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This paper deals with the selection of linear measurement combinations as con-!

trolled variables, ¢ = Hy. The objective is to achieve self-optimizing control where‘ ,

fixing the controlled variables c indirectly gives near-optimal steady-state opera—: OJ\"Q W\va‘l%" i
tion with a small loss. The nullspace method focuses on minimizing the loss caused;
by disturbances. The original nullspace method deals with the case where we ha,vc
as many independent measurements y as inputs plus disturbances, and one may |
obtain zero disturbance loss, at least locally. In this paper, we provide an explicit | W\ ‘PO%'_,Q}/
expression for the combination matrix H which allows us to extend the nullspace S \

method to cases with extra measurements, where the extra degrees of freedom are A\ -QVZC\M)
used to minimize the loss caused by measurement errors, and to cases with with too | df
few measurements, where zero loss with respect to disturbances is impossible. \ \L’U\ U{QNG )
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1 Introduction ‘.\\:‘ @ 0

O TR .
/’ The number of output variables that can be mdepexiﬂently controiled ig gilal || \ \\\N\})\ L\
/ to the number of independent inputs (ma - s) .nge¥er in LO .
' most cases the number of available measurements (n,) is larger than the num- '

ber of independent inputs (rzh-end-theissueisthento choosewhiehvartables M}\(}f i§ ﬂ\f > '\M

¢ to-control-{suchthat-n; =L his-can-be-viewed. as-a- seuarimg down”
_problem..In.the. linear-case we can.write-y—G4u andc=Hy seeFigure 1,
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The n(‘%}\g}r a RTO layer to corapute new optlmal setpomts Cs
__orin Yome’cases even eliminated,. bssorriig=hes

a.n-dlthe issue ig to select the nonsquare ma}f}ix H sugh that the map (transfer
function) G = HGY from u to c is squargy Howevey, selecting H such that G

or indirectly) result in ”acceptable operation” of the system.

G (square)
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Fig./l./Combining measurements y to get controlled variables ¢ (linear case)

To quantify ”acceptable operation” we introduce a scalar cost function J(u)
which should be minimized for optimal operation, and ”acceptable operation”
then means that the loss is acceptable, that is, the actual cost is sufficiently
close to the optimal. In this paper, we assume that the (economic) cost mainly
depends on the (quasi) steady-state behavior, which is a good assumption for
most continuous plantb in the process industr,
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One r\nethod for engliring optimal opcratlon in chemical processes is real-time
optimization (RTO)[6]. Using RTO, the optimal values (setpoints) for the
controlled variables ¢ are recomputed onlin: d on online measurements
and a model of the process, see Figure 2. In apphcatlons a steady-state
model is used for the parameter/ dlsturbance estimation and the optimization
steps [15, 16], however dynamic versions of the RTO-framework have also been
reported in literature [5]. However, the cost of installing and maintaining such
systems can be large. In addition, the system can be sensitive to uncertainty.

caq be reduced

'thq'"ﬁmdca"e%“}li optimizing,¢ Igrol 10] is when a constant set—
point pohc&k?lcrdq acceptable apu&%ﬁ in spite of the presence of uncertainty,

which is here assumed to be represented by (1) external disturbances d and
(2) implementation errors n 2 ¢, — ¢, see Figure 2.

The implementation error n has two sources, (1) the steady-state control error
n° and (2) the measurement error n¥; and for linear measurement combinations
n = n°+HnY. In Figure 2, the control error n® is shown as an exogenous signal,
although in reality it is determined by the controller. In any case, we assume
here that all controllers have integral action, so we can neglect the steady-state
control error, i.e. n° = 0. The implementation error n is then given by the
measurement error, i.e. n = HnY.

Ideas related to self-optimizing control have been presented repeatedly in the
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process control litetature, but the first qu tive treatment was that of &[Hcp Iy

Morari et al. [7]. Skogestad [10] defined the problem more carefully, linked
it to previous work, and was the first to include also the implementation
error. He mainly considered the case where single measurements are used as
controlled variables, that is, H is a selection matrix where each row has a single
1 and the rest 0’s. Halvorsen et al. [3] considered the approximate “maximum
Ls? gain method” and also proposed an exact local method that may be used to

obtain the optlmal measurement comblnatlon H. However—tﬂnsmethoths-&ho

et al. ] considered indirect control, which can be formulated as a subproblem

of the null space method presented in this paper. Additional related work is ‘
presented in [13, 12, 11] on mea,suremelgt" ased optimization to enforce the ak \‘MG\}’W\T
necessary condition of optimality under uncertainty, Phe-ideas-are-itHustratod W Al

®n batch processes. Bonvin et al. [2] extends these 1ldeas and focus on steady-

state optimal systems, where a clear distinction is made between enforcing

active constraints and requiring the sensitivity of the objective to be zero.

Optimizer
(RTO)
l Cs n‘ =10
Measurement
Feedback c+n combination
Controller | - (H)
u
Ym
d Process >
(G, Ga) y n?

N\

Fig. ; Feedback implementation of optimal operation.

This paper is an extension of the nullspace method of [1], where it was found
that, in the absence of implementation errors (i.e., n = 0), it is possible
to have zero loss with respect to disturbances, provided the the number of
(independent) measurements (n,) at least equals the number of (independent)
inputs (n,) plus disturbances (ng), i.e., ny, > n, + ng. It is then optimal to
select H such that HF = 0, where F = dy®?*/dd” is the optimal sensitivity
with respect to disturbances d [1]. Note that it is not possible to have zero loss
with respect to implementation errors, because each new measyrement adds

a “disturbance” through its associated measurement error, n¥. !The orlgmal
nullspace method considered the case when g—=-Ag—t-#ry- In- t;}ns’"pa,

IPde,xhgnlmp}?menﬁatlon error,fand extend) the mﬂ& space m@h@(ié
f l/_l‘j mg cases ;' FA R o
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2 Background

The material in this section is based on [3], unless otherwise stated. The most
important notation is given in Table 1.

— \ . t
Table 1 \IW LMW

Notation

u - vector of n, unconstrained inputs (degrees of freedom) E“ k\-Q)V\dB&

d - vector of ng disturbances Y NLlS _ \ﬂ

y - vector of ny selected measurements used in forming ¢ \M@ J \-[ J
¢ - vector of selected controlled variables (to be identified) &P&W\ -

with dimension n, = ny,

N
nY - measurement error associated with y <‘\C‘_ CQM w UGS@LLOE‘J[; (M.Lf’) ¢

Al
The objective is to achieve optimal;operation, where the degrees of freedom
u are selected such that the scalar cost function J(u,d) is minimized for any
given disturbance d. Parameter variations may also be included as distur-
bances. We assume that any optlmally ‘active constraints” have been im-
plemented, so that u 1ncludes only the\remammg unconstrained steady-state
degrees of freedom. The reduced spz%:ce bptlmlzatlon problem then becomes

min J(u,d) (1)

The objective of this work is to find a set of controlled variables ¢, or more
specifically an optimal measurement combination ¢ = Hy, such that a con-
stant setpoint policy (where u is adjusted to keep ¢ constant; sce Figure 2)
yields optimal operation (1), at least locally.

With a given d, solving eq. (1) for u gives JP/(d), u(d) and y***(d). In
practice it is not possible to have u = u’”(d), for example, because of imple-
mentations errors and changing disturbances. The resulting loss (L) is defined
as the difference between the cost J, when using a non-optimal input u, and
Jort(d) [9):

L= J(u,d)— J?%(d) (2)



The local second-order accurate Taylor series expansion of the cost function
around the nominal point (u*,d*) can be written

T
T [Au 1 |Au Juw Jual [Au
I, d) = T, d) + (3,3 || +5 d )
Ad| 2 |Ad| (3T, 34| |Ad

where Au = (u —u*) and Ad = (d — d*). For a given disturbance (Ad = 0),
the second-order accurate expansion of the loss function around the optimum
(J, = 0) then becomes

1
L= E(u —uP) I, (0 —u?) = %sz (4)
where
2 £ J/2(u—u™) (5)

In this paper, we consider a constaint setpoint policy where the controlled
variables are linear combinations of the measurements?

Ac = HAy (6)

We assume that n, = n,, that is, the number of (independent) controlled
variables ¢ is equal to the number of (independent) steady-state degrees of
freedom (“inputs”) u. The constant setpoint policy implies that u is adjusted
to give ¢, = ¢ + n where n is the implementation error for ¢ (see Figure 2).
As mentioned in the introduction, we assume that the implementation error
is caused be the measurement error, i.e. n = HnY. We now want to express
the loss error z in terms d and n? when we use a constant setpoint policy, but
first some additional notation is needed.

The linearized (local) model in terms of deviation variables is written

- |Au
Ay = GYAu + GYAd = GY (7)
Ad
Ac = GAu + GyAd (8)
where
G — [Gy Gg] 9)

is the augmented plant. From egs. (6), (7) and (8) we get
G=HG' and G,=HGY (10)

2 We use A to denote deviation variables. Often, the A is omitted and we write,
for example, ¢ = Hy.



The magnitudes of the disturbances d and measurement errors n¥ are quan-
tified by the diagonal scaling matrices Wg and Wy, respectively. More pre-
cisely, we assume
Ad = Wyd’ (11)
n¥ = W,n¥ (12)

where we assume that d’ and n¥’ are any vectors satisfying

!

d
1|l (13)

The non-linear functions u”(d) and y°"*(d) are also linearized, and it can be
shown that [3]

Au? = —J;1 J,4Ad (14)
Ay = —(G¥J;,dua — Gy) Ad (15)
¥

where we have introduced the optimal sensitivity matrix F for the measure-
ments. In terms of the controlled variables ¢ we then have

(u—u?) = G(c — c?) = G (Ac — Ac™) (16)
Ac”® = HAy” = HFAd (17)
Ac = Ac; —n=—n=—Hn" (18)

where we in the last equation have assumed a constant setpoint policy (Acs =
0). Upon introducing the magnitudes of Ad and n¥ from eqgs. (11) and (12)
we then get for the constant setpoint policy:

z = Myd' + M,yn¥ (19)
where
M, = —J/2(HGY)'HFW, (20)
M,y = —JV2HGY)'HW,,» (21)
Introducing
M 2 [Mgq Myy] (22)
!
gives z = M . A nonzero value for z gives a loss L = ||z, (4), and the
n¥’

worst-case loss for the expected disturbances and noise in (13) is then

(a(M))* (23)

Lye = max L=
I3 ll2<1

N |




where the last equality follows from the definition of the singular value 7.
Thus, to minimize the worst-case loss we need to minimize (M) with respect
to H. This is identical to the “exact local method” in Halvorsen et al. (3],
except that My in (20) is expressed in terms of the easily available optimal
sensitivity matrix F.
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From (23), the optimal measurement combmatlon is obtained by solving the
problem

(24)

NJ'\ \Q&; = arg min (M)
m easy to %mmr&shown in the following. We

start by mtroduung

M, 2 J2HGY)! = J/2GH (25)

which may be viewed as as the effect of n on the loss variables z. We get

My = ~-M,HFW,;, M,, = -M,HW,, (26)
or
M = [Mg M| = —-M,HFW,; W, (27)

Next, we use the fact that the solution is not unique, so that if H is an optimal
solution to the problem (24), then another optimal solution is H; = DH,
where D is a non-singular matrix of dimension n, x n,. For example, this
follows because My and M,y in (20) and (21) are unaffected by the choice
of D. One implication is that G = HGY may be chosen freely (which also is
clear from Figure 1 since we may add an output block after H which allows
G to be selected freely). Alternatively, and this is used here, it follows from

(25) that M,, may be selected freely.=
. However, the fact that M,, may be selected freely, does not mean thaf-one

can, for example, simply set M, = I in {27)- and-then minimize a (V) with
M = H[FW,; W,,]. Rather; one needs to minimize 5(M) subjegt to the |

Scalar case. For the scalar case (c is a scalar), M and H are vectors and’an

constraint M, /,}'Tl/e optimizggipn problem (24) can then be stgted as __ _ {.Q CN
H = arg mma HW subJect to HGy — Ji2 28 Q.p(ﬂ - “‘"-":;‘.
AR o\ A.' b TM
Th1s is fairly easy to solve ause Of the hneanty 1r}\both €r objesbine ' - S WU ol '
0= A < TG e
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we get a qu ject

to -i-ntearequ&hhymnsﬁaﬂﬂ‘—'

min [|W;£Hg subject to HGY = JI/2 (29)

Wik WS & vadkey tov WAL Scalst »w#} ety
W@A&%}M ion is (e,g

——"" Choice of norm. T} %ngtimization problems in (24) and (28) involve the ,

%‘)

\wm‘f

singular value of M. osely related problem is tq{ﬂinimi?e the 2-norm/

(Euclidean or Frobenius norm), ||[M|lz = /3;; |m¢:,|2 Aistua.lly, which norm/
to use is more a matter of preference or llld.thblrié‘l.tl(:d,l convenience than u)f

“correctness”. The difference in minimizing thiﬁxgﬁaornis is generally minor;
ore/focus on minimizin

the main difference is that minimizing (M
the largest elements. I

4 Extended nullspace method
, 9 ( 2) \ {Uf\ ¥
o {ad oo (22 “ Ay eSS
The solutiong im{2#283emd{30) minimize the loss w“t-l—ugspec_t to combined
disturbances and measurements errors. An alternative approach is to first
minimize the loss with respect to disturbances, and then, if there are remaining
degrees of freedom, minimize the loss with respect to measurement errors. One
justification is that disturbances are the reason for introducing optimization
and feedback in the first place. Another jysti %&un is that it may be easier
later to reduce measurements errors than, 1sturbances A—third-justification
ﬁﬁtﬁamﬂ&mmmfmmﬁmeﬁnem

If we neglect the implementation error (M, = 0), then we see from (20) that
M, = 0 (zero loss) is obtained by selecting selecting H such that

HF =0 (31)

This provides an alternative derivation of the nullspace method of [1]. It is
always possible to find a non-trivial solution (i.e. H # 0) H satisfying HF = 0
provided the number of independent measurements (ny) is greater than the
number of independent inputs (n,) and disturbances (n4), i.e. ny = 1y +na
[1]. One solution is to select H as the nullspace of FT:[1]

H = N(F") (32)
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The main disadvantage with the nullspace method is that we have no control
of the loss caused by measurement errors as given by the matrix M¥. One
objective of this paper is to study this in more detail, by deriving an explicit
expression for H that allows us to compute the resulting M, . The explicit
expression for H allows us to extend the nullspace method to cases with extra
or too few measurements, i.e., to cases when n, # n, 4 nq.

4.1 Ezplicit expression for H for orginal null space method
From the expansion of the loss function we have, see egs. (5) and (14)

J

s
- -

Au
z= |32 T2 T (33)
Ad

We assume that H is selected to have zero disturbance loss, which is possible
if n, > n, + nq. Then from (19) and (26), z = —M,Hn¥. With the controlled
variables ¢ = Hy fixed at constant setpoints (Ac = Acs; = 0) we then have
Ay = —nY, and get

- |Au
z = —-M,Hn' = M, HAy = M, HGY (34)
Ad

where G¥ = [Gy GZ] is the augmented plant. Comparing egs. (33) and (34)

N\ yields ) )
) "‘,;‘ V2 pTiven M,HGY =J (35)
A e
Wit - and.‘a%;lme the following explicit expression for H for the case where n, =
AS Ny + 14 such that GY is invertible 2
. 'U\LC'

A b%) e =36 (36)

This expression gives mH for a case with zero disturbance sensitivity (Mg =
0), and thus gives the Same result as (32). Note that M, can be regarded as
a “free” parameter (e.g, M,, = I, see Remark 2 below).

WO S

4.2 Extended nullspace method

The explicit solution for H in (36) forms the basis for the extending the
nullspace method to cases where we have extra measurements (n, > 1, + ng)
or too few measurements (n, < n, + nq).
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py
,--’/ Assume that we have n, independent unconstrained free variables u, ng dis-
turbances d, n, measurements y, and we want to obtain n, = n, indepen-
dent controlled variables ¢ that are linear combinations of the measurements,
¢ = Hy. From the results in Section 2 the loss imposed by a constant set-
point policy is L = %sz where z = Myd’ + M,,yn¥". Define E as the error in
satisfying eq. (35):

E=M,HGY -] (37)
) From (15) and (9) the optimal sensitivity can be written
- J;&Jud
F=-GY (38) $
-1
9300\93_9
which combined with (26) gives '
N Y S B oo [T Tud
M, =M, HGY Wq=(E+J) Wq
-1 -1 g
1 1) \U&S
S it X MA
Here J | = 0 which gives \I?‘\U\k W\)‘M ) \/\ )
-1 adS O,QP\.\)\‘“ AV ;
S V VA
J;ul']ud
M,=E W 39)-
. | SEGSU

Note lﬁm the disturbance sensitivity is zero (Mg = 0) if and only if
E=0.

Let ||E|l2 = /3 €% denote the Euclidean norm of a matrix, and let 1 denote
the pscudo-%f'sc of a matrix. Then we have the following theorem:

Theorem ﬂ Explicit expression for H in extended nullspace method.
Selecting

H=M, ' J(W G"W, (40)
minimizes | E||2, and in addition minimizes the noise sensitivity || Muy ||2 among ’
all solutions that minimize || E|,.

Proof: Rewrite the definition (37) fer-E4s
E = M,HW,, W,/GY - J

N, / e &
_Mninl' - M“\'{ /

Pha
of linear algebra [14], the solution for &tha.t. minimizes ||El|2 and &\ u&k‘iw

minimizes |[Myy||o is € given by —Myy = J (Wi Gy)bwhich
V, ,

(41)
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Remark 1 If we have “enough” njeasurements (n, > ny + ng) then the choice

for H in eq. (40) gives E = 0 and My = 0. However, for the case with “too few” 3
meassurements the above choice for H minimizes ||E||z, whereas it-wentdseermrmore~ W& wck \{
reasenable to minimize |Mgl|o. Bnferturrately rave-To-simpleexphieit~-selution-.

1:1} Jud

J
for-H-imthis-ease. Nevertheless, since |[Mgll2 < [|E||2 - || Wll2, we see
1

S We

that minimizing ||E||2 will result in a small value of ||Mgl|2.

Remark 2 The matrix H is non-unique and the matrix M, in (40) can be viewed

as a parameter that can be selected freely. For example, one may select M,, =1, or

one may select My, to get a decoupled response from u to ¢, i.e. G = HGY = I.

However, note that M, H, which from eq (33) gives the measurement noise sensi-

tivity, will not be affected as it is given by (35) and (40).

Remark 3 It is appropriate at this point to make a comment about the pseudo-

inverse Al of a matrix. In general, we can write the solution of XA = B as X = BAT

where the following points are true:

(1) At = (ATA)1AT is the left inverse for the case when A has full column rank
(we have extra measurements). In this case, there are an infinite number of
solutions and we seek the solution that minimizes ||X]|o

(2) AT = AT(AAT)_1 is the right inverse for the case when A has row column rank
(we have too few measurements). In this case there is no solution and we seek
the solution that minimizes the Euclidean norm of E = B — XA (regular least
squares).

(3) In the general case with extra measurements, but where some are dependent,
A has neither full column or row rank, and the singular value decomposition
may be used to compute the pseudo-inverse At

4.8 Special cases
We have some important special cases of the Theorem 4.1:

4.8.1  “Just enough” measurements (original nullspace method)

When n, = n, + ng4, the measurements and disturbances are independent, so
GV is invertible and (40) becomes

H=M;J(GY)! (42)

as derived earlier in (36). This choice gives My = 0 (zero disturbance loss)
and the regulting effect of the measurement noise is

Note that we in this case have no degrees of freedom left for affecting the

matrix M. yl@/g;%yz[%)zi@s@;% pl@gWu}?@leryy@<

M,y = J[GY]* W, (43)

2

11
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4.8.2 Extra measurements: Dse “just enpugh” subset

&:kbw ot WAL

N W
If we have extra measurements (n, > nu—l— ng4), then one a%fria&ve is to sele %J\A
a ‘“just-enou h subset (such that we get n, = n, + ng4) before forming ¢ oA
s selestet (42) steh-thet-wedmve zero disturbance loss (Mg = 0) '{“\he
degrees of freedom in selecting the measurement subset sk then be used to
minimize the loss with 1cspu,t to th surement noise, that is, to minimize Lﬂ (Hu U
the norm of M, in eq. (43).. at he worst-case loss # umumdw W (O/AMNLY "

Ly, = max L=15(My)’= l F(J(Gy)yP < ( (3)a(G¥)5(W ) )

W|,< 27 (33>
[Im¥j2<1 w W
The selection of measurements does not affect the matrix J, since i}vdgéndq
only on the Hessian matrices J,, and J,q. However, the selection' of mea-
surements affects the matrix G¥. Thus, in order to minimize the effect of the
implementation error, we propose the following two rules:

(1) Optimal: In order to minimize the worst-case loss, select measurements
such that (M) = 5(3 [dy]'lwny) is minimized.

(2) Sub-optimal: Assume that the measurements have been scaled with
respect the measurement error such that Wy, = I. From the inequality
in eq. (44), it then follows that the effect of the measurement error n* will
be small when o(G?) (the minimum singular value of Gy) is large. Thus,
it is reasonable to select measurements y such that O'(Gy) is maximized.

Since the optimal rule needs information on the Hessian matrix of the cost
function J, the sub-optimal selection rule of maximizing o(GY) is simpler in
practice. This sub-optimal rule was used successfully in [1] to select measure-
ments from 60 candidates for a Petlyuk distillation case study.

4.8.8 Extra measurements: Use all . d\

For the case with extra measurements (n, > n, + ng) we may alternatlvely
use all the measurements when forming c. _In-this—case-we-should obtain H
from (40) in Theorem 4.1. This gives the solution that minimizes the imple-
mentation (measurement error) loss subject to having zero disturbance loss
(Mg = 0). More precisely, when ny > ny + N4 and the measurements and
disturbances are independent, the choice for H in (40), where { denotes the
left inverse, minimizes |[Mpy|2 (Euclidean norm) among all solutions with
M, = 0. Note that we need to include the noise weight before taking the
pseudo inverse in (40).




a.nd then select H according to eq. (45).

mdepenc}ent we have “too few” measurements when n, < n, + ng. In this
case, the notse-wei ' OTE

N

) H = M1J(GY)! (45)

where t denotes the right inverse amd M, as before is free to choose. This
explicit expression gf H minimizes | E||2, whereas, as noted in Remark 1, we
really want to minimize ||Mg||2. F[{ewcr—wmxphcxfcwpre&mn—fep
H_in_this case, so-we-wenld-need-to-obtain—H-numerically, for

ving-the foltowing optimization problem:— M Ml?l\:“\j \ﬂ:fﬂ {\_:

H = arg mm||HFwd|lLublect to HGY = J1/2 (46)

this case,~we may first select the set of measurements that maximizes o(Gv),

5 Example e
As o Saphi Liol \wh wu\sxckw SW)«’M‘ vmh’knvxw\u\ \\w“\w\“\d 15

This-eXample Wit 77, = 1 and ng = 15 an extension of the example-foumnd-in

Halvorserretal. {3hAssumre-that-we ave 3 SISO system with ovie disturbafice ()\ (S
and-threfollowingobjeetivefametiomr— LIS (QS\ w&.\w 1O (e VW)

o B, )
with the nominal disturbance e have Jw = .]ud = —

eq. 47) 1t is clear that 5

e assume that the system is scaled such that |d| < 1 and |n| < 1, ie.,

Wdzl, Wny:I
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The optimal sensitivity matrix F is obtained from (15) or (38). This gives
F =[0205 1]7.

5.1 Single measurement candidates

Let us first consider the use of individual measurements as controlled variables
(¢ = y;). For the four single measurement candidates the losses are (3]

L, =100 Ly, =1.0025 L3 =0.26 Ly=2

Measurement 3, has Ay * = 0, so it happens to have zero disturbance loss
(My = 0). However, this measurement is sensitive to noise (as can be scen
from the small gain in G¥) and this choice actually has the largest loss. ys3
is the best single measurement candidate. This illustrates the importance of
taking into account the implementation error (measurement noise).

5.2 Measurement combinations: Use two of the four measurements

Lol v \“% oty Cogdelnadaunse Haob (’1”\”) e ASS (/Udl] 0

-Since n + na = 2, it is possible to get-zero- -disturbance toss (Mg = 0) by

@l@)ﬁ comblmng two measurements c=Hy = hyys + “hoy;. The “null space” com-

——btiigtion (H = (b “hy)) is most easily obtained using (32). For example, for

measurements (2, 3), F = [20 5]7 and
H = [h ha) = N([20 5]) = [~0.2425 0.9701] (50)

The controlled variable is then ¢ = —0.2425y, + 0.9701ys. The same result is
obtained from (40). ‘
it NN= O

The results for nullspace method for all i€ possible combinations are given in
Table 2. The table glves the worst- case‘ loss L, caused by the measurement
error. We have Ly, = $5(M)?, Where M = M,y = J(G¥)'W,». To compare,
we also show in Table 2 ¢(GY) Wthh according to the “sub-optimal rule
for selecting measurements” should be maximized in order to minimize the
implementation error. We note that for this example that maximizing a(GY)
gives the same (correct) ranking as minimizing L.

From Table 2 we see that combinations involving measurement, .y, -are-all

sensitive to noise. Combination (z,7) = (2, 3) is. the bést, followed by (3,4),
while (1,2), (1,4) and (1,3) have the same noise sensitivity when they are
combined using the nullspace metho%”éombmahon (2 4) yields infinite noise
sensitivity to noise with the nullspace method, since GY is singular.
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Table 2

Combinations of two measurements, ¢ = hiy; + hoy;, with zero disturbance loss
Mg =0y omd womudhiy 10% Lwc Chonal i Wso A
H from (40) UL
Vi Yj hy ho Luye | o(GY)
2 3| —0.2425 0.9701 | 0.0425 | 4.449
3 4 | —0.1961 0.9806 | 1.04 0.446
1 2 —1 0 100 0.1
1 4 -1 0 100 0.0995
1 3 -1 0 100 0.0447
24| 00499 0988 | oo | 0 UG peUnat (S VZEV N
() Romar ote MWWN(FT) = >
( [1 0], so that only measuremeent yy is used. T -reason- i i

_Tabte 2 is-the same-for-ati-combinations with-5 " : e T
—Remark 2 Wﬂﬂﬂm—yz—&ﬂd‘ys—bhe—eptﬂmkeembmatmn that -

. minimizes the- less-bm—wﬁh-measurﬁmmdedf ifiay D€ O ed TSiTNg ™
CoowA (B2 ) \(30), We-getf3) HE' = [0.2323 0.9727) with a loss Lug™" = 004003 his gives
\ND My = —0.0606 so, as expected the disturbance loss is non-zero. Neéthe)es ,I;l f
: this case the result is very similar to the extended nullspace method which gave P :
i L2 =0.0425 and My = 0. ray
W Kol consibr

(&{\\\‘.}?\m- | i NJ
&N "/ 5.9 Measurement combinations: Use all four measurements _fu\} UW\AG}‘M
Mf\ﬁ(nm .M[q{‘;n W \MMC\ 3}0 (0. I. <

Cor < S ""M Esr MO
%M he extended nullspace method gives (after d’d " ,J(
(%5 l}‘*) normalmng the 2—n0rm of H to 1): | AL AR

| W b=~
H = [0.0206 —0.2419 0.9700 -0.0121] (51) S

which gives G = 4.852 and M, = 0.2915. The loss contribution from the dis v
turbance and the noise is My = 0 and M, = [—0.0060 0.0705 —0.2827 0. 0035]]5 N b’ 0{
The corresponding loss is L% = 3*[Ma Mpu]/2 = 0.04248, which is only\ C MIW&
marginally improved compared to using only two measurements \(I{wc = 0 0425)\ cibid CU

p ol

To compare, the, “‘optimal” combination wit
imum loss Lwcﬂ{a)tamed solving

2-norm of H to 1) is [3] \ W
( (k\‘_bd" -1 H™ = [0.0208 —0.2317 0.9725 —0.0116] (52)

which gives G = 5.082 and M, = 0.2783. The loss contribution from the \’r M 'S
2
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disturbance and the noise is Mg = —0.0606 and M,y = [—0.0057 0.0645 —
0.2706 0.0032]. The resulting loss is L = 0.0405. However, Yhe reduction in

loss (Lgpt = 0.0405) is small compared to using cs3 from the nullspace method
using only two measurements (L2 = 0.0425).

In summary, theﬁ/vo-&gp nullspace method where one first selects a “just
cnough” sct of mcasurcments by maximizing O'(Gy) and then obtains H from
eqs. (42) or (32) to make My = 0, works well for the example.
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6 Discussion
6.1 Local method

The above derivations are local, since we assume a linear process and a second-
order objective function in the inputs and the disturbances. Thus, we cannot
guarantee that the proposed controlled varlables are globally optimal. How=—

mt—errer. For a final validation, we should
always check the loss for the proposed structures using the non-linear models
of the process.

6.2 Eliminating measurements

We have extended the null space method to the case where we want to use all
available measurements. In general, using all measurements should be opti-
mal. However, in many cascs many of the measurements arc closely correlated
or have large measurement errors. In such cases the advantages of using ad-
ditional measurements and the increased complexity of the control structure

may not be ]letlfll..d a,nd we 1 ant to use fewer mdbutcmu s as discussed

in Section 4.3. 41 IS0 Nﬁmm‘j DW‘{&M PG& _UJ/LM/)
x it 1

KB /\hmumswwcp M (n WY ( -
4] / Relationship to indirect conirol

" | Qe

Rrswe seb of ol yartuilan, =i Sl

Indirect control is when we want to c 5

constant qetpnmh "Fhist= a special case of the results in this paper 1f we select; M“%
‘”’d “Ouslts i

e
s

S 1 S S
J = §||y1 = yill =5l - vy —yil (53)
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Ay; = GiAu + GyAd = Gy

Ad
Wo assumwa W) DNy € SO . W
mﬁﬁ%d that L . N 61{3 “. Np'dHlK *
Jui = GIGy (56)

mect control is discussed in more detail by Hori et al. [4. The~
vartablesAc —GAu G Ad are-sefected I order to ndirectly-e S
a asulisi S irec -he Tesults i thi :
_by using

—t"
T
g
-
-

3 d=— IVLI — {Gdl b G]G- Gd

7 Conclusion

The null space method [1] for selecting lincar measurement combinations ¢ = W \
Hy has been extended to the general case with extra measurements or—bee-u\\‘( 7 Dok W

fewmeagurements, see eq. (40). The idea of the extended nullspace method M@ :
is to first focus on minimizing the steady-state loss caused by disturbances, “W"N‘\B
\

and then, if there are remaining degrees of freedom, minimize the effect of
asurement-orrorsFor the case with extra measurements, the use of eq. (40

\
k‘f\} olof
N e

wheras one really would like toKminimize [Mgll2. Altough E and My are
related by eq. (39), one may, ifi this case instead obtain H numerically using
(46).

An alternative approach for the case with ex{ra measurements, which is usually
preferred in practice, is to use only a subset df the measurements. In the two-
step nullspace method, one first obtains a ”justcenough” subset with small
ensitivity to ifnplementation error by maximizing a((G¥) (or even better
snimizing (M) = 7(J (G¥, and then obtains H from (42) or (32) to go#
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