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Abstract

This paper deals with the optimal selection of linear measurement combinations as
controlled variables, ¢ = Hy. The objective is to achieve “self-optimizing control”,
which is when fixing the controlled variables ¢ indirectly gives near-optimal steady-
state operation with a small loss. The nullspace method of Alstad and Skogestad [1]
focuses on minimizing the loss caused by disturbances. We here provide an explicit
expression for H for the case where the objective is to minimize the combined
effect of disturbances and measurement errors. In addition, we extend the nullspace
method to cases with extra measurements by using the extra degrees of freedom to
minimize the loss caused by measurement errors. Finally, the results are interpreted
more generally as deriving linear invariants for quadratic optimization problems.

1 Introduction

Optimizing control is an old research topic, and one method for ensuring
optimal operation in chemical processes is real-time optimization (RTO)[10].
Using RTO, the optimal values (setpoints) for the controlled variables c are
recomputed online based on online measurements and a model of the process,
see Figure 1. In most RTO-applications, a steady-state model is used for the
reconciliation (parameter/disturbance estimation) and optimization steps [20,
19], however dynamic versions of the RTO-framework have also been reported
[7]. However, the cost of installing and maintaining RTO systems can be large.
In addition, the system can be sensitive to uncertainty.
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A completely different approach to optimizing control is to focus on select-
ing the right variables ¢ to control, which is the idea of “self-optimizing
control”[13]. The objective is to search for combinations of measurements,
for example, linear combinations ¢ = Hy, which when controlled, will (in-
directly) keep the process close to the optimum operating conditions despite
disturbances and measurement errors. The need for a RTO layer to compute
new optimal setpoints c,; can then be reduced, or in many cases even elimi-
nated. Thus, the implementation is trivial and the maintenance requirements
are minimized. The idea in this paper is extend this approach, by providing
explicit formulas for the optimal matrix H.
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Fig. 1. Feedback implementation of optimal operation with separate layers for op-
timization (RTO) and control.

The issue of selecting H can also be viewed as a “squaring down” problem,
as illustrated in Figure 2. The number of output variables that can be inde-
pendently controlled (n.) is equal to the number of independent inputs (n,),
but in most cases the number of available measurements (n,) is larger, that
is, ny > n,. The issue is then to select the nonsquare matrix H such that
the map (transfer function) G = HGY from u to c is square, see Figure 2.
However, selecting H such that G is square is not the only issue. More impor-
tantly, as mentioned above, control of ¢ should (directly or indirectly) result
in ”acceptable operation” of the system.

G (square)

u : Yy

Fig. 2. Combining measurements y to get controlled variables ¢ (linear case).



To quantify ”acceptable operation” we introduce a scalar cost function J which
should be minimized for optimal operation. In this paper, we assume that the
(economic) cost mainly depends on the (quasi) steady-state behavior, which
is a good assumption for most continuous plants in the process industry.

Self-optimizing control [13] can now be defined. It is when a constant set-point
policy (c; constant) yields acceptable loss, L = J(u,d) — J°P*(d), in spite of
the presence of uncertainty, which is here assumed to be represented by (1)

external disturbances d and (2) implementation errors n Le¢,— c, see Figure
1.

The implementation error n has two sources, (1) the steady-state control error
n° and (2) the measurement error n?; and for linear measurement combinations
n = n°+HnY. In Figure 1, the control error n® is shown as an exogenous signal,
although in reality it is determined by the controller. In any case, we assume
here that all controllers have integral action, so we can neglect the steady-state
control error, i.e. n® = 0. The implementation error n is then given by the
measurement error, i.e. n = HnY.

Ideas related to self-optimizing control have been presented repeatedly in the
process control literature, but the first quantitative treatment was that of
Morari et al. [11]. Skogestad [13] defined the problem more carefully, linked it
to previous work, and was the first to include also the implementation error.
He mainly considered the case where single measurements are used as con-
trolled variables, that is, H is a selection matrix where each row has a single
1 and the rest 0’s. Halvorsen et al. [3] considered the approximate “maximum
gain method” and also proposed an “exact local method” for the optimal mea-
surement combination H. They proposed to obtain H numerically by solving
ming 6{M(H)], but did not say anything about the properties of this optimiza-
tion problem. Kariwala [8] proposed an iterative method involving singular
value and eigenvalue decomposition. Hori et al. [5] considered indirect control,
which can be formulated as a subproblem of the extended null space method
presented in this paper. Additional related work is presented in [15, 16, 17]
on measurement-based optimization to enforce the necessary condition of op-
timality under uncertainty, with application to batch processes. Bonvin et al.
[2] extends these ideas and focus on steady-state optimal systems, where a
clear distinction is made between enforcing active constraints and requiring
the sensitivity of the objective to be zero.

This paper is an extension of the nullspace method of [1], where it was found
that, in the absence of implementation errors (i.e., n = 0), it is possible to
have zero loss with respect to disturbances, provided the the number of (inde-
pendent) measurements (n,) is at least equal to the number of (independent)
inputs (n,) and disturbances (ng), ie., n, > n, + ng. It is then optimal to
select H such that HF = 0, where F = dy°?*/dd” is the optimal sensitivity



with respect to disturbances d [1]. Note that it is not possible to have zero loss
with respect to implementation errors, because each new measurement adds
a “disturbance” through its associated measurement error, n¥.

In this paper, we include the implementation error and provide the following
new results:

(1) Optimal H for combined disturbances and implementation errors (Sec-
tion 3).

(2) Optimal H for disturbances using possible extra measurements to min-
imize the effect of implementation error (Extended null space method,
Section 4).

2 Background

The material in this section is based on [3], unless otherwise stated. The most
important notation is given in Table 1.

Table 1
Notation.
u - vector of n, unconstrained inputs (degrees of freedom)
d - vector of ng disturbances
y - vector of ny selected measurements used in forming c
¢ - vector of selected controlled variables (to be identified)
with dimension n. = ny,
nY - measurement error associated with y
n® - control error associated with ¢ (this paper: n¢ = 0)
n - implementation error associated with ¢; n = n®+ Hn¥ = 0)

The objective is to achieve optimal steady-state operation, where the degrees
of freedom u are selected such that the scalar cost function J(u,d) is mini-
mized for any given disturbance d. Parameter variations may also be included
as disturbances. We assume that any optimally “active constraints” have been
implemented, so that u includes only the remaining unconstrained steady-state
degrees of freedom. The “reduced space” optimization problem then becomes

min J(u,d) (1)

The objective of this work is to find a set of controlled variables ¢, or more



specifically an optimal measurement combination ¢ = Hy, such that a con-
stant setpoint policy (where u is adjusted to keep c constant; see Figure 1)
yields optimal operation (1), at least locally.

With a given d, solving eq. (1) for u gives JP'(d), u®?*(d) and y°?*(d). In
practice it is not possible to have u = u’?*(d), for example, because of imple-
mentations errors and changing disturbances. The resulting loss (L) is defined

as the difference between the cost J, when using a non-optimal input u, and
Jort(d) [14]:

L= J(u,d) — J(d) 2)

The local second-order accurate Taylor series expansion of the cost function
around the nominal point (u*,d*) can be written

T

T [Au 1 [Au Juuw Jud| |Au

J(u,d) = J(u*,d*) + [Ju J4 + 5
Ad Ad JT Jag| |Ad

where Au = (u—u*) and Ad = (d — d*). For a given disturbance (Ad = 0),
the second-order accurate expansion of the loss function around the optimum
(J,, = 0) then becomes

1 1
L= E(u —u?)J (0 —u%) = EZTZ (4)

where
z 2 J/2(u — u) (5)

In this paper, we consider a constant setpoint policy where the controlled
variables are linear combinations of the measurements 2

Ac = HAy (6)

We assume that n. = n,, that is, the number of (independent) controlled
variables c is equal to the number of (independent) steady-state degrees of
freedom (“inputs”) u. The constant setpoint policy implies that u is adjusted
to give ¢; = ¢ + n where n is the implementation error for ¢ (see Figure 1).
As mentioned in the introduction, we assume that the implementation error
is caused be the measurement error, i.e. n = Hn?%. We now want to express
the loss error z in terms d and nY when we use a constant setpoint policy, but
first some additional notation is needed.

2 We use A to denote deviation variables. Often, the A is omitted and we write,
for example, ¢ = Hy.



The linearized (local) model in terms of deviation variables is written

- |Au
Ay = GYAu + GYAd = G (7)
Ad
Ac = GAu + G,Ad 8)
where
G — [Gy G‘Z] 9)

is the augmented plant. From eqgs. (6), (7) and (8) we get
G =HGY and G,;=HGY (10)

The magnitudes of the disturbances d and measurement errors n¥ are quan-
tified by the diagonal scaling matrices W4 and Wy, respectively. More pre-
cisely, we write
Ad = W,d (11)
n’ = W, n¥ (12)
where we assume that d’ and n¥’ are any vectors satisfying

dl
|

nY'
A justification for using the combined 2-norm in eq. (13) is given in the dis-
cussion section of Halvorsen et al. [3].

2 <1 (13)

The non-linear functions u®”*(d) and y°*(d) are also linearized, and it can be
shown that [3]

Au” = -J;} J,4Ad (14)
Ay? = —(G'J,,Jua — GY) Ad (15)
F

where we have introduced the optimal sensitivity matrix F for the measure-
ments. In terms of the controlled variables ¢ we then have

(u—u”) = G'(c—c?) = G (Ac — Ac™) (16)
Ac? = HAy” = HFAd (17)
Ac=Ac; —n=—-n=—-HnY (18)

where we in the last equation have assumed a constant setpoint policy (Acs =
0). Upon introducing the magnitudes of Ad and n¥ from egs. (11) and (12)
we then get for the constant setpoint policy:

z =Myd' + M,;n¥ (19)



where

M, = —J/2(HGY)'HF W, (20)
M,, = —J/2(HGY)'HW,,, (21)
Introducing
M £ [Myq M,y] (22)
'
givesz =M , which is the desired expression for the loss error. A nonzero

nY’
value for z gives a loss L = 7||z|» (4), and the worst-case loss for the expected
disturbances and noise in (13) is then[3|

(a[M1])” (23)

Lye = max L =
15 ll2<1

N | —

where the last equality follows from the definition of the singular value & and
the assumption about the normalized disturbances and measurement errors
being 2-norm bounded, see eq. (13). Thus, to minimize the worst-case loss we
need to minimize 6(M) with respect to H. This is the “exact local method”
in Halvorsen et al. [3], and note that we have expressed My in (20) in terms
of the easily available optimal sensitivity matrix F.

3 Explicit formula for optimal H for combined disturbances and
measurement errors

From (23), the optimal measurement combination is obtained by solving the
problem (“exact local method”)

H = arg mHin a(M) (24)

It may seem that this optimization problem is non-trivial as M depends non-
linearly on H, as shown in (20)-(22). Halvorsen et al. [3] proposed a numerical
solution and Kariwala [8] provides an iterative solution for the optimal H in-
volving the singular value and eigenvalue decompositions. However, (24) is in
fact easy to solve , as shown in the following. We start by introducing

M, £ I2(HGY)! = J.’G™ (25)
which may be viewed as the effect of n on the loss variables z. We then have

M = [Md Mny] = —MnH[FWd Wny] (26)



Next, we use the fact that the solution of eq. (24) is not unique, so that if
H is an optimal solution, then another optimal solution is H; = DH, where
D is a non-singular matrix of dimension n, x n,. For example, this follows
because My and M, in (20) and (21) are unaffected by the choice of D. One
implication is that G = HGY may be chosen freely (which also is clear from
Figure 2 since we may add an output block after H which allows G to be
selected freely). Alternatively, and this is used here, it follows from (25) that
M,, may be selected freely. However, the fact that M,, may be selected freely,
does not mean that one can, for example, simply set M,, = I in (26) and
then minimize (M) with M = H[FW,; W,,,]. Rather, one needs to minimize
(M) subject to the constraint M,, = I. Introducing

F 2 [FW,; W] (27)
the optimization problem (24) can then be stated as

H = arg min 5(HF) subject to HGY = J1/2 (28)

This is fairly easy to solve numerically because of the linearity in H in both
the matrix HF and in the equality constraints. In fact, an explicit a solution
may be found, as shown below.

Choice of norm. The optimization problems (24) and (28) involve the singu-
lar value (induced 2-norm) of M, (M), which represents the worst-case effect
of combined 2-norm bounded disturbances and measurement errors on the loss.
A closely related problem is to minimize the Frobenius norm (Euclidean or
2-norm) of M, |[M||p = 1/X; ; |mi;|2, which represents some “average” effect
of combined disturbances and measurement errors on the loss. Actually, which
norm to use is more a matter of preference or mathematical convenience than
of “correctness”. First, the difference in minimizing the two norms is generally
minor; the main difference is that minimizing (M) usually puts more focus
on minimizing the largest elements. Second, as discussed below, it appears
that for this particular problem, we have a kind of “super-optimality”, where
the choice of H that minimizes || M|z, also minimizes (M) [9].

Scalar case. For the scalar case (c is a scalar and n, = n, =1), M and H”
are (column) vectors, (M) = ||[M]||r, and an analytic solution to (28) is easily
derived. The optimization problem (28) becomes

III_lIiTIl IFTHT||, subject to GYTHT = J./2 (29)

and from standard results for constrained quadratic optimization, the optimal
solution is (see proof in Appendix)

H” = (FFT)'GY(GY"(FFT)1GY)1JL/2 (30)

where it is assumed that FFT has full rank.



General case. The explicit expression for H in (31) holds also for the general
case, that is, for minimizing | M||r for the case when H is a matrix. This can
be proved by rewriting the general optimization problem (28) for the matrix
case, into a vector problem by stacking the column of H” into a long vector. In
addition, Kariwala et al. [9] has shown, as already mentioned, that the matrix
H that minimizes the Frobenius-norm of M also minimizes the singular value
of M [9]. However, the reverse does not necessarily hold, that is, a solution
that minimizes (M) does not necessarily minimize ||H||z [9], which is because
the solution to the problem of minimizing (M) is not unique. Our findings
can be summarized in the following Theorem (see the Appendix for details).

Theorem 1 For combined disturbances and measurement errors, the optimal
measurement combination problem in terms of the Frobenius-norm, ming || M|
with M given by (20)-(22), can be reformulated as ming |HF||r subject to

HGY = J/2, where F = [FWy W,u]. Assuming FFT is full rank, we have

uu
the following explicit solution for the combination matriz H,

H! = (FF')'GY(GYT (FF!)1GY)1J/2 (31)

This solution also minimizes the singular value of M, (M), that is, provides
the solution to the “exact local method” in (24).

Note that FF” = [FW,; W,,,][FW, W] in (31) needs to be full rank. This
implies that (31) does not generally apply to the case with no measurement
error, W,,; = 0, but otherwise the expression for H applies generally for any
number n, of measurements y. One exception, when the expression for H in
(31) applies also for W¥ = 0, is when n, < n4, because FF7T then remains full
rank.

4 Extended nullspace method

The solution for H in (31) minimizes the loss with respect to combined distur-
bances and measurements errors. An alternative approach is to first minimize
the loss with respect to disturbances, and then, if there are remaining degrees
of freedom, minimize the loss with respect to measurement errors. One justi-
fication is that disturbances are the reason for introducing optimization and
feedback in the first place. Another justification is that it may be easier later
to reduce measurements errors than to reduce disturbances.

If we neglect the implementation error (M, = 0), then we see from (20) that
M, = 0 (zero loss) is obtained by selecting selecting H such that

HF =0 (32)



This provides an alternative derivation of the nullspace method of [1]. It is
always possible to find a non-trivial solution (i.e. H # 0) H satisfying HF = 0
provided the number of independent measurements (n,) is greater than the
number of independent inputs (n,) and disturbances (ng), i.e. ny, > n, + ny
[1]. One solution is to select H as the nullspace of F7:[1]

H = N(F7) (33)

The main disadvantage with the nullspace method is that we have no control
of the loss caused by measurement errors as given by the matrix MY. In this
section, we study this in more detail, by deriving an explicit expression for
H that allows us to compute the resulting M,,y. The explicit expression for
H allows us to extend the nullspace method to cases with extra or too few
measurements, i.e., to cases when n, # n, + nqy.

4.1 Ezplicit expression for H for original null space method

From the expansion of the loss function we have, see egs. (5) and (14)

J

T | |Au
2= |3 T (34
Ad

We assume that H is selected to have zero disturbance loss, which is possible
if ny > ny + ng. Then from (19) and (26), z = —M,Hn?. With the controlled
variables ¢ = Hy fixed at constant setpoints (Ac = Ac, = 0) we then have
Ay = —nY, and get

- |Au
z =—-M,Hn' = M, HAy = M, HG? (35)
Ad

where GY = [Gy GZ] is the augmented plant. Comparing eqs. (34) and (35)

yields . .
M, HGY = J (36)

where J is defined in (34). We then have the following explicit expression for
H for the case where n, = n, + nq such that G¥ is invertible

H=M_1J[GY]! (37)

This expression gives H for a case with zero disturbance sensitivity (M, = 0),
and thus gives the same result as (33). Note that M,, can be regarded as a
“free” parameter (e.g. we may set M,, = I, see Remark 2 below).

10



4.2  Ezxtended nullspace method

The explicit solution for H in (37) forms the basis for extending the nullspace
method to cases where we have extra measurements (n, > n, +ngq) or too few
measurements (1, < n, + ngq).

Assume that we have n, independent unconstrained free variables u, ny dis-
turbances d, n, measurements y, and we want to obtain n, = n, indepen-
dent controlled variables c that are linear combinations of the measurements,
c = Hy. From the results in Section 2, the loss imposed by a constant set-
point policy is L = %ZTZ where z = Myd’' + M,yn? . Define E as the error in
satisfying eq. (36):

E=M,HGY - J (38)
We want to derive a relationship between E and M. From (15) and (9) the
optimal sensitivity can be written

~ J;&Jud
F=-GY (39)
|
which combined with (26) gives
- NIk T ISR I e P
-1 |
x ;JJud . .
Here J = 0 which gives
-1
J;&Jud
M, =E W, (40)
—1I

Note that the disturbance sensitivity is zero (M, = 0) if and only if E = 0.

Let ||E|p = (/>;; € denote the Frobenius (Euclidean) norm of a matrix,
and let 7 denote the pseudo-inverse of a matrix. Then we have the following

theorem:

Theorem 2 Explicit expression for H in extended nullspace method.
Selecting

H=M,'J(W,/G") W,/ (41)
minimizes ||E||lr, and in addition minimizes the noise sensitivity ||Myy|
among all solutions that minimize ||E||r.

11



Proof: Rewrite the definition (38) for E as

E=M,HW,, W,/GY - J (42)
N ——
_Mn?l

From the theory of linear algebra [18], the solution for —M,» that minimizes ||E|| g,
and in addition minimizes |[Myy|/r among all solutions that minimize ||E| g, is
given by —M,,y = J(W ) G¥)t, which gives (41). To see this, note that minimizing
|E||F is equivalent to finding the least square solution X = BA' to XA = B, where
X=-Muy, A=W, /GYand B=J. O

Remark 1 If we have “enough” measurements (n, > n, + ng4) then the choice for
H in eq. (41) gives E = 0 and thus My = 0. However, for the case with “too few”
measurements the above choice for H minimizes ||E| r, whereas we really want to
—1

c e . JuuJud
minimize | My||p. Nevertheless, since |[My|lr < ||E||F - ||

Wyl F, we see
that minimizing ||E||r will result in a small value of |My||F-

Remark 2 The matrix H is non-unique and the matrix M,, in (41) can be viewed

as a parameter that can be selected freely. For example, one may select M,, = I, or

one may select My, to get a decoupled response from u to c, i.e. G = HGY = [I.

However, note that M, H, which from eq (34) gives the measurement noise sensi-

tivity, will not be affected as it is given by (36) and (41).

Remark 3 It is appropriate at this point to make a comment about the pseudo-

inverse At of a matrix. In general, we can write the least-square solution of XA = B

as X = BA' where the following are true:

(1) AT = (ATA) AT is the left inverse for the case when A has full column rank
(we have extra measurements). In this case, there are an infinite number of
solutions and we seek the solution that minimizes || X||f.

(2) Af = AT(AAT)'1 is the right inverse for the case when A has row column rank
(we have too few measurements). In this case there is no solution and we seek
the solution that minimizes the Frobenius norm of E = B — XA (regular least
squares).

(3) In the general case with extra measurements, but where some are dependent,
A has neither full column or row rank, and the singular value decomposition
may be used to compute the pseudo-inverse Af.

4.8 Special cases of Theorem 2

We have some important special cases of the Theorem 2:

12



4.8.1  “Just enough” measurements (original nullspace method)

When n, = n, + nq, the measurements and disturbances are independent, so
GV is invertible and (41) becomes

H=M!J(GY)! (43)

as derived earlier in (37). This choice gives My = 0 (zero disturbance loss)
and from (26) the resulting effect of the measurement noise is

M, = J[GY]'W,, (44)

Note that we in this case have no degrees of freedom left for affecting the
matrix M,,y.

4.8.2  Extra measurements: Select “just enough” subset

If we have extra measurements (n, > n, +n4), then one possibility is to select
a “just-enough” subset (such that we get n, = n, + ng4) before forming c
and then obtain H from (43) to achieve zero disturbance loss (M = 0). The
degrees of freedom in selecting the measurement subset can then be used to
minimize the loss with respect to the measurement noise, that is, to minimize
the norm of M,,y in (44). The worst-case loss caused by measurement noise is

oGy W) < 1 (6(3)2(GY)o (W)

(45)
The selection of measurements does not affect the matrix J, since it from (33)
depends only on the Hessian matrices J,, and J,4. However, the selection of
measurements affects the matrix G¥. Thus, in order to minimize the effect of
the implementation error, we propose the following two rules:

Ly.= max L=1(M)*=

|In"¥[]2<1

N[

(1) Optimal: In order to minimize the worst-case loss, select measurements
such that (M) = 6(3[(§y]'1Wny) is minimized.

(2) Sub-optimal: Assume that the measurements have been scaled with
respect the measurement error such that W, = I. From the inequality
in eq. (45), it then follows that the effect of the measurement error n¥ will
be small when ¢(GY) (the minimum singular value of G¥) is large. Thus,
it is reasonable to select measurements y such that ¢(G¥) is maximized.

Since the optimal rule needs information on the Hessian matrix of the cost
function J, the sub-optimal selection rule of maximizing ¢(G¥) is simpler in
practice. This sub-optimal rule was used successfully in [1] to select measure-
ments from 60 candidates for a Petlyuk distillation case study.

13



4.3.83 FExtra measurements: Use all

For the case with extra measurements (n, > n, + ng4), we may alternatively
use all the measurements when forming ¢ and obtain H from (41) in Theorem
2. This gives the solution that minimizes the implementation (measurement
error) loss subject to having zero disturbance loss (M, = 0). More precisely,
when n, > n, + n4 and the measurements and disturbances are independent,
the choice for H in (41), where { denotes the left inverse, minimizes || M| ¢
(Euclidean norm) among all solutions with M, = 0. Note that we need to
include the noise weight before taking the pseudo inverse in (41).

4.83.4  “Too few” measurements

If there are many disturbances, then we may have too few measurements to
get My = 0. For the case when both the measurements and disturbances are
independent, we have “too few” measurements when n, < n, + nq. In this
case, the optimal H given in (41) in Theorem 2 is not affected by the noise
weight, and (41) becomes

(GY)! (46)

where T denotes the right inverse and M, is, as before, free to choose. However,
this explicit expression for H minimizes |E||r, whereas, as noted in Remark
1, we really want to minimize ||My||r. Minimizing | My||F is equivalent to
solving the following optimization problem

H = arg mHin||HFWd||2 subject to HGY = J./2 (47)

For this case, with few measurements and no consideration of measurement
error, we have not been able to derive an explicit expression for H, similar to
(31) in Theorem 1. However, for practical applications, eq. (46) is most likely
acceptable, at least provided we scale the system (i.e. GY) such that W, = I.
There may also be cases where we do have enough measurements, but we
nevertheless want to use “too few” measurements to simplify implementation.
In this case, we have that M,y = J(G¥)'W,, and to minimize 5(M,) (the
effect of measurement error), we may first select the set of measurements that
maximizes ¢(M,), and then select H according to (46). Also, note that if
we have sufficiently few measurements, i.e. n, < ng, then (31) applies with
W,v =0 (see comment following Theorem 1).
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5 Example

As a simple example, consider a scalar problem with n, = 1 and ng = 1 [3].
The cost function to be minimized is

J = (u— d)? (48)

where the nominal disturbance is d* = 0. Assume that the following four
measurements are available:

y1 = 0.1(u — d) Yo = 20u y3 = 10u — 5d Ys = U
We assume that the system is scaled such that |d| < 1 and |n;| < 1, i.e.,
Wo=1, W, =1 (49)

and we want to find the optimal measurements or combinations to control at
constant setpoints.

Solution. From (48), it is clear that Jy,(d) = 0 V d and the optimal input is
uP’(d) = d. We find J,, = 2 and J,4 = —2 and

GV = [0.1 20 10 1] and GY = [—0.1 05 0] (50)

The optimal sensitivity matrix F is obtained from (15) or (39). This gives
F =1[02051]7.

5.1 Single measurement candidates

Let us first consider the use of individual measurements as controlled variables

(c=1y;, i=1,2,3,4). The losses L, = 35(M)? are
L,.=100 L2 =10025 L} =026 L, =2 (51)
Measurement y, has Ay” = 0, so it happens to have zero disturbance loss

(M4 = 0). However, this measurement is sensitive to noise (as can be seen
from the small gain in GY) and we see that this choice actually has the largest
loss L, = 100. y3 is the best single measurement candidate. This illustrates
the importance of taking into account the implementation error (measurement
noise).
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5.2 Measurement combinations: Use two of the four measurements

Consider combining two measurements, ¢ = Hy = hyy; + hoy;. Let us first con-
sider combinations that give zero disturbance loss My = 0, which is possible
since n, + ng = ny = 2. The “null space” combination (H = (hy hy)) is most
easily obtained using (33). For example, for measurements (2,3), F = [20 5]”
and

H = [hy ho] = N(]20 5]) = [-0.2425 0.9701] (52)

The controlled variable is then ¢ = —0.2425y, + 0.9701y3. The same result is
obtained from (41).

The results with the nullspace method for all six possible combinations are
given in Table 2. The table gives the worst-case loss L. caused by the mea-
surement error. We have L, = %6(M)2, where, since My =0, M = M,;, =
J(G¥)'"W,,. To compare, we also show in Table 2 ¢(G¥), which according
to the “sub-optimal rule for selecting measurements” should be maximized in
order to minimize the implementation error. We note that for this example
that maximizing o(GY) gives the same (correct) ranking as minimizing Ly..

From Table 2, we see that combinations involving measurement y; are all
sensitive to noise. Combination (i,j) = (2, 3) is the best, followed by (3,4),
while (1,2), (1,4) and (1,3) have the same noise sensitivity when they are
combined using the nullspace method. The reason is that N'(FT) = [1 0],
so that only measurement y; is used. Combination (2,4) yields infinite noise
sensitivity to noise with the nullspace method, since G is singular.

Table 2
Combinations of two measurements, ¢ = hyiy; + hoy;, with zero disturbance loss
(Mg = 0) and resulting loss L. caused by measurement error.

H from (41)

yi Y| hy | Luwe |o(GY)
2 3| —0.2425 0.9701 | 0.0425 | 4.449
3 4| —0.1961 0.9806 | 1.04 | 0.446
1 2 -1 0 100 0.1
1 4 -1 0 100 | 0.0995
1 3 -1 0 100 | 0.0447
2 4] -0.0499 0988 | oo 0

Next, consider the optimal combination of two measurements for disturbances
and measurements error (“exact local method”). The results are summarized
in Table 3. Again, we find that the best combination is (2,3) with a loss
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Table 3
Combinations of two measurements, ¢ = h1y; + hoy;, with minimum loss L, for
combined disturbances and measurement error.

H from (31)

Y Yy h1 ho Ly
2 3 | —0.2312 0.9729 | 0.0406

3 4| —-0.8296 0.5584 | 0.198
1 3] 02293 0.9733 | 0.2351
1 2| 0.8753 0.4836 | 0.8969
2 4] 0.0499 0.9988 | 0.9050

1 4| 01869 0.9824 | 1.8670

L2 =0.0406. This gives My = —0.0635 so, as expected, the disturbance loss
is non-zero. For this combination, the result is very similar to the extended
nullspace method which gave L2 = 0.0425 and M, = 0. However, for the
other five two-measurement combinations, the differences are much larger as
the use of (31) gives a significantly lower sensitivity to measurements error,
see Table 3. However, note that L, for those five cases is only slightly better
than using a single measurement, see (51).

5.8  Measurement combinations: Use all four measurements

Consider again first the case when we want zero disturbance loss (Mg = 0),
and eq. (41) in the extended nullspace method gives (after normalizing the
2-norm of H to 1):

H = (0.0206 —0.2419 0.9700 —0.0121 (53)

which gives G = 4.852 and M,, = 0.2915. The loss contribution from the
disturbance and the noise are My = 0 and M,y = [—0.0060 0.0705 —
0.2827 0.0035], respectively. The corresponding loss is Ly, = 62[My M,s]/2 =
0.04248.

To compare, the optimal combination (“exact local method”) with respect to
combined disturbances and measurement noise, obtained from (31) is (after
normalizing the 2-norm of H to 1) [3]

H' = [0.0208 —0.2317 0.9725 —0.0116 (54)

which gives G = 5.082 and M,, = 0.2783. The loss contribution from the
disturbance and the noise are My = —0.0606 and M,y = [—0.0057 0.0645 —
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0.2706 0.0032], respectively. The resulting loss is L. = 0.0405, which is very
similar to the extended null-space method, and only marginally improved com-
pared to using only two measurements (L2 = 0.0406). The reduction in loss
is small compared to using only two measurements (L2 = 0.0406).

In summary, the simple two-step nullspace method, where one first selects a
“just enough” set of measurements by maximizing o(G¥), and then obtains
H from the null-space method, using either eqs. (43) or (33), works well for
the example.

6 Example 2: Control of refrigeration cycle

4

i T, |®T“
Psh,combine * \\QH
----- 0

Fig. 3. Proposed control structure for the refrigeration cycle.

For a more physically motivated example, we consider the optimal operation
of a COy refrigeration cycle [6], for example, it could be the air condition
(AC) unit for a house. The cycle has one unconstrained degree of freedom
(ny, = 1), which may be viewed as the high pressure (y; = p;) in the cycle.
Ideally, pj, should be kept at its optimal value by varying the free input (u);
which is the choke valve position. However, simply keeping a constant setpoint
Ph,s is far from optimal because of disturbances. Three disturbances (ng = 3)
are considered: The outside temperature T}, the inside temperature T (e.g.
because of a setpoint change) and the heat transfer rate UA. As a start,
control of single variables was considered, because this is the simplest and is
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the preferred choice if such a variable can be found. The best single controlled
variable (with a large scaled gain and a small loss) was found to be the mass
holdup (¢ = M,) in the condenser [6], but it is very difficult to measure in
practice. Therefore, a combination of measurements needs to be controlled.
Theoretically, we need to combine at least 4 measurements (n, + nq = 4) to
get zero loss, independent of the disturbances (i.e., to get My = 0). However,
to simplify the implementation we prefer to use fewer measurements. Two
measurements which are easy to measure and have a reasonably large scaled
gain [6], are the high pressure (y; = py) and the temperature before the choke
valve (yo = T},). It is not possible to get My = 0 with only two measurement, so

instead H = |h; h,| was obtained numerically by minimizing || My||r; see eq.

(46) (actually, matrix H could have been obtained from (31) with W,,, = 0,
since we have n, = 2 < ng = 3; see comment following Theorem 1). This gives
a controlled variable ¢ = hyyy + hoys = hipp + ho1}). To get a more physical
variable, we select h;y = 1, which gives a controlled variable in the units of
pressure. We find [6]

C = Dh,combined = Ph + k(Th — 25500)

where k = hy/h; = —8.53 bar /°C and the (constant) setpoint for ¢ =
Dh,combined 15 97.6 bar, which is the nominally optimal value for the high pres-
sure. Controlling ¢ may be viewed as controlling the high pressure, but with
a temperature-corrected setpoint. A more detailed analysis using a nonlinear
model shows that this combination gives very small losses for all disturbances
and measurement errors [6].

Other case studies. The results of this paper, and in particular (31) in
Theorem 1 have also been applied successfully to a distillation case study
where the issue is to select temperature combinations [4].

7 Discussion

7.1 Local method

The above derivations are local, since we assume a linear process and a second-
order objective function in the inputs and the disturbances. Thus, the proposed
controlled variables are only globally optimal for the case with a linear model
and a quadratic objective. In general, we should always, for a final validation,
check the losses for the proposed structures using a non-linear model of the
process.
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7.2 Quadratic optimization problem

The following reformulations of the results in this paper may be useful for
extending them to other applications and comparing them with other results.

First, we give a reformulation of the original nullspace method [1].

Theorem 3 Linear invariants for quadratic optimization problem.
Consider an unconstrained quadratic optimization problem in the variables u
(input vector of length n,) and d (disturbance vector of length ng)

. Juu Jud u
minJ(u,d) = [u d] (55)

In addition, there are “measurement” variables y = GYu + GYd.

If there exists ny > n, + ng independent measurements (where “independent”

means that the matriz GY = [Gi‘/ GY| has full rank), then the optimal solution

to (55) has the property that there exists n. = ny linear variable combinations
(constraints) ¢ = Hy that are invariant to the disturbances d. Here, H may be
obtained from the nullspace method using (33) (where the optimal sensitivity
F may be obtained from (15)) or from the explicit expression (37).

Next, the result on the worst-case loss [3] and the explicit expression for the
“exact local method” in Theorem 1 can be reformulated as follows.

Theorem 4 Loss by introducing linear constraint for noisy quadratic
optimization problem. Consider the unconstrained quadratic optimization
problem in Theorem 3:

Juu Jud u

min J(u,d) = [u d]
JT Jaal |d

and a set of noisy measurements y,, = y+n?. Assume that n. = n, constraints
c = Hy,, = c; are added to the problem, which will result in a non-optimal
solution with loss L = J(u,d) — Jopt(d). Consider disturbances d and noise n¥
with magnitudes

d’
d= de,; nY = szy = WnY; ” ”2 <1
n?’

Then for a given H, the worst-case 10ss is Ly = 5(M)?/2, where M is given
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in (20)-(22), and the optimal H that minimizes (M) is given by (31) in
Theorem 1. This optimal H lso minimizes | M]||p.

Note from Theorem 3 that if there are a sufficient number (n, > n, + ng) of
noisy-free measurements, then we can obtain zero loss in Theorem 4.

7.8  Relationship to indirect control

Indirect control is when we want to find a set of controlled variables ¢ = Hy
such that the primary variables y; are indirectly kept at constant setpoints.
The case of indirect control is discussed in more detail by Hori et al. [5] and
the results are a special case of the results for the nullspace method presented
in this paper if we select

1 1
J=5ly =il =5y - vy — ] (56)

To show this, write

- |Au
Ay, = GiAu+ G4 Ad = G, (57)
Ad

and assume n,, = n,, so G; is a square matrix. We find that

Ju = GGy (58)
Jui=GIGy (59)

Consider the case with n, = n, + ng, where we can achieve perfect indi-
rect control with respect to disturbances. Substituting (58) and (59) into the
explicit expression (37) for the nullspace method gives

H="P_G,(GY)* (60)

where we have introduced the new “free” parameter P,y = GlJ;&/ M, =
GG . This is identical to the results of Hori et al. [5].

8 Conclusion

Explicit expressions have been derived for the optimal linear measurement
combination ¢ = Hy.
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The null space method [1] for selecting linear measurement combinations ¢ =
Hy has been extended to the general case with extra measurements, n, >
Ny + Mg, see eq. (41) in Theorem 2. The idea of the extended nullspace method
is to first focus on minimizing the steady-state loss caused by disturbances,
and then, if there are remaining degrees of freedom, minimize the effect of
measurement errors.

Alternatively, one may minimize the effect of combined disturbances and mea-
surements errors, which is the “exact local method” of Halvorsen et al. [3]. In
this paper, we have derived an explicit solution for H for this problem, see eq.
(31) in Theorem 1. This expression applies to any number of measurements,
including n, < n, + ng.

To simplify, one often uses only a subset of the available measurements when
obtaining the combination ¢ = Hy. A simple rule, which can aims at minimiz-
ing the effect of measurement errors, is to select measurements to maximize
a(GY) or even better, to minimize 5(J(GY)""W,,). Here, G¥ is the steady-
state gain matrix from the inputs and disturbances to the selected measure-
ments.
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A Analytical solution for the exact local method
A.1 Scalar case

The minimization problem for the scalar case in (29) can be rewritten as:
min |FT x|y = min xTFFTx subject to G¥'x = Ji/2 (A1)

. A . . .
where we have introduced x £ H?, which is a column-vector in the scalar
case.

The solution of this problem must satisfy the following KKT-conditions (e.g.
[12, p. 444)):
FFT —GY| |x 0
= (A.2)
G 0 | |A JL/2

To find the optimal x, we must invert the KKT-matrix and from the Schur
complement of the inverse of a partitioned matrix (e.g. [14, p. 516]), we obtain
that the optimum x is

x =H" = (FF)"'GY(GY" (FFT)'GY)~1J/2 (A.3)

Comment: In the scalar case, GY is a (column) vector and J./2 is a scalar.
However, the expression and proof also applies if GY were a matrix and J %2
were a vector. This fact is important for the extension to the multivariable
case.

A.2 Extension to multivariable case

To show that the solution for the scalar case also applies to the multivariable
case, we first transform the multivariable case into a scalar problem. In this
proof, we consider a system with 2 controlled variables (n, = 2), but it can
easily be extended to any dimension.

The optimization problem is mingr |[HF|| » subject to HGY = J/2, where we

uu

introduce X = H”. The matrices X and J!/? are split into vectors

X = [Xl XQ] ) Jq%z = [Jl J2] (A.4)
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We further introduce the long vectors

. |GYT 0 . |FoO
GV = = (A.6)
0 GYT 0F
xT xTF
= = 1| 1 .
Then, HF = X'F = F = and for the 2-norm, the following
T TF
X2 X2
applies
Te
- x; F Ny T
HE[r =11 _|lr=I|xFx]F|[lr =[x, Fallr (A7)
x; F
where it is noted that || - ||r = || - ||2 for a vector.
The constraints GY"X = J1/2 become
[GyTX1 GyTX2] = [Jl Jg] (A‘g)

or G¥'x; = J; and G¥"'x, = J,, which can be rewritten as
Ji
Jo

(A.7) and (A.9) is a vector optimization problem of the form in (A.1) and
from (A.3) the solution is

GyTxl

G_yTX2

or G¥x, = J, (A.9)

x, = (F,F, ) 'GY(GY(F,F,") 'GY) 1J, (A.10)

We now need to “unpack” this to find the optimal HY = X. Substituting the
values and rearranging (A.10)

-

T\ —1 T

GY 0 GY 0
0 GY 0 GY

)

F F 0
0 0F

)
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and we see that

X1 FET) QY (GyT FET) 'qv) I,

_ . L (A.11)
X9 FFT GY (GyT (FFT Gy> Jy

and finally,
o N -1
H =X = |x x| = (FFY) 'Y (@7 (FFT) "G)  |3,3,] =
o 1 T (2er) ! e
- (FF ) GY (Gy (FF ) Gi‘/> I (A.12)

This proves that the solution for the scalar case also applies for the multivari-
able.
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Figure 1:Feedback implementation of optimal operation with separate layers
for optimization (RTO) and control.

Figure 2: Combining measurements y to get controlled variables c (linear
case).

Figure 3: Proposed control structure for the refrigeration cycle.

Table 1: Notation.

Table 2: Combinations of two measurements, ¢ = hyy; + hoy;, with zero dis-
turbance loss (My = 0) and resulting loss L, caused by measurement error.
Table 3: Combinations of two measurements, ¢ = hyy; + hoy;, with minimum
loss L,,. for combined disturbances and measurement error.
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