint (maximum flow) and the other MV
is used to control the invariant measurement combination
of the region. In region 2 we simply control the active
constraints, keeping q at qmax and F at Fmax. In region
3, again one of the MVs is used to control the active

Table 1. Variables relevant for control

Measurements y FA, FB , cA, cb, q

Manipulated variables u FA, FB

Unknown disturbance d Rate constant k1

Table 2. Parameters

k1 l/(mol h) 0.3-1.5
k2 l/(mol h) 0.0014
(−∆H1) j/mol 7 × 104

(−∆H2) j/mol 5 × 104

cA,in mol/l 2
cB,in mol/l 1.5
V l 500
Fmax l 22
qmax kJ/h 1000

constraint (maximum heat removal) and the other MV is
used to control the invariant measurement combination of
region 3.

In regions 1 and 3, where the system has one degree of
freedom, finding invariant variable combinations is non-
trivial, while in region 2 the invariants are simply the
active constraints, q = qmax and F = Fmax.

3.2 Determining the invariant variable combinations

Using the information from the previous section, we can
start finding invariant variable combinations for region 1
and 3. In the next step we calculate the null space of
Jacobian of the active set NT and multiply it with the
gradient of the objective function as in (10) to obtain the
invariant variable combination. Generally this will become
a fractional expression, but since we are controlling it to
zero, it is sufficient to consider only the numerator in all
further calculation.

Evaluating the numerator of NT∇J yields the invariant
variable combination for region 1:

cv
1 = −(FA + FB)2cC

[
−3cCF 2

BFA − 3cCF 2
AFB

− 4cCcBF 2
Ak2V − 4cCk2V

2k1c
2
BFA − cCF 3

A

− cCF 3
B − 4cCk2V

2k1c
2
BFB − cCcBF 2

Ak1V

− 4cCcBF 2
Bk2V − cCcBF 2

Bk1V − cCF 2
AcAk1V

− cCF 2
BcAk1V − 8cCFAcBFBk2V

− 2cCFAcBFBk1V − 2cCFAFBcAk1V

+ 8FAk1V
2cA,ink2c

2
B + 2F 2

Ak1V cBcA,in

+ 2FAk1V FBcBcA,in − 2F 2
Ak1V cB,incA

−2FAk1V FBcB,incA]

(14)

This invariant may be simplified even more knowing that
(FA + FC)cC 6= 0, so it is sufficient to control the second
term in (14) to zero.

As mentioned above, region 2 does not have any uncon-
strained degree of freedom, so satisfying all active con-
straints yields optimal operation. In other words, the op-
timally invariant variable combinations are the equations
of the inequality constraints in (13).

In region 3 the procedure is exactly the same, yielding a
similar expression for cv

3.

3.3 Eliminating unknown variables

The invariant variable combinations still contain the un-
known and internal variables k1 and cC , so they cannot
be used for feed back control directly. In the next step
the unknown variables have to be replaced by expressions
in the measured variables, so that this invariant can be
used for control. Depending on the type of the system
equations, different methods may be applied in this step.
The general idea is that we use the measurements together
with the equations that are satisfied in the active set to
express the invariant. As all equations in this case study
are polynomial (rational expressions equal to zero can
transformed to polynomials by multiplication with the
denominator), we attempt to reduce the invariants modulo
the active set with a variable ordering that eliminates the
unknowns.



It is found that by only reducing the invariant modulo the
active constraints and with an appropriate term order, k1

was not eliminated. In order to be eliminated, the leading
term of the polynomial of cv has to be a multiple of a
leading term of the set of polynomials that describe the
active constraints or the measurements.

However, this could be resolved by solving the third
equality constraint for k1

k1 = (FA + FB)cC/(cAcBV ) (15)

and inserting it into (14). Having eliminated k1 in this way,
the other unknown variable was eliminated using polyno-
mial reduction and the resulting measurement invariant
becomes:

cs,1 = −cBc2
AFBcA,inF 4

max − 2cBcAF 2
Bc2

A,inF 3
max

− cBF 3
Bc3

A,inF 2
max + cBc2

AcA,inF 5
max

+ 4cBcAFBc2
A,inF 4

max + 3cBF 2
Bc3

A,inF 3
max

− 2cBcAc2
A,inF 5

max − 3cBFBc3
A,inF 4

max

+ cBc3
A,inF 5

max − c4
AF 5

max − c3
AFBcA,inF 4

max

− 2c3
AFBcB,inF 4

max + 3c2
AF 2

Bc2
A,inF 3

max

− 2c2
AF 2

BcA,incB,inF 3
max + 5cAF 3

Bc3
A,inF 2

max

+ 2cAF 3
Bc2

A,incB,inF 2
max + 2F 4

Bc4
A,inFmax

+ 2F 4
Bc3

A,incB,inFmax + c3
AcA,inF 5

max + 2c3
AcB,inF 5

max

− 6c2
AFBc2

A,inF 4
max + 6c2

AFBcA,incB,inF 4
max

− 15cAF 2
Bc3

A,inF 3
max − 2cAF 2

Bc2
A,incB,inF 3

max

− 8F 3
Bc4

A,inF 2
max − 6F 3

Bc3
A,incB,inF 2

max

+ 3c2
Ac2

A,inF 5
max − 4c2

AcA,incB,inF 5
max

+ 15cAFBc3
A,inF 4

max − 2cAFBc2
A,incB,inF 4

max

+ 12F 2
Bc4

A,inF 3
max + 6F 2

Bc3
A,incB,inF 3

max

− 5cAc3
A,inF 5

max + 2cAc2
A,incB,inF 5

max

− 8FBc4
A,inF 4

max − 2FBc3
A,incB,inF 4

max + 2c4
A,inF 5

max

(16)

Although this expression seems rather complicated, it
contains only known variables and therefore it can be
easily evaluated and controlled to its setpoint using a PI
controller.

The measurement invariant for region 3 is found in the
same way as the previous one:

cs,3 = 2Fc2
Aqmax − 2F 2c2

A,in∆H2cB

+ 2F 2c2
A,in∆H2cB,in − 2F 2cA,in∆H2c

2
B

+ 3F 2c2
A∆H2cB,in − 2FcAqmaxcA,in

− FcAcB,inqmax − 2F 2
Bc2

A,in∆H2cB

+ 2F 2
Bc2

A,in∆H2cB,in + 2F 2
BcA,in∆H2c

2
B,in

− 2F 2
BcA∆H2c

2
B,in + 2FBcAqmaxcA,in

− 2F 2
BcA,incB∆H2cB,in − 2F 2

BcA,incA∆H2cB,in

− 4FBFc2
A,in∆H2cB,in + 4FBFc2

A,in∆H2cB

+ 2FBFcA,in∆H2c
2
B − 2FBFcA,in∆H2c

2
B,in

+ 7FBFcA,incA∆H2cB,in + 2F 2cA,incBcA∆H2

− 5F 2cA,incA∆H2cB,in + 2F 2cA,incB∆H2cB,in

− 3F 2cBcA∆H2cB,in − 2FBFcA,incBcA∆H2

− 2FBFc2
A∆H2cB,in + 2FBFcBcA∆H2cB,in

+ 3FBFcA∆H2c
2
B,in + 2FBcAcB,inqmax

(17)

The values of these polynomial equations can vary over
several order of magnitudes, so it is useful to scale the
invariants in order to avoid numerical problems. Therefore
the invariant of region 1 was scaled by the factor 105 and
the invariant of region 3 was scaled by 106.

3.4 Using measurement invariants for control and region
identification

For the system to be operated optimally we not only need
to know which variables we want to keep constant during
operation, but we need to know which region we currently
operate in and when to change region. Assuming the initial
region is known and it is not possible to skip regions, we
can easily detect when to change region for this system
by monitoring the controlled variables of the neighbouring
regions.

Starting in region 1 optimal operation is achieved by using
the two inputs FA and FB to control cs,1 = 0 and FA +
FB = Fmax. If k1 increases, The amount of heat to be
removed (the controlled variable of region 2) increases
until it reaches the maximum possible value, qmax (Fig
3). When this value is reached, the control structure has
to changed to region 2. Now the inputs are used to control
q to qmax and FA +FB to Fmax. While operating in region
2 the controlled variables of the neighbouring regions,cs,1

and cs,2 are monitored. If k1 increases further, the cs,3

approaches its optimal setpoint for region 3 and we switch
region when the optimal value is reached. Switching back
from the different regions is done in an analog manner.

4. CONCLUSION

In this paper we have presented an approach to obtain
optimal steady state operation which does not require
online calculations. After identifying the regions of con-
stant active constraints, it is shown that there exist some
optimally invariant variable combination for each region. If
the unknown variables can be eliminated by measurements
and system equations, the invariant combinations can be
used for control.
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Fig. 3. Optimal values of controlled variables

In the example presented, the measurement invariants can
be used for detecting changes in the active set and for
finding the right region to switch to. This, however is not
generally possible as an invariant may not be monotone
increasing or decreasing within a regions. However as
all these considerations are performed off-line, it can be
determined in advance whether it is possible to track the
regions by monitoring neighbouring control variables or if
alternative approaches such as binary search trees have to
be used. citation?

Although designing a self-optimizing control structure may
require more work in advance, its implementation and
maintenance is easy in practice. After the control structure
is in place, optimal operation can achieved by simple PI
controllers and there is no need to invest in expensive real-
time equipment to operate the process optimally.
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