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Abstract

This paper deals with the selection of linear measurement combinations as con-
trolled variables, c = Hy. The objective is to achieve self-optimizing control where
fixing the controlled variables c indirectly gives near-optimal steady-state opera-
tion with a small loss. The nullspace method focuses on minimizing the loss caused
by disturbances. The original nullspace method deals with the case where we have
as many independent measurements y as inputs plus disturbances, and one may
obtain zero disturbance loss, at least locally. In this paper, we provide an explicit
expression for the combination matrix H which allows us to extend the nullspace
method to cases with extra measurements, where the extra degrees of freedom are
used to minimize the loss caused by measurement errors, and to cases with with too
few measurements, where zero loss with respect to disturbances is impossible.

1 Introduction

The number of output variables that can be independently controlled is equal
to the number of independent inputs (manipulated variables). However, in
most cases the number of available measurements (ny) is larger than the num-
ber of independent inputs (nu), and the issue is then to choose which variables
c to control (such that nc = nu). This can be viewed as a ”squaring down”
problem. In the linear case we can write y = Gyu and c = Hy, see Figure 1,
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and the issue is to select the nonsquare matrix H such that the map (transfer
function) G = HGy from u to c is square. However, selecting H such that G
is square is not the only issue. More importantly, control of c should (directly
or indirectly) result in ”acceptable operation” of the system.

u

G (square)

HGy cy

Fig. 1. Combining measurements y to get controlled variables c (linear case)

To quantify ”acceptable operation” we introduce a scalar cost function J(u)
which should be minimized for optimal operation, and ”acceptable operation”
then means that the loss is acceptable, that is, the actual cost is sufficiently
close to the optimal. In this paper, we assume that the (economic) cost mainly
depends on the (quasi) steady-state behavior, which is a good assumption for
most continuous plants in the process industry.

One method for ensuring optimal operation in chemical processes is real-time
optimization (RTO)[6]. Using RTO, the optimal values (setpoints) for the
controlled variables c are recomputed online based on online measurements
and a model of the process, see Figure 2. In RTO applications a steady-state
model is used for the parameter/disturbance estimation and the optimization
steps [15, 16], however dynamic versions of the RTO-framework have also been
reported in literature [5]. However, the cost of installing and maintaining such
systems can be large. In addition, the system can be sensitive to uncertainty.

The need for a RTO layer to compute new optimal setpoints cs can be reduced,
or in some cases even eliminated, by selecting the right controlled variables c.
This is the idea of self-optimizing control [10] which is when a constant set-
point policy yields acceptable operation in spite of the presence of uncertainty,
which is here assumed to be represented by (1) external disturbances d and

(2) implementation errors n
∆
= cs − c, see Figure 2.

The implementation error n has two sources, (1) the steady-state control error
nc and (2) the measurement error ny; and for linear measurement combinations
n = nc+Hny. In Figure 2, the control error nc is shown as an exogenous signal,
although in reality it is determined by the controller. In any case, we assume
here that all controllers have integral action, so we can neglect the steady-state
control error, i.e. nc = 0. The implementation error n is then given by the
measurement error, i.e. n = Hny.

Ideas related to self-optimizing control have been presented repeatedly in the
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process control literature, but the first quantitative treatment was that of
Morari et al. [7]. Skogestad [10] defined the problem more carefully, linked
it to previous work, and was the first to include also the implementation
error. He mainly considered the case where single measurements are used as
controlled variables, that is, H is a selection matrix where each row has a single
1 and the rest 0’s. Halvorsen et al. [3] considered the approximate “maximum
gain method” and also proposed an exact local method that may be used to
obtain the optimal measurement combination H. However, this method is also
computationally unattractive and in addition somewhat difficult to use. Hori
et al. [4] considered indirect control, which can be formulated as a subproblem
of the null space method presented in this paper. Additional related work is
presented in [13, 12, 11] on measurement based optimization to enforce the
necessary condition of optimality under uncertainty. The ideas are illustrated
on batch processes. Bonvin et al. [2] extends these ideas and focus on steady-
state optimal systems, where a clear distinction is made between enforcing
active constraints and requiring the sensitivity of the objective to be zero.

Controller
Feedback

Optimizer
(RTO)

Process

combination
Measurement

cs

u

d

y

nc = 0

ym

(G,Gd)

(H)

c + n

ny

Fig. 2. Feedback implementation of optimal operation.

This paper is an extension of the nullspace method of [1], where it was found
that, in the absence of implementation errors (i.e., n = 0), it is possible
to have zero loss with respect to disturbances, provided the the number of
(independent) measurements (ny) at least equals the number of (independent)
inputs (nu) plus disturbances (nd), i.e., ny ≥ nu + nd. It is then optimal to
select H such that HF = 0, where F = dyopt/ddT is the optimal sensitivity
with respect to disturbances d [1]. Note that it is not possible to have zero loss
with respect to implementation errors, because each new measurement adds
a “disturbance” through its associated measurement error, ny. The original
nullspace method considered the case when ny = nu + nd. In this paper, we
include the implementation error and extend the null space method to the
following cases:

(1) Extra measurements (ny > nu + nd):
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(a) Use all available measurements
(b) Selecton of minimum number (nu + nd) of measurements

(2) Too few measurements (ny < nu + nd).

2 Background

The material in this section is based on [3], unless otherwise stated. The most
important notation is given in Table 1.

Table 1
Notation

u - vector of nu unconstrained inputs (degrees of freedom)

d - vector of nd disturbances

y - vector of ny selected measurements used in forming c

c - vector of selected controlled variables (to be identified)

with dimension nc = nu

ny - measurement error associated with y

n - implementation error associated with c; n = nc + Hny = Hny)

The objective is to achieve optimal operation, where the degrees of freedom
u are selected such that the scalar cost function J(u,d) is minimized for any
given disturbance d. Parameter variations may also be included as distur-
bances. We assume that any optimally “active constraints” have been im-
plemented, so that u includes only the remaining unconstrained steady-state
degrees of freedom. The reduced space optimization problem then becomes

min
u

J(u,d) (1)

The objective of this work is to find a set of controlled variables c, or more
specifically an optimal measurement combination c = Hy, such that a con-
stant setpoint policy (where u is adjusted to keep c constant; see Figure 2)
yields optimal operation (1), at least locally.

With a given d, solving eq. (1) for u gives Jopt(d), uopt(d) and yopt(d). In
practice it is not possible to have u = uopt(d), for example, because of imple-
mentations errors and changing disturbances. The resulting loss (L) is defined
as the difference between the cost J , when using a non-optimal input u, and
Jopt(d) [9]:

L = J(u,d) − Jopt(d) (2)
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The local second-order accurate Taylor series expansion of the cost function
around the nominal point (u∗,d∗) can be written

J(u,d) = J(u∗,d∗) +
[
Ju Jd

]T


∆u

∆d


 +

1

2


∆u

∆d




T 
Juu Jud

JT
ud Jdd





∆u

∆d


 (3)

where ∆u = (u− u∗) and ∆d = (d− d∗). For a given disturbance (∆d = 0),
the second-order accurate expansion of the loss function around the optimum
(Ju = 0) then becomes

L =
1

2
(u− uopt)TJuu(u− uopt) =

1

2
zTz (4)

where

z
∆
= J1/2

uu (u− uopt) (5)

In this paper, we consider a constaint setpoint policy where the controlled
variables are linear combinations of the measurements 2

∆c = H∆y (6)

We assume that nc = nu, that is, the number of (independent) controlled
variables c is equal to the number of (independent) steady-state degrees of
freedom (“inputs”) u. The constant setpoint policy implies that u is adjusted
to give cs = c + n where n is the implementation error for c (see Figure 2).
As mentioned in the introduction, we assume that the implementation error
is caused be the measurement error, i.e. n = Hny. We now want to express
the loss error z in terms d and ny when we use a constant setpoint policy, but
first some additional notation is needed.

The linearized (local) model in terms of deviation variables is written

∆y = Gy∆u + Gy
d∆d = G̃y


∆u

∆d


 (7)

∆c = G∆u + Gd∆d (8)

where

G̃y =
[
Gy Gy

d

]
(9)

is the augmented plant. From eqs. (6), (7) and (8) we get

G = HGy and Gd = HGy
d (10)

2 We use ∆ to denote deviation variables. Often, the ∆ is omitted and we write,
for example, c = Hy.
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The magnitudes of the disturbances d and measurement errors ny are quan-
tified by the diagonal scaling matrices Wd and Wny , respectively. More pre-
cisely, we assume

∆d = Wdd
′ (11)

ny = Wnyny ′ (12)

where we assume that d′ and ny ′ are any vectors satisfying

‖

 d′

ny ′


 ‖2 ≤ 1 (13)

The non-linear functions uopt(d) and yopt(d) are also linearized, and it can be
shown that [3]

∆uopt = −J-1
uuJud∆d (14)

∆yopt = −(GyJ-1
uuJud − Gy

d)︸ ︷︷ ︸
F

∆d (15)

where we have introduced the optimal sensitivity matrix F for the measure-
ments. In terms of the controlled variables c we then have

(u− uopt) = G-1(c − copt) = G-1(∆c − ∆copt) (16)

∆copt = H∆yopt = HF∆d (17)

∆c = ∆cs − n = −n = −Hny (18)

where we in the last equation have assumed a constant setpoint policy (∆cs =
0). Upon introducing the magnitudes of ∆d and ny from eqs. (11) and (12)
we then get for the constant setpoint policy:

z = Mdd
′ + Mnyny′

(19)

where

Md = −J1/2
uu (HGy)-1HFWd (20)

Mny = −J1/2
uu (HGy)-1HWny (21)

Introducing

M
∆
= [Md Mny ] (22)

gives z = M


 d′

ny ′


. A nonzero value for z gives a loss L = 1

2
‖z‖2 (4), and the

worst-case loss for the expected disturbances and noise in (13) is then

Lwc = max
‖ d′
ny ′ ‖2≤1

L =
1

2
(σ̄[M])2 (23)
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where the last equality follows from the definition of the singular value σ̄.
Thus, to minimize the worst-case loss we need to minimize σ̄(M) with respect
to H. This is identical to the “exact local method” in Halvorsen et al. [3],
except that Md in (20) is expressed in terms of the easily available optimal
sensitivity matrix F.

3 Obtaining the optimal H numerically

From (23), the optimal measurement combination is obtained by solving the
problem

H = arg min
H

σ̄(M) (24)

This problem is fairly easy to solve numerically, as shown in the following. We
start by introducing

Mn
∆
= J1/2

uu (HGy)-1 = J1/2
uu G-1 (25)

which may be viewed as as the effect of n on the loss variables z. We get

Md = −MnHFWd, Mny = −MnHWny (26)

or
M = [Md Mny ] = −MnH[FWd Wny ] (27)

Next, we use the fact that the solution is not unique, so that if H is an optimal
solution to the problem (24), then another optimal solution is H1 = DH,
where D is a non-singular matrix of dimension nu × nu. For example, this
follows because Md and Mny in (20) and (21) are unaffected by the choice
of D. One implication is that G = HGy may be chosen freely (which also is
clear from Figure 1 since we may add an output block after H which allows
G to be selected freely). Alternatively, and this is used here, it follows from
(25) that Mn may be selected freely.

However, the fact that Mn may be selected freely, does not mean that one
can, for example, simply set Mn = I in (27) and then minimize σ̄(M) with
M = H[FWd Wny ]. Rather, one needs to minimize σ̄(M) subject to the
constraint Mn = I. The optimization problem (24) can then be stated as

H = arg min
H

σ̄(H[FWd Wny ]) subject to HGy = J1/2
uu (28)

This is fairly easy to solve because of the linearity in both the objective func-
tion and constraints.

Scalar case. For the scalar case (c is a scalar), M and H are vectors and an
analytic solution is available. This follows since the singular value of a vector
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is equal to the 2-norm, and we get a quadratic optimization problem subject
to linear equality constraints,

min
H

‖HTQH‖2 subject to HGy = J1/2
uu (29)

where Q
∆
= [FWd Wny ][FWd Wny ]T . The solution is (e.g. [8, p. 444] and

Schur complement)

H = Q-1Gy(GyTQ-1Gy)-1J1/2
uu (30)

where it is assumed that Gy has full rank.

Choice of norm. The optimization problems in (24) and (28) involve the
singular value of M. A closely related problem is to minimize the 2-norm

(Euclidean or Frobenius norm), ‖M‖2 =
√∑

i,j |mij |2. Actually, which norm
to use is more a matter of preference or mathematical convenience than of
“correctness”. The difference in minimizing the two norms is generally minor;
the main difference is that minimizing σ̄(M) puts more focus on minimizing
the largest elements. In the extended nullspace method presented below, the
2-norm is used for mathematical convenience.

4 Extended nullspace method

The solutions in (24), (28) and (30) minimize the loss with respect to combined
disturbances and measurements errors. An alternative approach is to first
minimize the loss with respect to disturbances, and then, if there are remaining
degrees of freedom, minimize the loss with respect to measurement errors. One
justification is that disturbances are the reason for introducing optimization
and feedback in the first place. Another justification is that it may be easier
later to reduce measurements errors than disturbances. A third justification
is that there exists a simple analytic solution, namely the nullspace method.

If we neglect the implementation error (Mny = 0), then we see from (20) that
Md = 0 (zero loss) is obtained by selecting selecting H such that

HF = 0 (31)

This provides an alternative derivation of the nullspace method of [1]. It is
always possible to find a non-trivial solution (i.e. H �= 0) H satisfying HF = 0
provided the number of independent measurements (ny) is greater than the
number of independent inputs (nu) and disturbances (nd), i.e. ny ≥ nu + nd

[1]. One solution is to select H as the nullspace of FT :[1]

H = N (FT ) (32)
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The main disadvantage with the nullspace method is that we have no control
of the loss caused by measurement errors as given by the matrix My

n. One
objective of this paper is to study this in more detail, by deriving an explicit
expression for H that allows us to compute the resulting Mny . The explicit
expression for H allows us to extend the nullspace method to cases with extra
or too few measurements, i.e., to cases when ny �= nu + nd.

4.1 Explicit expression for H for orginal null space method

From the expansion of the loss function we have, see eqs. (5) and (14)

z =

J̃︷ ︸︸ ︷[
J1/2

uu J1/2
uu J-1

uuJud

] 
∆u

∆d


 (33)

We assume that H is selected to have zero disturbance loss, which is possible
if ny ≥ nu + nd. Then from (19) and (26), z = −MnHny. With the controlled
variables c = Hy fixed at constant setpoints (∆c = ∆cs = 0) we then have
∆y = −ny, and get

z = −MnHny = MnH∆y = MnHG̃y


∆u

∆d


 (34)

where G̃y =
[
Gy Gy

d

]
is the augmented plant. Comparing eqs. (33) and (34)

yields
MnHG̃y = J̃ (35)

and we have the following explicit expression for H for the case where ny =
nu + nd such that G̃y is invertible

MnH = J̃[G̃y]-1 (36)

This expression gives MnH for a case with zero disturbance sensitivity (Md =
0), and thus gives the same result as (32). Note that Mn can be regarded as
a “free” parameter (e.g. Mn = I, see Remark 2 below).

4.2 Extended nullspace method

The explicit solution for H in (36) forms the basis for the extending the
nullspace method to cases where we have extra measurements (ny > nu + nd)
or too few measurements (ny < nu + nd).
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Assume that we have nu independent unconstrained free variables u, nd dis-
turbances d, ny measurements y, and we want to obtain nc = nu indepen-
dent controlled variables c that are linear combinations of the measurements,
c = Hy. From the results in Section 2 the loss imposed by a constant set-
point policy is L = 1

2
zTz where z = Mdd

′ + Mnyny′
. Define E as the error in

satisfying eq. (35):
E = MnHG̃y − J̃ (37)

From (15) and (9) the optimal sensitivity can be written

F = −G̃y


J−1

uuJud

−I


 (38)

which combined with (26) gives

Md = MnHG̃y


J−1

uuJud

−I


 Wd = (E + J̃)


J−1

uuJud

−I


 Wd

Here J̃


J−1

uuJud

−I


 = 0 which gives

Md = E


J−1

uuJud

−I


 Wd (39)

Note here that the disturbance sensitivity is zero (Md = 0) if and only if
E = 0.

Let ‖E‖2 =
√∑

i,j e2
ij denote the Euclidean norm of a matrix, and let † denote

the pseudo-inverse of a matrix. Then we have the following theorem:

Theorem 4.1 Explicit expression for H in extended nullspace method.
Selecting

H = M−1
n J̃(W−1

ny G̃y)†W−1
ny (40)

minimizes ‖E‖2, and in addition minimizes the noise sensitivity ‖Mny‖2 among
all solutions that minimize ‖E‖2.

Proof: Rewrite the definition (37) for E as

E = MnHWny︸ ︷︷ ︸
−Mny

W−1
ny G̃y − J̃ (41)

From the theory of linear algebra [14], the solution for H that minimizes ‖E‖2 and
at the same time minimizes ‖Mny‖2 is then given by −Mny = J̃(W−1

ny G̃y)† which
gives (40). ✷
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Remark 1 If we have “enough” measurements (ny ≥ nu + nd) then the choice
for H in eq. (40) gives E = 0 and Md = 0. However, for the case with “too few”
meassurements the above choice for H minimizes ‖E‖2, whereas it would seem more
reasonable to minimize ‖Md‖2. Unfortunately, we have no simple explicit solution

for H in this case. Nevertheless, since ‖Md‖2 ≤ ‖E‖2 · ‖

J−1

uuJud

−I


Wd‖2, we see

that minimizing ‖E‖2 will result in a small value of ‖Md‖2.
Remark 2 The matrix H is non-unique and the matrix Mn in (40) can be viewed
as a parameter that can be selected freely. For example, one may select Mn = I, or
one may select Mn to get a decoupled response from u to c, i.e. G = HGy = I.
However, note that MnH, which from eq (33) gives the measurement noise sensi-
tivity, will not be affected as it is given by (35) and (40).
Remark 3 It is appropriate at this point to make a comment about the pseudo-
inverse A† of a matrix. In general, we can write the solution of XA = B as X = BA†

where the following points are true:
(1) A† = (ATA)-1AT is the left inverse for the case when A has full column rank

(we have extra measurements). In this case, there are an infinite number of
solutions and we seek the solution that minimizes ‖X‖2

(2) A† = AT (AAT )-1 is the right inverse for the case when A has row column rank
(we have too few measurements). In this case there is no solution and we seek
the solution that minimizes the Euclidean norm of E = B−XA (regular least
squares).

(3) In the general case with extra measurements, but where some are dependent,
A has neither full column or row rank, and the singular value decomposition
may be used to compute the pseudo-inverse A†.

4.3 Special cases

We have some important special cases of the Theorem 4.1:

4.3.1 “Just enough” measurements (original nullspace method)

When ny = nu + nd, the measurements and disturbances are independent, so
G̃y is invertible and (40) becomes

H = M-1
n J̃(G̃y)−1 (42)

as derived earlier in (36). This choice gives Md = 0 (zero disturbance loss)
and the resulting effect of the measurement noise is

Mny = J̃[G̃y]-1Wny (43)

Note that we in this case have no degrees of freedom left for affecting the
matrix Mny . the matrix [G̃y]-1 has large elements, or equivalently (within a
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constant factor)

4.3.2 Extra measurements: Use “just enough” subset

If we have extra measurements (ny > nu +nd), then one alternative is to select
a “just-enough” subset (such that we get ny = nu + nd) before forming c. H
is selected as in (42) such that we have zero disturbance loss (Md = 0). The
degrees of freedom in selecting the measurement subset should then be used to
minimize the loss with respect to the measurement noise, that is, to minimize
the norm of Mny in eq. (43). Note that the worst-case loss is

Lwc = max
‖n′y‖2≤1

L = 1
2
σ̄(Mny)2 = 1

2
σ̄(J̃(G̃y)-1)2 ≤ 1

2

(
σ̄(J̃)σ(G̃y)σ̄(Wny)

)2

(44)
The selection of measurements does not affect the matrix J̃, since it depends
only on the Hessian matrices Juu and Jud. However, the selection of mea-
surements affects the matrix G̃y. Thus, in order to minimize the effect of the
implementation error, we propose the following two rules:

(1) Optimal: In order to minimize the worst-case loss, select measurements

such that σ̄(Mny) = σ̄
(
J̃[G̃y]-1Wny

)
is minimized.

(2) Sub-optimal: Assume that the measurements have been scaled with
respect the measurement error such that Wny = I. From the inequality
in eq. (44), it then follows that the effect of the measurement error ny will
be small when σ(G̃y) (the minimum singular value of G̃y) is large. Thus,
it is reasonable to select measurements y such that σ(G̃y) is maximized.

Since the optimal rule needs information on the Hessian matrix of the cost
function J , the sub-optimal selection rule of maximizing σ(G̃y) is simpler in
practice. This sub-optimal rule was used successfully in [1] to select measure-
ments from 60 candidates for a Petlyuk distillation case study.

4.3.3 Extra measurements: Use all

For the case with extra measurements (ny > nu + nd) we may alternatively
use all the measurements when forming c. In this case we should obtain H
from (40) in Theorem 4.1. This gives the solution that minimizes the imple-
mentation (measurement error) loss subject to having zero disturbance loss
(Md = 0). More precisely, when ny > nu + nd and the measurements and
disturbances are independent, the choice for H in (40), where † denotes the
left inverse, minimizes ‖Mny‖2 (Euclidean norm) among all solutions with
Md = 0. Note that we need to include the noise weight before taking the
pseudo inverse in (40).
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4.3.4 “Too few” measurements

If there are many disturbances, then we may have too few measurements to
get Md = 0. For the case when both the measurements and disturbances are
independent, we have “too few” measurements when ny < nu + nd. In this
case, the noise weight does not affect H and (40) in Theorem 4.1 becomes

H = M-1
n J̃(G̃y)† (45)

where † denotes the right inverse amd Mn as before is free to choose. This
explicit expression of H minimizes ‖E‖2, whereas, as noted in Remark 1, we
really want to minimize ‖Md‖2. However, we have no explicit expression for
H in this case, so we would need to obtain H numerically, for example, by
solving the following optimization problem:

H = arg min
H

‖HFWd‖ subject to HGy = J1/2
uu (46)

However, for practical applications eq. (45) is simpler and most likely accept-
able, at least provided we have scaled the system (i.e. Gy

d) such that Wd = I.
There may also be cases where we have enough measurements, but we nev-
ertheless want to use “too few” measurements to simplify implementation. In
this case, we may first select the set of measurements that maximizes σ(G̃y),
and then select H according to eq. (45).

5 Example

This example with nu = 1 and nd = 1 is an extension of the example found in
Halvorsen et al. [3]. Assume that we have a SISO system with one disturbance
and the following objective function

J = (u − d)2 (47)

with the nominal disturbance d∗ = 0. We have Juu = 2 and Jud = −2, From
eq. (47) it is clear that Jopt(d) = 0 ∀ d and the optimal input is uopt(d) = d.
Assume that the following measurements are available:

y1 = 0.1(u − d) y2 = 20u y3 = 10u − 5d y4 = u

or equivalently

GyT =
[
0.1 20 10 1

]
and Gy

d
T =

[
−0.1 0 −5 0

]
(48)

We assume that the system is scaled such that |d| ≤ 1 and |ni| ≤ 1, i.e.,

Wd = 1, Wny = I (49)
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The optimal sensitivity matrix F is obtained from (15) or (38). This gives
F = [0 20 5 1]T .

5.1 Single measurement candidates

Let us first consider the use of individual measurements as controlled variables
(c = yi). For the four single measurement candidates the losses are [3]

L1 = 100 L2 = 1.0025 L3 = 0.26 L4 = 2

Measurement y1 has ∆yopt
1 = 0, so it happens to have zero disturbance loss

(Md = 0). However, this measurement is sensitive to noise (as can be seen
from the small gain in Gy) and this choice actually has the largest loss. y3

is the best single measurement candidate. This illustrates the importance of
taking into account the implementation error (measurement noise).

5.2 Measurement combinations: Use two of the four measurements

Since nu + nd = 2, it is possible to get zero disturbance loss (Md = 0) by
combining two measurements, c = Hy = h1yi + h2yj. The “null space” com-
bination (H = (h1 h2)) is most easily obtained using (32). For example, for
measurements (2, 3), F = [20 5]T and

H = [h1 h2] = N ([20 5]) = [−0.2425 0.9701] (50)

The controlled variable is then c = −0.2425y2 + 0.9701y3. The same result is
obtained from (40).

The results for nullspace method for all six possible combinations are given in
Table 2. The table gives the worst-case loss Lwc caused by the measurement
error. We have Lwc = 1

2
σ̄(M)2, where M = Mny = J̃(G̃y)-1Wny . To compare,

we also show in Table 2 σ(G̃y) which according to the “sub-optimal rule
for selecting measurements” should be maximized in order to minimize the
implementation error. We note that for this example that maximizing σ(G̃y)
gives the same (correct) ranking as minimizing Lwc.

From Table 2 we see that combinations involving measurement y1 are all
sensitive to noise. Combination (i, j) = (2, 3) is the best, followed by (3, 4),
while (1, 2), (1, 4) and (1, 3) have the same noise sensitivity when they are
combined using the nullspace method. Combination (2, 4) yields infinite noise
sensitivity to noise with the nullspace method, since G̃y is singular.
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Table 2
Combinations of two measurements, c = h1yi + h2yj, with zero disturbance loss
(Md = 0).

H from (40)

yi yj h1 h2 Lwc σ(G̃y)

2 3 −0.2425 0.9701 0.0425 4.449

3 4 −0.1961 0.9806 1.04 0.446

1 2 −1 0 100 0.1

1 4 −1 0 100 0.0995

1 3 −1 0 100 0.0447

2 4 −0.0499 0.988 ∞ 0

Remark 1 Note that for the combinations using measurement y1, we get N (F T ) =
[1 0], so that only measuremeent y1 is used. This is the reason why the loss in
Table 2 is the same for all combinations with y1.
Remark 2 Using only measurements y2 and y3, the optimal combination that
minimizes the loss Lwc with measurement noise included, may be obtained using
(30). We get [3] Hopt

23 = [−0.2323 0.9727] with a loss L23,opt
wc = 0.0406. This gives

Md = −0.0606 so, as expected, the disturbance loss is non-zero. Nevertheless, in
this case the result is very similar to the extended nullspace method which gave
L23

wc = 0.0425 and Md = 0.

5.3 Measurement combinations: Use all four measurements

Using all measurements, eq. (40) in the extended nullspace method gives (after
normalizing the 2-norm of H to 1):

Hall =
[
0.0206 −0.2419 0.9700 −0.0121

]
(51)

which gives G = 4.852 and Mn = 0.2915. The loss contribution from the dis-
turbance and the noise is Md = 0 and Mny = [−0.0060 0.0705 −0.2827 0.0035].
The corresponding loss is Lall

wc = σ̄2[Md Mny ]/2 = 0.04248, which is only
marginally improved compared to using only two measurements (Lwc = 0.0425).

To compare, the “optimal” combination with measurement noise (with min-
imum loss Lwc) obtained solving (24) or using (30) (after normalizing the
2-norm of H to 1) is [3]

Hopt =
[
0.0208 −0.2317 0.9725 −0.0116

]
(52)

which gives G = 5.082 and Mn = 0.2783. The loss contribution from the
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disturbance and the noise is Md = −0.0606 and Mny = [−0.0057 0.0645 −
0.2706 0.0032]. The resulting loss is Lopt

wc = 0.0405. However, the reduction in
loss (Lopt = 0.0405) is small compared to using c23 from the nullspace method
using only two measurements (L23

wc = 0.0425).

In summary, the two-step nullspace method, where one first selects a “just
enough” set of measurements by maximizing σ(G̃y), and then obtains H from
eqs. (42) or (32) to make Md = 0, works well for the example.

6 Discussion

6.1 Local method

The above derivations are local, since we assume a linear process and a second-
order objective function in the inputs and the disturbances. Thus, we cannot
guarantee that the proposed controlled variables are globally optimal. How-
ever, using the above expressions should give an indication on how sensitive
the candidates are to measurement error. For a final validation, we should
always check the loss for the proposed structures using the non-linear models
of the process.

6.2 Eliminating measurements

We have extended the null space method to the case where we want to use all
available measurements. In general, using all measurements should be opti-
mal. However, in many cases many of the measurements are closely correlated
or have large measurement errors. In such cases the advantages of using ad-
ditional measurements and the increased complexity of the control structure
may not be justified, and we may want to use fewer measurements as discussed
in Section 4.3.4.

6.3 Relationship to indirect control

Indirect control is when we want to control a set of primary variables y1, at
constant setpoints. This is a special case of the results in this paper if we select

J =
1

2
‖y1 − ys

1‖2 =
1

2
[y1 − ys

1]T [y1 − ys
1] (53)
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We have that

∆y1 = G1∆u + Gd1∆d = G̃1


∆u

∆d


 (54)

and find that

Juu = GT
1 G1 (55)

Jud = GT
1 Gd1 (56)

The case of indirect control is discussed in more detail by Hori et al. [4]. The
variables ∆c = G∆u + Gd∆d are selected in order to indirectly control y1,
and the results in Hori et al. [4] follow directly from the results in this paper
by using

Pd = Md = (Gd1 −G1G
-1Gd) (57)

Pc = Mn = G-1
1 G (58)

7 Conclusion

The null space method [1] for selecting linear measurement combinations c =
Hy has been extended to the general case with extra measurements or too
few measurements, see eq. (40). The idea of the extended nullspace method
is to first focus on minimizing the steady-state loss caused by disturbances,
and then, if there are remaining degrees of freedom, minimize the effect of
measurement errors. For the case with extra measurements, the use of eq. (40)
to obtain H minimizes the loss with respect to implementation/measurement
error (minimizes ‖My

n‖2) subject to achieving zero disturbance loss (Md = 0).
For the case with too few measurements, the use of eq. (40) minizes ‖E‖2,
wheras one really would like to minimize ‖Md‖2. Altough E and Md are
related by eq. (39), one may in this case instead obtain H numerically using
(46).

An alternative approach for the case with extra measurements, which is usually
preferred in practice, is to use only a subset of the measurements. In the two-
step nullspace method, one first obtains a ”just-enough” subset with small
sensitivity to implementation error by maximizing σ((G̃y) (or even better
minimizing σ(My

n) = σ(J̃(G̃y)-1), and then obtains H from (42) or (32) to get
zero disturbance loss (Md = 0).

17



References

[1] V. Alstad and S. Skogestad. Null space method for selecting optimal
measurement combinations as controlled variables. Ind. Eng. Chem. Res.,
46(3):846–853, 2007.

[2] D. Bonvin, G. Francois, and B. Srinivasan. Use of measurements for
enforcing the necessary conditions of optimality in the presence of con-
straints and uncertainty. J. Proc. Control, 15(6):701–712, 2005.

[3] I.J. Halvorsen, S. Skogestad, J.C. Morud, and V. Alstad. Optimal se-
lection of controlled variables. Ind. Eng. Chem. Res., 42(14):3273–3284,
2003.

[4] E. Hori, S. Skogestad, and V. Alstad. Perfect steady state indirect control.
Ind. Chem. Res., 44(4):291–309, 2005.

[5] J.V. Kadam, W. Marquardt, M. Schlegel, T. Backx, O.H. Bosgra, P.-J.
Brouwer, G. Dünnebier, D.V. Hessem, and A. Tiagounovand S.D. Wolf.
Towards integrated dynamic real-time optimization and control of indus-
trial processes. FOCAPO 2003. 4th Int. Conf. of Computer-Aided Process
Operations, Proceedings of the Conference held at Coral Springs, Florida,
January 12-15, 2003, pages 593–596, 2003.

[6] T.E. Marlin and A.N. Hrymak. Real-time optimization of continous pro-
cesses. American Institute of Chemical Engineering Symposium Series -
Fifth International Conference on Chemical Process Control, 93:85–112,
1997.

[7] M. Morari, G. Stephanopoulos, and Y. Arkun. Studies in the synthesis
of control structures for chemical processes. Part I: Formulation of the
problem, process decomposition and the classification of the controller
task. Analysis of the optimizing control structures. AIChE Journal, 26
(2):220–232, 1980.

[8] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 1999.
[9] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control. John

Wiley & Sons, 1996.
[10] S. Skogestad. Plantwide control: The search for the self-optimizing control

structure. J. Proc. Control, 10:487–507, 2000.
[11] B. Srinivasan, D. Bonvin, and E. Visser. Dynamic optimization of batch

processes - ii. role of measurements in handling uncertainty. Computers
and chemical engineering, 27(1):27–44, 2003.

[12] B. Srinivasan, D. Bonvin, and E. Visser. Dynamic optimization of batch
processes - i. characterization of the nominal solution. Computers and
chemical engineering, 27(1):1–26, 2003.

[13] B. Srinivasan, CJ. Primus, D. Bonvin, and N. L. Ricker. Run-to-run
optimization via control of generalized constraints. Control Eng. Pract.,
9(8):911–919, 2001.

[14] G. Strang. Linear algebra and its applications. Harcourt Brace & Com-
pany, 3 edition, 1988.

[15] Y. Zhang, D. Monder, and J.F. Forbes. Real-time optimization under

18



parametric uncertainty: A probability constrained approach. J. Proc.
Control, 12(3):373–389, 2002.

[16] Y. Zhang, D. Nader, and J.F. Forbes. Results analysis for trust con-
strained real-lime optimization. J. Proc. Control, 11:329–341, 2001.

19



Figure 1: Combining measurements y to get controlled variables c (linear case)
Figure 2: Feedback implementation of optimal operation.
Table 1: Notation
Table 2: Combinations of two measurements, c = h1yi + h2yj, with zero dis-
turbance loss (Md = 0).
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