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Abstract—Model predictive control (MPC) is a favored we may determine regions where different sets of active con-
method for handling constrained linear control problems. straints are active, and implementation of optimal openati
Normally, the MPC optimization problem is solved on-line, s then in each region to:
but in ‘explicit MPC’ an explicit piecewise affine feedback law . .
is computed and implemented [1]. This approach is similar 1) Control the active constraints.

to ‘self-optimizing control, where the idea is to find simple 2) For the remaining unconstrained degrees of freedom:
pre-computed policies for implementing optimal operation, for Control ‘self-optimizing’ variablesc = Hy which
example, by keeping selected controlled variable combinations have the property that keeping them constant (c,)

constant. The ‘nullspace’ method [2] generates optimal variable

combinations, which turn out to be equivalent to the explicit indirectly achieves close-to optimal operation (with a

MPC feedback laws, that is,c = u— K, where K is the optimal small loss), in spite of disturbances We here allow
state feedback matrix in a given region. More importantly, this for linear measurement combinations= Hy. There
link gives new insights and also some new results. One is that are here two factors that should be considered:

regions changes may be identified by tracking the variables

for neighboring regions. a) Disturbancesd. Ideally, we want the optimal

value ofc (copr) to be independent af.
. INTRODUCTION b) Measurements errora?. The loss should be

. . oo insensitive to these.
Consider the general static optimization problem [2]:

B. Relationship to explicit MPC
Consider a simple static optimization problem
s.t. fi(x,ug,d) =0, i€€& (P1)  min, J(u,d), where v are the unconstrained degrees
hi(z,up,d) >0, i€T, of freedom and the statesand the active constraints have
been eliminated by substitution. For the quadratic case
wherex € R"= are the states;; € R™=o are the inputs, and

_ T
d € D c R™ are disturbances. By discretization and refor- J(u,d) =[u d]"Slu d]
mulation this may also represent some dynamic optimization whereS — Juu  Jud )
problems. Usually is a model of the physical system, whilst Jua" Jad]”

h is a set of inequality constraints that limits the operation |n addition we have available ‘measurements: GYu +
(e.g., physical limits on temperature measurements or flowd; a key result, which is the basis for this paper, is
constraints). In addition to (P1) we have measurements onggr g quadratic optimization problem there exists (in-
the form finitely many) linear measurement combinatiens Hy that
are optimally invariant to disturbances.
Yo = f(z, uo, d). @ Ong seeg immediately that there may be some link to
In this work the emphasis is oimplementation of the explicit MPC, because the discrete form MPC problem can
solution to(P1). This means that the optimization problenbe written as a static quadratic problem. The link is: If we
(P1) is solved off-line to generate a ‘control policy’ whish let y contain the inputs: and the states;, then the ‘self-
suitable for on-line implementation, with particular eragls  optimizing’ variable combinatior = Hy is the same as the
on remaining close to optimal solution when there are urexplicit MPC feedback law (control policy), i.e.= u— K.
known disturbances. That is, we search for ‘control padicie (This is shown in section Il1.)
such that the costl, remains optimal or close to optimal Based on this, we provide in this contribution somev
when disturbances occur without the need to reoptimize. ideas on explicit MPC:
1) We propose that tracking the variables c¢ (deviation

min Jo(SL’, Uup, d)
uo,T

A. Self-optimizing control from optimal feedback law) for all regions, may be
In our previous work on ‘self-optimizing control’ we have used as a local method to detect when to switch
looked for simple control policies to implement optimal between regions.
operation, and in particular ‘what should we control’ (at®i 2) We may use our results to include measurement error
of controlled variables@V'’s)). Using off-line optimization in y (e.g. inz andu) when deriving the optimal explicit
MPC.
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Off-line In addition, there are ‘measurement variablgs= GYu +

Optimizer GYd.
Cs If there existsn, > n, + ng independent measurements
(where ‘independent’ means that the matiix = [GY  GY]

y . has full rank), then the optimal solution to (5) has the prop-
Feedback < ctn < n erty that there exista. = n,, linear variable combinations
Controller A (constraintsy = Hy that are invariant to the disturbancés

The optimal measurement combination matfixis found
Measurement by either: (1): LetF = 8}’? be the optimal sensitivity
v combination {) matrix evaluated with congflant active constraints. Undter t
A assumptions stated above possible to select the matrix
y Ym the left nullspace of", H € N(FT), such that
d Process Y P
’ (GY,GY) Y HF =0 (6)

(2): If ny = ny + ng:

_ -1 7y —1
Fig. 1. Block diagram of a feedback control structure inaglgdan H = Mn J(G ) ’ (7)
optimization layer [4].

where J = [J,j{f J,;}/qud} andGY = [GY GY] is the

augmented plantM, ! may be seen as a free parameter.
4) We can also extend the results to the case where OrKiMote thatM,, = J.. is the Hessian of the cost with respect

a subset of the states are measured (but in this Cagf the c-variables; in most cases we seletf, = I for
there will be a loss, which we can quantify). This Mayconvenience.)

be of interest even in the unconstrained LQ case. Remark 1:The sensitivityF” matrix can be obtained from
In this paper the basic framework and issue (1) are o ”
discussed. In [3] it is shown how the results can be extended F=- (Gy‘]uu Jud — Gd) : (8)

to handle items (2)-(4), both with theorems and examples. Remark 2:An equivalent formulation is: Assume that
there exists a set of independent measuremgrdad that

Il. RESULTS FROM SELFOPTIMIZING CONTROL the (operational) constraint £ Hy = ¢, (wherec, is a
A. Steady state conditions constant) is added to the problem. Then there existg/an
Once the set of active constraints in (P1) is knowdhat does not change the solution to (5). In terms of operatio
we can form the reduced problem and the unconstraind@is means that zero loss (optimal operation) is obtained by
degrees of freedom can be determined. The unconstraine@ontrolling n. = n,, variablesc = Hy with a constant

measurements are set-point policyc = ¢, where H is selected according to
” theorem 1.
y=GYu+ Gy, 3) Theorem 1 may be extended:

and y contain information about the present state and dis- Lemma 1:(Linear invariants for constrained quadratic op-
turbances  may includeu, and d, but not the active timization methods) Consider an optimization problem ef th

constraints.) The (measured) valuef available for im- form .
plementation is min Jo = [T o d] S lug
Ym =y + 1Y, 4) " d 9)
where n¥ represents uncertainty in the measurement of st {lx T ]-?“ T (fd =0
including uncertainty of implementation i Az + Bu+Cd <0,

The following theorem describes a method to find linear o
invariants that yields zero loss from optimality when the/ith det(A) 7 0 and[A B] full row rank. B
invariants are controlled at constant setpoint. The theore ASSume that the disturbance space has been partitioned
is based on the ‘nullspace method’ presented in [2]. FigufBt© 7. critical regions. In each region there arg = n,, —

1 illustrates how thefl matrix is used to linearly combine ™4 = 0 unconstrained degrees of freedom, whetge< 7.,
measurements (and square down the plant). is the numbe_r of optimally .act|ve constraints in regu’on

Theorem 1:(Linear invariants for quadratic optimization !f there exists a set of independent unconstrained mea-
problem [4]) Consider an unconstrained quadratic optimiz&urementy’ = (G¥)'v’ +(Gy)"d in each region, such that

tion problem in the variables (input vector of lengtha,) " = ™t + 74, the optimal solution to (9) has the property
andd (disturbance vector of lengthy) that there exists variable combinatiofs= H'y* that are

invariant to the disturbances in the critical regioni:. The

muin J(u,d) = [u d] L}]:;T jzﬂ B} (5) iorresponding optimalH® may be obtained from Theorem



Within each region, optimality requires that — ci = 0 The MPC control law is based on the following
(wherec! is a constant). From continuity of the solution, weidea: At time ¢, compute the optimal solutiod/*(t) =
have thatc’ is continuous across the boundary of region {uj,...,u;, y _;} and applyu(t) = uj [1].

This implies that the elements in the variable veetor c Remark 3:The trade-off between robustness and perfor-
will change sign or remain zero when crossing into or froninance is included in the weights in the MPC cost function
a neighboring region. and in the constraints.

Proof: See internal report [5]. u If we let the initial statex(t) be treated as a disturbance,

. . . 14) can be written as:
B. Implementation of optimal solution (14)

For the case of no measurement ervdt,= 0, Theorem D g H F|[U
1 shows that for the solution to quadratic optimization i) [U ] F Y| |d (15)
problems, variable combinations= Hy that are invariant st.GU < W + Ed,

to the disturbances can be found. In section Il this insight

will be used as a new approach to the explicit MPC problemcmd we observe that (15) is on the same form as (9), where

the model equations(x,up,d) = 0 have already been
substituted into the objective function.

We will now look at the model predictive control problem A property of the solution to (15) is that the disturbance
(MPC) with constraints on inputs and outputs. For a discugpace (initial state space) is divided into critical regiom
sion on MPC in a unified theoretical framework see [6].  the'th critical region there are’, = ny; —n’, unconstrained

The following discrete MPC formulation is based on [7].qegrees of freedom, wherei, is the number of active
Consider the state-space representation of a given procegpstraints in regior.
model:

1. APPLICATION TO EXPLICITMPC

As we discuss in section IlI-A, a possible set of measure-
2(t+1) = Az(t) + Bu(t) (10) Mmentsy is the current state and the inpuis, = [T uT].
We further note that causality is not an issue here, as we

Yo(t) = Cz(1), 11) have the information at the current time.
subject to the following constraints:
Ymin < Y0(t) < Ymax (12) A. Exact measurements of all states (state feedback)
Umin < U(t) < Umax, (13)  The following theorem is well known, but we will here

where z(1) € R", u(t) € R™, andy(t) € R? are the prove the theorem using the nullspace method.

state, input and output vectors, respectively, subscripts Theorem 2:(Optimal state feedback [1]) The control law
and max denote the lower and upper bounds, respectivelft) = f(z(t)), f : R" — R™, defined by the MPC
and (A, B) is stabilizable. MPC problems for regulating toProblem, is continuous and piecewise affine

the origin can then be posed as the following optimization

problem: f(x) =K'z +g" if He<k', i=1,...,Nmp (16)
1 = T . .
m J(U,2(t)) = Tean,y Poerw, it where the polyhedral sets{H'z <k'}, i =
Ny—1 1,...,Nmpc < N, are a partition of the given set of
+ Z [wt+k|tTth+k|t + quTRqu} statesX.
k=0 In this case causality is not a problem and from Theorem
St Ymin < Ysgkft < Ymax, Kk =1,..., N 1 the optimal solution is simply. = Kz + g (i.e. ¢ =
Umin < Uik < Umax, k=0,1,..., N, u— (Kx — g)). Note thatng; = n, in this case.
2y = (t) Proof:

We consider the explicit MPC formulation as in (15).
First we consider the unconstrained case. {et (U, z)
Yerkt = CTeinye, k20 be the set of candidate measurements. With this choice of
Utk = KZyype, Nu <k <Ny measurements and disturbances on the present state, we form
the process model:

Tyyrp1e = ATeyppe + Bugrr, k>0

whereU = {us,...,uen, -1}, Q@ =QT >0, R=R'" >0,

P >0, N, > N,, and K is some feedback gain. [7] show o Y

that by substitution of the model equations, the problem can Ay = GYAU + G4Ad 17

be rewritten on the form GV = { On, x(nuN.) } € R(e+nuNu)x(muNu) (1)
1 1 I(nuNu)X(nuNu)

IriifniUTHU +2(t)TFU + §x(t)TYx(t)

(14) GZ _ |:0 Inxxnx :| c R(nz+nuNu)><nI. (19)
SLGU < W + Ex(t) (

Mg Ny ) XNy



We then get the optimal sensitivity as Algorithm 1 Detect current region and calculatg
Require: CRy_1, i.e. the region of the last sample time,

opt
= — = (GYJ ) a — GY) = (20) andzy,
od 1 ug = K(Ckal) + g(Ckal)
_ ({ _9nwx(nu,NU) ] _ [ Ingxn, D (1) 2 [Regionsa] = Neighbor_$CRk,1)
(Jau Jud) (0 No) x 0 OnuN.)xn, 3: for i = 1 to length(Regionsjlo
[ Lo, @2 4 (i) =oi(u (K (Regiongi)) + g(Regionsi))))
I N At 5: end for
. . . 6: if sign(ck(i) # —1) then
the now search f?r a matri¥{ that gives a non-trivial . CRy, = Regiongi)
solution toHF' = 0: g else
Inw N 9: CRy =CRy_4
[(Hl)(nu,NU)xnm (HQ)(nUNu)><(nuNu,)] {JM}XJHJ = (23) 10: end if
= Hy — Hy (J7 Jua) =0 (24) return wuy = K(CRy)xk + g(CRy), CRg

To ensure a non-trivial solution we can for example choose
Hy = I(n,N,)xn, N, Then we must havel, = Ji' Jug, Example 3.1 (Optimal switching)This example is taken
and hence theptimal combinatior: of  and U becomes  from [1] (with correction), and is included here to demon-
B R B (nu o) strate optimal switching using the sign change ef u— Kz
c=Hy=Jy Jur+U=0€eR (25) a5 the criterion. The system is:

In the internal report by [5] it is shown how the affine term N .
in (16) enters as a function of the active constraints. m y(t) = 52 4 35+ Qu( )-
Remark 4:(Comparison with previous results on unconith a sampling timel’ = 0.1 seconds the following state-
strained MPC).In .(25). the state feedback gain matrix is give8hace representation is obtained:
as J,.,lJ.q. This is gives the same result as conventional
MPC, see equation (3) in [8]. a4 1) — [gﬁgg —Ooé%%?] o(t) + [88823] ()
Remark 5:These are not new results but the alternative : : ‘
proof leads to some new insights. The most important is y(t) = [0 1.4142] z(¢)
probably that the “self-optimizing” variable$ = v—(K'z+
g') which are optimally zero in regiori, may be used
for identifying when to switch between regions (Theore e remainder of this example
3) rather than using a “centralized” approach, for examplg1 he task is to reaulate The' svstem to the oridin while
based on a state tree structure search. This seems to bl%ll' the input 9 traint y 9
new. Another insight is to understand why a simple feedbaJH iing the input constrain
solution must exist in the first place. A third is to allow for —2 < u(t) <2 (26)
new extensions.
Theorem 3:(Optimal region for explicit MPC detection The objective function to be minimized is

One observes that only the last state is measured, but it
n){vill be assumed that both states are known (measured) in

using feedback law) The variables= u;, — (Kzj + g) can 1
be used to identify region changes. minzy o Progap + 3 [Tesnpe Tesre + 0.01u7,, ] (27)
Proof: See report by [5]. [ ] k=0

Remark 6:Neighboring regions with the same feedbackypject to the constraints and);, = z(t).
law (including regions where the feedback law is to keep p solves the Lyapunov equatidh = ATPA + Q, where
the input saturated) can be merged (provided that the regiop) — 7 in this case. The optimal control problem can be

remain convex or if the “crossings” inside a non-convexolved for example using the MPT toolbox [9]. TRematrix
region due to the optimal direction of the process in closed nymerically:

loop only occurs in the convex part of the region). This

may greatly reduce the number of regions compared to P = {5'5461 4-9873]

presently used enumeration schemes. Note that the number of 4.9873 10.4940

c-variables that need to be tracked to detect region chasges i To jl|ustrate ideas a simulation from, = (1, 1) was done.

only equal to the number of inputs,, times the number of gtate space trajectories and inputs are shown in figures 2
distinct merged regions. Because of the merging of regiongng 3. As long as the state is in the input-constrained region
this may be a small number even with a large input or contrg{here Pt — —2, the linear combination: = uy, — Kap
horizon and with output (state) constraints. remains positive. One chooses to leave the input-constiain
We present a simple example from [1] that confirms thategion when;, becomes zero. As one observes, this happens
our switching policy based on tracking the sign of the at time instant 8, where the process indeed is on the boundary
variables works in practice. between the input-saturated region and the center region.



Fig. 2. Partition of state space for first input. (Example )3.1.

States z(t)

0 5 10 15 20 2 30
Input u(t)

0 5 ~ 10 15 20 25 30
C = U — (KIk)

0 5 ~ 10 15 20 25 30

Fig. 3. Closed loop MPC with region detection using — (Kzy).
(Example 3.1.)

4l

=15 =10 =5 0

Fig. 4. Regions for double integrator example (Example 3.2).

y(t) = (y(t+Ts) —y(t))/Ts, Ts = 1. The control objective

is to regulate the system to the origin while minimizing the
quadratic cost funcio = ;% y(t)Ty(t) + {5u? subject

to the input constraint-1 < u(t) < 1. The infinite horizion
control problem can be converted to a finite horizion problem
by solving [1], [10]:

Kiqo=—-(R+B"PB)"'B"PA,
P = (A + BKLQ)TP(A + BKLQ) =+ KLQTRKLQ + Q

to obtain the unconstrained feedback g&in, and the final
state weight matrixP (see example 3.1). In this case we

2.1429 1.2246
getKig = [0.8166 1.7499] and P = ||')." 1'3996l.

For demonstration purposes we chodSg = 6, and by
solving the paramteric program we get 73 regions initidily.

this case there are 11 regions of unsaturated control action
which agrees with the general result @N,, — 1) regions
given in [1]. Merging all regions where the first optimal iripu

is the same, leaves us with the 11 unsaturated regions, and
two regions for which the optimal input is either at the high
or low constraint. The final partitioning with 13 regions is
shown in figure 4. We note that [1] find 57 regions after their
merging scheme.

After the switching the controller for the center region is Considering figure 4 one observes that the input-saturated

implemented. The state trajectory is the same as in [1].

regions are non-convex. However, optimally, this process

The reason for why: never becomes negative is becausenoves clockwise in the state space, and we observe that
both states are assumed measured at the present time gfid“non-convex” crossings will not occur in practise. The

hence optimal switching is achieved. This can be understogemaing boundaries then form convex regions (indicated by
from the algorithm 1, where we show how the current criticajhe dashed lines in the figure.)

region CRy) is tracked and how the current inpuj, is
calculated.

Example 3.2 (Double integrator)Consider the double
integrator disussed by [1}(t) = 1/s?u(t), and its equiva-
lent discrete-time state-space representation,

1 1 0
Tht1 = {O J Ty + L} Uk ye=[1 0]z,

which is obtained by setting(t) = (y(t + Ts) — y(t))/Ts,

Figure 5 shows the evolution of the invariantsin each
region when we start the simulation ay = (0, —3) and
close the loop by using the optimal inputs. We start in
the input-saturated region = 1, and need to track the
invariants for regions 1,2,3,4,5, and 6 to determine ogdtima
switching. We should switch to unsaturated control when one
the variables:! to ¢® becomes zero or changes sign. As one
sees, this happens fef att = 6, so we change to this
region. After using the feedback law for region 3 for one



regions, but we noted that for some processes directignalit
of the process in closed loops implies that the non-convex
crossings may be ignored.

In a forthcoming contribution [3] we show how the results
can be extended to output feedback and how to find invariants
that give minimal loss when controlled at constant set [goint
also when we have noisy measurements. We further show
how we one choose the order of the controller and we
show by examples that the resulting controller will have
performance in the order of magnitude of LQG controllers.

The most important problem of using results from steady
state self-optimizing control is causality, in steady etat
optimization all measurements are available at the current
time (i.e.t — o0), but in dynamic optimization we may
need to find invariants between measurements at current and
future times and then switch the invariants back to get a
casual controller, but this controller will be non-optintat
construction. Also this is discussed in more detail in [3].
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