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Abstract

Self-optimizing control provides nearly optimal operation of process systems in face of varying distur-

bances, where the inputs are adjusted to hold selected controlled variables (c) at constant setpoints. It

is possible to have better self-optimizing properties by controlling linear combinations of measurements

(c = Hy) than by controlling individual measurements. Previous work10 focussed on selecting combi-

nation matrix H to minimize worst-case loss, that arises due to the use of sub-optimal self-optimizing

control policy. In this paper, we present a method for finding combination matrix H that minimizes

average loss for local self-optimizing control. It is further shown that the combination matrix that min-

imizes average loss is super-optimal in the sense that it also minimizes worst-case loss simultaneously.

The usefulness of the results is demonstrated using an evaporator case study.
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1 Introduction

Controlled variables (CVs) are the variables which are maintained at constant setpoint values by a control

system. Appropriate selection of CVs represents a critical decision during the design of a control system,

which not only affects the control system performance but also influences the overall plant operation.

Traditionally, CVs have been selected based on intuition and process knowledge. In early 1980s, Morari

and co-workers studied the implication of CV selection on optimal plant operation.13 Recently, this

work has been extended by Skogestad,15 who coined the term self-optimizing control. In self-optimizing

control, instead of trying to achieve the best possible performance, a small trade-off is made between the

performance and the simplicity of the approach. Here, a set of appropriate CVs is found which, if held

constant, provides acceptable loss in comparison with the use of an online optimizer to achieve optimal

operation.

CVs are usually selected as a subset of available measurements, but it is possible to have better self-

optimizing properties by controlling linear combinations of measurements.1,7, 10 In either case, the choice

of CVs based on the general non-linear formulation of self-optimizing control requires solving large-

dimensional non-convex optimization problems.15 To quickly pre-screen alternatives, local methods are

used. The first local approach to select CVs within the self-optimizing control framework is the approxi-

mate minimum singular value or the maximum gain rule.16 Halvorsen et al.7 provided a rigorous analysis

of the worst-case loss and presented a nonlinear optimization approach to find the locally optimal linear

combinations of measurements that can be used as CVs. The nonlinear optimization approach can be time

consuming and may also converge to local optima. Alstad and Skogestad1 proposed the use of the com-

putationally more efficient null space method to find measurement combinations. However, the method

ignores implementation error, which arises in every real process due to the presence of measurement error

and other uncertainties. Thus, the null space method is capable of providing only a sub-optimal solution.
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Recently, Kariwala10 presented an explicit solution to the problem of finding the optimal measurement

combinations which minimize local worst-case loss. The method proposed by Kariwala10 is efficient and

only requires the use of singular value and eigenvalue decomposition of certain matrices. In this paper, we

improve the computational efficiency of this method further.

All aforementioned designs are based on worst-case loss minimization. The solution obtained by the

use of available methods may be conservative as the worst-case may not occur frequently in practice. An

alternative to worst-case loss minimization is to select CVs by minimizing the average loss, which represents

the expected loss incurred over the long-term operation of the plant. The main contribution of this

work is the extension of the available techniques for local self-optimizing control based on worst-case loss

minimization to average loss minimization. We derive expressions for local average loss and subsequently

use these expressions to explicitly characterize the combination matrices that minimize average loss. A

natural question about the new design approach is that how the self-optimizing control performance will

be if actual disturbances and implementation error are very different from the average-case scenario. To

address this issue, we show that the combination matrices that minimize average loss are super-optimal

in the sense that they also minimize worst-case loss simultaneously. Thus the use of average-case optimal

combination matrices is always advantageous, as they not only minimize the average loss, but also ensure

that the largest loss that can occur over all disturbance and implementation error scenarios is no larger

than seen by using worst-case optimal combination matrices. The usefulness of the results is demonstrated

using the evaporator case study,14 which also highlights some of the outstanding issues related to selection

of CVs in the self-optimizing control framework.

The rest of this paper is organized as follows: After summarizing self-optimizing control principles, the

optimization problems to minimize the worst-case and average losses are defined in Section 2. Then,

numerically efficient algorithms to calculate the minimal achievable losses and corresponding combination

matrices are derived in Section 3. In Section 4, an evaporator case study is presented to demonstrate the
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advantages of these new algorithms. Finally, the work is concluded in Section 5.

2 Self-optimizing control

In this section, we present the available expression for worst-case loss and derive expression for average

loss for local self-optimizing control. We denote the inputs or manipulated variables and disturbances by

u and d, respectively. Let us assume that the steady-state economics of the plant are characterized by

the scalar objective functional J(u, d). In presence of varying disturbances, the optimal operation policy

is to update u according to d using an online optimizer, which provides the optimal value of the objective

functional denoted as Jopt(d).

An alternative and simpler strategy is to update u using a feedback controller, which manipulates u to

hold the CVs c at their specified setpoints. For this strategy, let the value of the objective functional

be Jc(d, n). Note that when the feedback-based policy in used, u and thus J is also affected by the

error n in implementing constant setpoint policy, which results due to measurement noise and other

uncertainties. The simpler strategy results in a loss and self-optimizing control is said to occur, when

the loss is acceptable.15 Based on this concept, the CVs can be selected by comparing the worst-case or

average losses of different alternatives, where

Worst-case loss = max
d∈D

max
n∈N

(Jopt(d)− Jc(d, n)) (1)

Average loss =
1

|D| |N |

∫
D

∫
N

(Jopt(d)− Jc(d, n)) (2)

where D and N represent the sets of allowable disturbances and implementation errors, respectively and

| · | denotes the cardinality of a set. Using (1) or (2), the evaluation of loss for a general nonlinear process

is difficult. To quickly pre-screen the alternatives, instead local methods are used, as discussed below.
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2.1 Local methods

The local methods are based on the second order accurate Taylor series expansion of the loss function

(Jopt(d)− Jc(d, n)) and a linear model of the process. It is also assumed that the set of active constraints

for the process does not change with d and n. Cao2 has considered the case, when the set of active

constraints changes with the disturbances.

Let the linearized model of the process, obtained around the nominally optimal operating point, be given

as

y = Gy u + Gy
d Wd d + Wn n (3)

where y denote the process measurements and the diagonal matrices Wd and Wn contain the magni-

tudes of expected disturbances and implementation errors associated with the individual measurements,

respectively. We have y, n ∈ Rny , u ∈ Rnu and d ∈ Rnd with ny ≥ nu. The CVs c are given as

c = H y = G u + Gd Wd d + nc (4)

where

G = H Gy, Gd = H Gy
d and nc = H Wn n (5)

It is assumed that the dimension of c is the same as the dimension of u and G = H Gy is invertible. The

second assumption is necessary to ensure that the CVs can be maintained at the specified setpoints using

a controller with integral action. Halvorsen et al.7 have shown that for given d and n, the loss is given as

L =
1
2

∥∥∥∥∥∥∥∥
[

Md Mn

] d

n


∥∥∥∥∥∥∥∥

2

2

(6)
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where

Md = J1/2
uu

(
J−1

uu Jud −G−1Gd

)
Wd (7)

Mn = J1/2
uu G−1Wn (8)

Here Juu and Jud represent ∂2J
∂u2 and ∂2J

∂u ∂d , evaluated at the nominally optimal operating point, respec-

tively. Note that for a well-defined minimization problem, Juu is always positive-definite and thus J
1/2
uu is

guaranteed to exist.

Remark 1 Though J is considered to be the economic objective function in this paper, the proposed

results also hold for other scalar objective functions. For example, in the case of indirect control, the CVs

are found such that J defined as the steady-state offset in primary Vs is minimized.9

To present the worst-case and average loss expressions, similar to Halvorsen et al.,7 we first consider that

d and n are constrained to satisfy ∥∥∥∥∥∥∥∥
 d

n


∥∥∥∥∥∥∥∥

2

≤ 1 (9)

Some discussion on scenarios, where the allowable set of d and n differs from that given by (9), is provided

in Section 2.3.

Theorem 1 Let Md and Mn be defined by (7) and (8), respectively. The worst-case loss over the allowable

set of disturbances and implementation errors defined by (9) is given as7

Lworst =
1
2
σ̄2

([
Md Mn

])
(10)

where σ̄(·) is the maximum singular value.
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The proof of Theorem 1 is given by Halvorsen et al.7 As argued in Section 1, the minimization of worst-

case loss can be conservative, as it may not occur frequently in practice. Often, it is more appropriate to

minimize the average loss. In the next proposition, we derive an expression for average loss.

Proposition 1 Let Md and Mn be defined by (7) and (8), respectively. The average loss over the allowable

set of disturbances and implementation errors defined by (9) is given as

Laverage =
1

6 (ny + nd)
‖

[
Md Mn

]
‖2

F (11)

where ‖ · ‖F denotes the Frobenius norm.

Proof : Let M =
[

Md Mn

]
and d̃ =

 d

n

. Based on (6), the average loss is given as

Laverage =
1
2
E

[
tr

(
M d̃ d̃T MT

)]
=

1
2
E

[
tr

(
MT M d̃ d̃T

)]
=

1
2
tr

(
MT M E

[
d̃ d̃T

])
where tr(·) denotes the trace of the matrix and E[·] is the expectation operator. To find E

[
d̃ d̃T

]
, note

that the set (9) can be represented as ‖d̃‖2 = α, where α is uniformly distributed over the range 0 ≤ α ≤ 1.

Since each element of d̃ ∈ Rny+nd is independently and identically distributed, E[d̃id̃j ] = δijE[α2/(ny+nd)],

where d̃i is the ith element of d̃ and δij is the Kronecker delta. Thus,

E
[
d̃ d̃T

]
=

E
[
α2

]
nd + ny

I =

∫ 1
0 α2dα

nd + ny
I =

1
3(nd + ny)

I

which implies that the average loss is given by (11).

For specified CVs, the computation of local worst-case and average losses using (10) and (11), respectively,

requires computation of matrix norms only. In comparison, the computation of exact losses using (1)-(2)

is much more involved. Though the expressions for local losses are guaranteed to be accurate only in a

small neighborhood of the nominal operating point, they are useful for quick pre-screening of alternatives.
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2.2 Selection of controlled variables

Note that the losses in (10) and (11) depend on H and the CVs are selected by minimizing the losses with

respect to H. Next, we briefly discuss different approaches for selecting H.

Individual measurements. When individual measurements are selected as CVs, the optimization prob-

lem involves finding the best nu measurements such that the loss in (10) or (11) is minimized. In this case,

the elements of H are restricted to be 0 or 1 and

HHT = I, where H ∈ Rnu×ny . (12)

Under minor assumptions, the exact local method minimizing the worst-case loss in (10) can be simplified to

provide the approximate minimum singular value (MSV) or maximum gain rule.16 To select the optimal

subset of measurements based on the MSV rule, branch and bound based search methods have been

proposed by Cao et al.4 and, Kariwala and Skogestad.11 These methods avoid enumeration of all possible

alternatives. Finding efficient search methods for selection of CVs based on (10) and (11) is currently

under research.

Measurement combinations. Instead of using individual measurements, it is possible to use combi-

nations of measurements as CVs. In this case, the integer restriction of H is relaxed but the condition

rank(H) = nu is still imposed to ensure invertibility of H Gy. Halvorsen et al.7 used non-linear optimiza-

tion for finding H, which can be very time consuming, and more importantly can converge to local optima.

As an alternative, Alstad and Skogestad1 proposed the use of the null space method. In this method, the

implementation error is ignored and H is selected such that

H
(
Gy J−1

uu Jud −Gy
d

)
= 0 (13)
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or H is in the null space of Gy J−1
uu Jud−Gd. It can be verified that when (13) holds, σ̄(Md) = 0. Clearly, the

assumption of ignoring the implementation error is limiting and can only provide a sub-optimal solution.

Due to this assumption, in some cases, the local loss obtained by controlling measurement combinations

found using null space can be higher than the case where individual measurements are controlled, e.g.

for the binary distillation column discussed by Hori and Skogestad.9 In addition, for (13) to hold, it is

necessary that ny ≥ nu +nd. When less than (nu +nd) measurements are available, the null space method

cannot be applied. Recently, Kariwala10 has presented an explicit solution to the problem of minimizing

local worst-case loss. In this paper, we primarily aim at extending the results of Kariwala10 to average

loss minimization.

2.3 Allowable region of disturbances and implementation errors

[Table 1 about here.]

In the derivation of Theorem 1 and Proposition 1, similar to Halvorsen et al.,7 we have assumed that the

allowable set of d and n is given by (9). The set in (9), however, implies correlation between different

disturbances and implementation errors. In practice, the variation of individual disturbance and imple-

mentation error is independent of each other. This scenario can be appropriately represented by defining

the allowable set as

|di| ≤ 1, |nj | ≤ 1 i = 1, 2, · · · , nd; j = 1, 2, · · · , ny (14)

or

∥∥∥∥∥
[

dT nT

]T
∥∥∥∥∥
∞

≤ 1, where ‖ · ‖∞ denotes maximum absolute value of the elements of the vector.

In this case, by following the proof of Proposition 1, it can be shown that the average loss is given as

(1/6)‖
[

Md Mn

]
‖2

F . Another possibility is to allow d and n to be distributed normally, i.e.

di ∼ N(0, 1), nj ∼ N(0, 1) i = 1, 2, · · · , nd; j = 1, 2, · · · , ny (15)
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where N(0, 1) denotes a normal distribution with zero mean and unity standard deviation. In this case,

Wd and Wn contain the standard deviations of d and n, respectively. Here, d2
i and n2

j follow χ2 distribution

and E[d2
i ] = E[n2

j ] = 1. Thus, following the proof of Proposition 1, the expression for average loss becomes

(1/2)‖
[

Md Mn

]
‖2

F . In summary, the average loss for commonly used allowable regions for d and n

changes only by constant factors (see Table 1) and selection of H is not affected by allowable region for d

and n.

On the other hand, the problem of computing local worst loss is ill-defined, when d and n are distributed

normally. This happens as in the worst-case d and n can be arbitrary large implying Lworst = ∞. When

the allowable set of d and n is given by (14), derivation of explicit expression for worst-case loss reduces to

solving a combinatorial optimization problem.3 Note that the set

∥∥∥∥∥
[

dT nT

]T
∥∥∥∥∥

2

≤ √
ny + nd includes

the set (14). Thus, the worst-case loss over allowable region of d and n defined by (14) is upper bounded by

0.5(ny +nd)σ̄2

([
Md Mn

])
. In this case, selection of H by minimizing (10) is equivalent to minimizing

an upper bound on worst-case loss.

3 Optimal Measurement Combination

In this section, we present explicit solutions to the problems of finding optimal measurement combinations

that can be used as CVs. The cases of worst-case and average loss minimization are dealt with in turn.

In the following discussion, as a shorthand notation, we denote

Y =
[

(Gy J−1
uu Jud −Gy

d) Wd Wn

]
(16)
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3.1 Worst-Case Loss Minimization

The various available methods that can be used to find locally optimal or sub-optimal measurement

combinations for worst-case loss minimization are discussed in Section 2.2. Among the available methods,

the solution presented by Kariwala10 is optimal and efficient, which is recalled below.

Theorem 2 Let λ1, λ2, · · · , λny be the eigenvalues of
(
γ2 Gy J−1

uu (Gy)T − Y Y T
)

arranged in decreasing

order. Then, the minimal loss is given as

L = 0.5 γ2 (17)

where γ > 0 is the smallest scalar satisfying

λnu

(
γ2 Gy J−1

uu (Gy)T − Y Y T
)

= 0 (18)

Let ν1, ν2, · · · , νnu , · · · , νny be the mutually orthogonal eigenvectors of
(
γ2 Gy J−1

uu (Gy)T − Y Y T
)

such

that (18) holds. Then, the H matrix can be chosen as

H = C [ ν1 ν2 · · · νnu ]T (19)

where C ∈ Rnu×nu is any non-singular matrix.

In Kariwala,10 singular value decomposition is used for computing γ that satisfies (18). In the following

discussion, we present an alternate method, which is computationally more efficient and is expressed

directly in terms of Gy, Juu and Y .

Lemma 1 For A ∈ Rm×n, m ≤ n, the largest m eigenvalues of A AT − I and AT A− I are the same.

Proof : Let the singular value decomposition of A be A = UΣV T . As U and V are unitary matrices,

A AT − I = UΣ2UT − I = U(Σ2 − I)UT . Similarly, it can be shown that AT A − I = V (Σ2 − I)V T .
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Considering U and V to be similarity transformation matrices, it follows that the largest m eigenvalues of

A AT − I and AT A− I are the same.

Proposition 2 The γ that solves (18) is given as

γ = λ
1/2 (

J−0.5
uu (Gy)T (Y Y T )−1 Gy J−0.5

uu

)−1
(20)

Proof : Let R be an upper-triangular matrix that satisfies Y Y T = RT R (Cholesky factor). Using

congruence transformation (see e.g. Skogestad and Postlethwaite16), it follows that the eigenvalues of(
γ2 Gy J−1

uu (Gy)T − Y Y T
)

are the same as the eigenvalues of
(
γ2 R−T Gy J−1

uu (Gy)T R−1 − I
)
. Define

Q = R−T Gy J−0.5
uu . Based on Lemma 1, the first nu eigenvalues of

(
γ2 QQT − I

)
and

(
γ2 QT Q− I

)
are

same, when arranged in decreasing order. Then,

γ2 QT Q− I � 0

⇔
(
QT Q

)−1 � γ2 I

Thus, the smallest γ that solves (18) is given as λ̄1/2
((

QT Q
)−1

)
. Now, the expression in (20) follows by

recognizing that QT Q = J−0.5
uu (Gy)T (Y Y T )−1 Gy J−0.5

uu .

The explicit expression for γ in (20) is used to prove an important property of the combination matrices in

Section 3.3. Furthermore, as shown in Section 4, controlling the combinations of a subset of measurements

can often provide similar loss as obtained by controlling combinations of all available measurements. To

find a suitable subset of measurements, the loss needs to be evaluated several times. Here, the use of the

explicit expression for γ in (20) is advantageous, which can be used to compute loss about 10 times faster

than the singular value decomposition based method presented by Kariwala.10
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3.2 Average Loss Minimization

The following lemma establishes the basis for finding the optimal combination of measurements, when

average loss is minimized.

Lemma 2 The matrix H minimizing the loss in (11) can be found by solving

min
H,X

1
6 (nd + ny)

tr(X) (21)

s.t. H
(
Gy J−0.5

uu X J−0.5
uu (Gy)T − Y Y T

)
HT � 0 (22)

X � 0 (23)

rank(H) = nu (24)

Proof : We note that

[
Md Mn

]
= J1/2

uu G−1

[
(G J−1

uu Jud −Gd) H Wn

]
= J1/2

uu (H Gy)−1 H Y

The Frobenius norm of
[

Md Mn

]
can be minimized by minimizing tr(X), where X satisfies

J1/2
uu (H Gy)−1 (H Y ) (H Y )T (H Gy)−T J1/2

uu � X (25)

⇔ (H Gy)−1 (H Y ) (H Y )T (H Gy)−T � J−0.5
uu X J−0.5

uu

⇔ H Y Y T HT � H Gy J−0.5
uu X J−0.5

uu (Gy)T HT

⇔ H
(
Gy J−0.5

uu X J−0.5
uu (Gy)T − Y Y T

)
HT � 0

As the matrix on the left hand side of (25) is positive semi-definite, we require that X � 0. We further

note that H that solves the optimization problem does not necessarily renders H Gy invertible. Hence,

the rank constraint in (24) also need to be imposed on H.
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Lemma 2 shows that the optimal measurement combinations for average loss minimization can be found

by solving an optimization problem involving matrix inequalities. The matrix inequality (22), however, is

quadratic in H and thus is difficult to solve. To derive the solution to this problem, we first present the

following Lemma.

Lemma 3 For A ∈ Rn×n, there exists B ∈ Rm×n, m ≤ n, such that B A BT � 0 if and only if λm(A) ≥ 0,

where λm denotes the m-th largest eigenvalue of A.

The proof of Lemma 3 is embedded in the proof of Proposition 1 in Kariwala10 and is not repeated here

for the sake of brevity. Based on Lemma 3, we present the optimal measurement combinations for average

less minimization in the next proposition.

Proposition 3 For the optimization problem (21)-(24), it is optimal to select X as

X =
(
J−0.5

uu (Gy)T (Y Y T )−1 Gy J−0.5
uu

)−1
(26)

and the minimal loss is given as

Laverage =
1

6 (nd + ny)

nu∑
i=1

1
λi

(
J−0.5

uu (Gy)T (Y Y T )−1 Gy J−0.5
uu

) (27)

Let ν1, ν2, · · · , νnu , · · · , νny be the mutually orthogonal eigenvectors of
(
Gy J−0.5

uu X J−0.5
uu (Gy)T − Y Y T

)
where X is given by (26). Then the optimal H matrix can be selected as

H = C

[
ν1 ν2 · · · νnu

]T

(28)

where C ∈ Rnu×nu is any non-singular matrix.

Proof : Based on Lemma 3, (22) holds if and only if, we select X such that

λnu

(
Gy J−0.5

uu X J−0.5
uu (Gy)T − Y Y T

)
≥ 0 (29)
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Now, let R be an upper-triangular matrix that satisfies Y Y T = RT R (Cholesky factor). Then, similar

to the proof of Proposition 2, the first nu eigenvalues of
(
Gy J−0.5

uu X J−0.5
uu (Gy)T − Y Y T

)
are the same as

the first nu eigenvalues of
(
R−T Gy J−0.5

uu X J−0.5
uu (Gy)T R−1 − I

)
.

Define Q = R−T Gy J−0.5
uu . As X � 0, X0.5 exists. Based on Lemma 1, the first nu eigenvalues of(

QX QT − I
)

and
(
X0.5 QT QX0.5 − I

)
are the same implying that (29) holds if and only if

λnu

(
X0.5 QT QX0.5 − I

)
≥ 0

⇔ X0.5 QT QX0.5 � I

⇔ QT Q � X−1

⇔
(
QT Q

)−1 � X

As we want to minimize tr(X), the optimal solution is to choose X =
(
QT Q

)−1, which gives X in (26).

With this choice of X, the expression for average loss follows readily. The proof that (28) represents the

set of optimal H is the same as the proof of a similar result in Kariwala10 and is omitted here.

3.3 Worst-case Vs. Average Loss Minimization

In the previous two sections, we presented the optimal combination matrices that minimize worst-case

and average losses for local self-optimizing control. When only one degree of freedom is available for

self-optimizing control, σ̄

([
Md Mn

])
= ‖

[
Md Mn

]
‖F and the combination matrix obtained by

minimizing either of the losses is same. When more than one degrees of freedom are available, the

designer needs to decide whether to minimize the worst-case or average loss in order to find measurement

combinations. Arguably, the minimization of average loss is better, as worst-case may not occur frequently

in practice. The minimization of average loss, however, may not always be satisfactory, as average-case

optimal design may perform very poorly for certain disturbance and implementation error scenarios. This

dilemma is resolved by the following important property of average-case optimal combination matrices:
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Proposition 4 Any H matrix that minimizes average loss in (11) also minimizes the worst-case loss in

(10).

Proof : We first recall that the optimal combination matrix that minimizes worst-case loss can be obtained

by solving the following matrix inequality problem10

min
H

γ

s.t. H
(
γ2 Gy J−1

uu (Gy)T − Y Y T
)

HT � 0 (30)

rank(H) = nu

Now, let X be chosen as given by (26) and H be any non-singular matrix that satisfies (22). As H Gy J−0.5
uu

has full rank, we have

X � λ̄(X)

⇔ (H Gy J−0.5
uu ) X (H Gy J−0.5

uu )T � λ̄(X) (H Gy J−0.5
uu ) (H Gy J−0.5

uu )T

⇔ (H Gy J−0.5
uu ) X (H Gy J−0.5

uu )T −H Y Y T HT � λ̄(X) (H Gy J−0.5
uu ) (H Gy J−0.5

uu )T −H Y Y T HT

⇔ H
(
Gy J−0.5

uu X J−0.5
uu (Gy)T − Y Y T

)
HT � H

(
λ̄(X) Gy J−1

uu (Gy)T − Y Y T
)

HT

As the matrix on the left hand side of the last inequality is positive semi-definite, we have

H
(
λ̄(X) Gy J−1

uu (Gy)T − Y Y T
)

HT � 0

Thus, the average-case optimal H satisfies (30) with γ2 = λ̄(X). Based on (20), we note that λ̄0.5(X)

represents the smallest value of γ for which (30) holds and thus average-case optimal H also minimizes

worst-case loss.

Based on Proposition 4, the matrix H in (28) is super-optimal. Note that the converse is not true, i.e.

any matrix H that minimizes the worst-case loss does not necessarily minimize the average-case loss; see
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Table 3 for examples. This behavior can be understood by noting the relationship between the optimization

problems involving worst-case and average loss minimization. The worst-case loss depends on the largest

singular value of the matrix
[

Md Mn

]
, while the average loss depends on the Frobenius norm or sum

of the squares of all the singular values (including the largest singular value) of the same matrix. It is

understandable that although the worst-case optimal combination matrix minimizes the largest singular

value, it does not necessarily minimize the contribution of the smaller singular values towards the average

loss. However, Proposition 4 implies that at least one of solutions to the worst-case loss minimization,

which is not included in the solution set (19), is super-optimal to both minimization problems. This

leaves the determination of all worst-case optimal H matrices an interesting open problem. In the present

context, however, the designer can simply choose the combination matrix by minimizing average loss and

be assured that the worst-case loss will no larger than that can be obtained by using combination matrix

found by direct minimization of worst-case loss.

4 Evaporator Case Study

[Figure 1 about here.]

Problem description. The optimal measurement combination design approach is applied to a slightly

modified version (see Remark 2) of the evaporation process of Newell and Lee.14 This is a “forced-

circulation” evaporator, where the concentration of dilute liquor is increased by evaporating solvent from

the feed stream through a vertical heat exchanger with circulated liquor. The process variables are listed

in Table 2 and model equations are given in Appendix A.

The economic objective is to maximize the operational profit [$/h], formulated as a minimization problem

of the negative profit (31). The first three terms of (31) are operational costs relating to steam, water and
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pumping.8,17 The fourth term is the raw material cost whilst the last term is the product value.

J = 600F100 + 0.6F200 + 1.009(F2 + F3) + 0.2F1 − 4800F2 (31)

The process has the following constraints related to product specification, safety and design limits:

X2 ≥ 35 + 0.5% (32)

40 kPa ≤ P2 ≤ 80 kPa (33)

P100 ≤ 400 kPa (34)

0 kg/min ≤ F200 ≤ 400 kg/min (35)

0 kg/min ≤ F1 ≤ 20 kg/min (36)

0 kg/min ≤ F3 ≤ 100 kg/min (37)

Note that a 0.5% back-off has been enforced on X2 to ensure that the variable remains feasible for all

possible disturbances. The process model has three state variables, L2, X2 and P2 with eight degrees

of freedom. Three of them are disturbances, X1, T1 and T200. The rest five degrees of freedom are

manipulated variables, F1, F2, P100, F3 and F200. The case with X1 = 5%, T1 = 40◦C and T200 = 25◦C is

taken as the nominal operating point. The allowable disturbance set corresponds to ±5% variation in X1

and ±20% variation in T1 and T200 of their nominal values.

Nominal operating point. The optimization problem in (31) with process constraints (32)-(37) is

solved for the nominal disturbances. The minimum negative profit obtained is −582.233 [$/h] and the

corresponding values of process variables are shown in Table 2.

[Table 2 about here.]

Degrees of freedom analysis. At the optimal point, there are two active constraints, X2 = 35.5% and

P100 = 400 kPa. These two constraints remain active within the whole disturbance region. The reader is
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referred to Cao2 for physical explanation of these two active constraints. The two active constraints plus

the separator level, which has no steady-state effect on the plant operation, but must be stabilized at its

nominal setpoint, consume three degrees of freedom. Therefore, there are two degrees of freedom left for

self-optimizing control. Without loss of generality, we select

u =
[
F200 F1

]T

Remark 2 In original problem,14 F1 is specified to be a disturbance. Then, there is only one degree of

freedom available for self-optimizing control2 and the optimal combination matrices for local worst-case

and average loss minimization are same. The use of F1 as an additional degree of freedom allows us

to clearly demonstrate the advantages of average loss minimization. For this purpose, the prices of raw

material and product are included in the cost function (31), where the prices are chosen such that the

nominal operating point after modification is similar to the original problem.14 We have also restricted

the allowable range of X1 to ±5% of nominal value, as compared to ±20% variation allowed in previous

studies.2,5 This is done to avoid scenarios, where the optimal operational policy requires shutting down

the production (F1 = 0) for low X1 values for the modified problem.

Available measurements. For self-optimizing control, we consider that the 2 CVs are to be chosen as

a subset or combination of the following available measurements:

y =
[
P2 T2 T3 F2 F100 T201 F3 F5 F200 F1

]T

Here, in addition to the derived variables Q100 and Q200, F4 is not included in the measurement set, as

the cost of measuring the vapor flowrate online is usually high. The steam temperature T100 is also not

considered, as it is a function of steam pressure P100, which is held constant at 400 kPa (active constraint

control). All the disturbances are considered to be unmeasured.
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Local analysis. Using MATLABr 2006b symbolic toolbox,12 the following Hessian and gain matrices

are obtained at the nominally optimal operating point:

Juu =

 0.006 −0.133

−0.133 16.737

 ; Jud =

 0.023 0 −0.001

−158.373 −1.161 1.484



Gy =



−0.093 11.678

−0.052 6.559

−0.047 5.921

0 0.141

−0.001 1.115

−0.094 2.170

−0.032 6.594

0 0.859

1 0

0 1



;Gy
d =



−3.626 0 1.972

−2.036 0 1.108

−1.838 0 1

0.267 0 0

−0.317 −0.018 0.020

−0.674 0 1

−2.253 −0.066 0.673

−0.267 0 0

0 0 0

0 0 0


Based on the allowable disturbance set, Wd is chosen as Wd = diag(0.25, 8, 5). The implementation or

measurement errors for the pressure and flow measurements are taken to be ±2.5% and ±2%, respectively,

of the nominal operating value. For temperature measurements, implementation error is considered as

±1◦C. These values are adapted from Govatsmark and Skogestad,5 except that the implementation

error for flowrates has been changed from an unrealistically high value of 10% to 2%. This leads to

Wn = diag(1.285, 1, 1, 0.027, 0.189, 1, 0.494, 0.163, 4.355, 0.189).

For this model, the best individual measurements were found to be

c2 =
[
F3 F200

]T

for which the local worst-case and average losses are 56.713 [$/h] and 3.808 [$/h], respectively. In compar-

ison, when the optimal combinations of all the 10 measurements is used, the local worst-case and average
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losses decrease to 7.474 [$/h] and and 0.193 [$/h], respectively. This shows that the loss can be reduced

substantially by controlling measurement combinations.

[Figure 2 about here.]

[Table 3 about here.]

In practice, use of combinations of all available measurements is often not necessary. The lowest worst-case

and average losses obtained by combining best ny out of 10 measurements, ny ≤ 10, are shown in Figure 2.

It is clear that having combinations of 3 or 4 measurements gives a good trade off between complexity

and incurred loss. Some individual measurements and measurement subsets of sizes 3 and 4 that can be

combined to yield promising self-optimizing variables (found by enumeration) are shown in Table 3. The

combinations of 3 measurements that give minimal worst-case and average losses are:

c3w =

 0.108 F2 + 0.689 F100 − 0.717 F200

0.988 F2 − 0.155 F100 − 0.0001 F200



c3a =

0.157 F2 + 0.986 F100 − 0.044 F200

0.988 F2 − 0.158 F100


Similarly, the combinations of 4 measurements that give minimal worst-case and average losses are:

c4w =

0.020 F2 + 0.199 F100 + 0.980 T201 + 0.020F3

0.994 F2 − 0.110 F100 + 0.002 T201 − 0.009F3



c4a =

−0.999 F2 − 0.018 T201 + 0.034 F3 − 0.001 F200

0.038 F2 − 0.473 T201 + 0.856 F3 − 0.203 F200


Based on Table 3, the reader should note the following:
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1. The average loss obtained by using average-case optimal H can be substantially lower than obtained

by using worst-case optimal H, e.g. for 3-measurement subset {F2, F100, F200}. The worst-case loss

using H matrix obtained by minimizing either of worst-case or average loss is the same.

2. While for ny = 2 and 3, the measurement subset that provide minimal worst-case loss is same as

the measurement subset with minimal average loss, this is not true in general. For example, for

ny = 4, combining F2, F100, T201 and F3 gives minimal worst-case loss. The average loss obtained

by combining these measurements, however, is higher than that can be obtained by combining F2,

T201, F3 and F200.

3. The set of best individual measurements {F3, F200} is not a subset of optimal 3-measurement set

{F2, F100, F200}. A sequential approach to find the 3-measurement set that minimizes worst-case loss

would lead to the solution {F2, F3, F200}, which gives a much higher worst-case loss (27.573 [$/h])

as compared to the optimal solution (11.636 [$/h]). A branch and bound method is currently being

developed to find the optimal measurement set efficiently.

Verification using nonlinear model. The five designs (c2, c3w, c3a, c4w, c4a) are verified using nonlinear

model. Here, a difficulty is that although linear analysis assumes that the set of active constraints do not

change with disturbances, the constraints on P2 become active for many disturbance and implementation

error scenarios. Usually, the self-optimizing variables are held constant at their nominal operating value.

To ensure that the constraints are satisfied for all allowable disturbances and implementation errors, one

may use different setpoints.6 An alternative is to use a cascade control strategy, where the variable liable to

violate a constraint (P2 in the present case) is controlled in the inner loop and the self-optimizing variable

is controlled in the outer loop; see Cao2 for details. In this paper, the latter strategy is used to maintain

P2 within the prescribed constraints with the setpoints being the nominal operating values. Using this

method, the losses for different candidate self-optimizing variables are evaluated in two different ways:
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1. By setting different disturbances and implementation errors to their lower or upper limits one at a

time (results shown in Table 4); and

2. Using a set of 100 randomly generated disturbances and implementation errors, which are uniformly

distributed over their allowable set (results shown in Table 5).

[Table 4 about here.]

From Table 4, we note that individual measurements (c2) are most sensitive to changes in disturbance X1,

while most of the measurement combinations are most sensitive to the changes in implementation errors.

This behavior can be analyzed based on local analysis by comparing the magnitudes of the elements of

input singular vector corresponding to the largest singular value of the matrix [Md Mn]. For example,

for c2 the relevant input singular vector is [0.977 0.209 − 0.010 − 0.026 − 0.007]T , where the large first

element shows sensitivity to changes in X1.

[Table 5 about here.]

Table 5 shows that use of measurement combinations as controlled variables can reduce the loss signifi-

cantly, as compared to the control of the individual measurements. For 3-measurement combinations (c3w

and c3a), use of average-case optimal H provides lower average loss than the use of worst-case optimal H,

while the worst-case losses for the two cases are nearly the same. Contrary to local analysis, however, the

losses obtained by controlling 4-measurement combinations (c4w and c4a) are worse than the corresponding

losses seen with the use of the 3-measurement combinations, which is analyzed next.

Effect of modeling error due to linearization. We note that both of c4w and c4a use F3. As

found using Monte-Carlo simulations, among all candidate measurements the linear model for F3 shows

the largest modeling error due to linearization. Local analysis (see Table 3) shows that a promising
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4-measurement set that does not contain F3 is {F2, F100, F5, F200}, whose worst-case and average-case

optimal combinations are given as:

c̃4w =

−0.996 F2 + 0.079 F100 + 0.030 F5 + 0.002 F200

0.070 F2 + 0.586 F100 + 0.806 F5 − 0.055 F200



c̃4a =

0.117 F2 + 0.749 F100 + 0.586 F5 − 0.285 F200

0.992 F2 − 0.104 F100 − 0.064 F5


The worst-case and average losses for c̃4w and c̃4a are smaller than the corresponding losses obtained using

c3w and c3a, as expected from local analysis. This substantiates our earlier claim that the poor performance

of c4w and c4a is due to the large modeling error incurred by F3. Furthermore, although the best individual

measurement set also contain F3, control of next best individual measurements c̃2 = [P2 T201]T gives

larger losses than control of c2. We hypothesize that the computation of locally optimal combination

matrices is more sensitive to model inaccuracies than the selection of best measurement subset. In this

paper, modeling error is handled in an ad hoc fashion and systematic inclusion of the modeling error,

arising due to linearization, in local analysis is an issue for future research.

Finally, we recommend the use of c̃4a, which provides lowest losses among the different alternatives and

has good self-optimizing properties. If further reduction in the complexity of control structure is desired,

c3a can also be used.

5 Conclusions and Future Work

An average loss minimization problem has been proposed to select controlled variables (CVs) based on

self-optimizing control principles. Explicit solutions to the problems of finding measurement combinations

based on both worst-case and average loss minimization have been derived. In comparison with previ-

ous work on worst-case loss minimization based CV selection approaches,1,7, 10 the solution obtained by
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minimizing average loss is super-optimal in the sense that the optimal combination matrix based on the

average loss minimization is also optimal for the case of worst-case loss minimization. A modified version

of the evaporator process has been studied to demonstrate the theoretical results derived in the work. The

case study shows that using measurement combinations as CVs can significantly reduce the operational

loss, whilst the measurement combinations of a properly selected measurement subset can give similar loss

as is achievable by combining full measurement set. The case study also indicates that modeling error due

to linearization can have a significant impact on achievable self-optimizing control performance. How to

properly deal with such errors for CV selection is an open problem worth for further investigation.
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A Model equations

dL2

dt
=

F1 − F4 − F2

20
(38)

dX2

dt
=

F1X1 − F2X2

20
(39)

dP2

dt
=

F4 − F5

4
(40)

T2 = 0.5616P2 + 0.3126X2 + 48.43 (41)

T3 = 0.507P2 + 55.0 (42)

F4 =
Q100 − 0.07F1(T2 − T1)

38.5
(43)

T100 = 0.1538P100 + 90.0 (44)

Q100 = 0.16(F1 + F3)(T100 − T2) (45)

F100 = Q100/36.6 (46)

Q200 =
0.9576F200(T3 − T200)

0.14F200 + 6.84
(47)

T201 = T200 +
13.68(T3 − T200)
0.14F200 + 6.84

(48)

F5 =
Q200

38.5
(49)
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Case Allowable set for d, n Lworst Laverage

1
∥∥∥[

dT nT
]T

∥∥∥
2
≤ 1 1

2 σ̄2
([

Md Mn

])
1

6 (ny+nd)‖
[

Md Mn

]
‖2

F

2
∥∥∥[

dT nT
]T

∥∥∥
∞
≤ 1 1

2(ny + nd)σ̄2
([

Md Mn

])
1
6‖

[
Md Mn

]
‖2

F

3
∥∥∥[

dT nT
]T

∥∥∥ ∼ N(0, Ind+ny) ∞ 1
2‖

[
Md Mn

]
‖2

F

Table 1: Local worst-case and average losses for different allowable sets of disturbances and implementation
errors; For case 2, the indicated expression is an upper bound on worst-case loss.
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Var. Description Value Units
F1 Feed flowrate 9.469 kg/min
F2 Product flowrate 1.334 kg/min
F3 Circulating flowrate 24.721 kg/min
F4 Vapor flowrate 8.135 kg/min
F5 Condensate flowrate 8.135 kg/min
X1 Feed composition 5.000 %
X2 Product composition 35.500 %
T1 Feed temperature 40.000 ◦C
T2 Product temperature 88.400 ◦C
T3 Vapor temperature 81.066 ◦C
L2 Separator level 1.000 meter
P2 Operating pressure 51.412 kPa
F100 Steam flowrate 9.434 kg/min
T100 Steam temperature 151.520 ◦C
P100 Steam pressure 400.000 kPa
Q100 Heat duty 345.292 kW
F200 Cooling water flowrate 217.738 kg/min
T200 Inlet temperature of cooling water 25.000 ◦C
T201 Outlet temperature of cooling water 45.550 ◦C
Q200 Condenser duty 313.210 kW

Table 2: Variables and Optimal Values
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ny Measurements Worst-case loss [$/h] Average loss [$/h]
average-case optimal H worst-case optimal H

2 F3, F200 56.713 3.808 3.808
T201, F3 57.140 4.330 4.330
P2, T201 57.862 4.388 4.388

F100, F200 58.370 3.900 3.900
P2, F200 58.386 3.964 3.964

3 F2, F100, F200 11.636 0.652 1.238
F2, F100, T201 13.327 1.123 1.124
F2, T201, F3 16.619 1.121 1.143
F2, F5, F200 17.797 0.993 1.565

4 F2, F100, T201, F3 9.195 0.587 0.793
F2, T201, F3, F200 9.427 0.453 0.701
F2, F100, F5, F200 9.879 0.474 0.845
F2, F100, F3, F200 10.547 0.507 0.799

Table 3: Promising candidates for self-optimizing control based on local analysis
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CV X+
1 T+

1 T+
200 n+

c1 n+
c2 X−

1 T−
1 T−

200 n−c1 n−c2
c2 53.218 2.476 0.351 0.046 0.044 40.873 2.511 0.360 0.048 0.045
c̃2 53.521 3.167 9.593 0.123 0.361 41.167 3.193 6.489 0.123 0.398
c3w 10.310 0.712 0.298 0.056 7.912 11.605 0.623 0.302 0.055 19.814
c3a 0.085 0.024 0.046 0.221 9.953 4.570 0.025 0.022 0.202 17.171
c4w 4.071 0.041 8.808 0.404 10.312 4.221 0.008 6.240 0.362 11.505
c4a 11.794 0.438 0.079 0.371 9.364 6.503 0.275 0.258 0.365 5.500
c̃4w 7.450 0.510 0.400 0.075 7.936 10.576 0.581 0.360 0.072 22.653
c̃4a 0.277 0.236 0.313 20.180 3.042 2.326 0.344 0.260 11.676 3.303

Table 4: Losses for candidate self-optimizing variables using nonlinear model. Different disturbances
and implementation errors are changed to their lower (denoted by superscript −) or upper (denoted by
superscript +) limits one at a time. For measurement combinations, the implementation error is calculated
as nc =

∑ny

i=1 |HWnn|.
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CV Average loss Maximum loss Standard deviation of loss
c2 17.181 55.163 15.791
c̃2 20.536 70.041 17.095
c3w 6.792 25.883 5.451
c3a 4.041 25.785 4.791
c4w 6.825 22.338 5.433
c4a 4.981 51.569 6.499
c̃4w 5.322 19.550 4.393
c̃4a 2.808 19.353 3.418

Table 5: Loss statistics for candidate self-optimizing variables using nonlinear model with 100 uniformly
distributed disturbances and implementation errors (simultaneous changes)
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