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Abstract

Applications for on-line data reconciliation and optimization must be efficient and numerically robust. The models in these applications are
rarely changed and the same optimization problem is solved thousands of times with only minor changes in the parameters. This paper describes
a suitable modeling framework for this type of applications that, with the aim of simplifying the creation of new models, makes the application
robust and avoids numerical difficulties. The model is based on a unit model structure where first-order derivatives, scaling and initial values are
properties of the unit model. A new scaling procedure is proposed based on equation and variable pairing. The modeling framework and the use
of the proposed scaling procedure are demonstrated in two case studies, case 1 is simulation of a simple pipe model, case 2 is simulation, data

reconciliation and optimization of a flash process.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Typical process modeling tools are based on a unit model
structure library, and then using streams to connect these.
Unit models typically included are heaters, flash drums,
heat exchangers, distillation columns, reactors and so on
(Westerberg, Hutcison, Motard, & Winter, 1979). The resulting
model equations are solved sequentially or simultaneously.

Most chemical engineers prefer tools like PRO/II from SIM-
SCI and Hysys from AspenTech. This may be due to an extensive
unit model library, a high quality user interface and a sequential
solver that solves one unit model at a time. In this environment it
is simple to locate a problem (like a non-converging unit model)
and it is simple to do changes to the model on the worksheet
level. On the other hand, sequential solvers are ineffective for
solving optimization problems, including data reconciliation.

For optimization problems, as well as for simulation of more
complex processes with energy and mass recycles, simultaneous
solvers are preferred. Examples of tools for process modeling
using simultaneous solvers are gProms from PSE, ASCEND
from Carnegie Mellon University and Custom Modeler from
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AspenTech. See Marquardt (1996) for an overview of these tools
and others.

The strength of the generic modeling tools mentioned above
are the modeling capability, i.e. creation of new models, but
this is rarely needed in on-line optimization applications. On-
line optimization of a process plant is typically separated into
three main tasks: estimation of current state (datareconciliation),
optimization and implementation (White, 1997). Models for on-
line applications should be derived with the following in mind:

e An optimization problem may be solved thousands of times a
year with only small changes in objective functions and spec-
ifications and the models are only rarely changed. Changes in
the model are only required when the plant is modified which
may be only once every 2—10 years.

e The execution of the optimizer is often automated and is
generally not monitored by modeling experts. Robust con-
vergence properties of the solver are critical.

e The optimizer must have on-line data exchange with the con-
trol and process planning systems. It is therefore often run
on computers closely connected to the control system with
limited access for changes.

In summary, the requirements for an on-line application
are a model with no overhead (unused functionality) to save
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computation time, an effective and robust solver and simple
interfaces to other systems for data transfer. The actual applica-
tion is typically “tailor made” and programmed in some object
oriented programming language (C++ or similar).

This paper demonstrates a modeling procedure for this type
of on-line applications. Our experience is that too much time
in such projects is spent on finding model errors and avoiding
numerical difficulties and too little time on result analysis. This
modeling guideline will hopefully improve this. The models are
based on a unit model structure and solved simultaneously using
a general NLP (nonlinear programming) solver. The equations
and variables are organized such that the same process model is
used for simulation, data reconciliation and optimization of the
process.

Model residuals, first-order derivatives of the models, scaling
factors and initial values, are properties of the unit model. The
model equations and numerical properties of each unit model
are verified before they are added to the process model. The

Table 1
Nomenclature

Description Dimension

Process model variables ng x 1
Z Scaled process model variables ny x 1
n; Number of process model variables
f Process model equations ngx 1
7 Scaled process model equations ngx 1
r Residual vector ngx 1
ny Number of process model equations
J Objective to be minimized
y Measurement vector ny x 1
0 Measurement weighting matrix ny X ny
U Measurement incident matrix ny X n;
Py Equation and variable pairing matrix ng X n;
Py Equation and variable pairing matrix ng X Nz
ny Number of measurements
Ag Fixed values matrix ng X Nz
by Vector of fixed values ng x 1
ng Number of specified variables
Ar Fixed values matrix ny X ng
by Vector of fixed values ne X 1
ny Number of specified variables
Aopt Fixed values matrix Topt X Nz
bopt Vector of fixed values Nnopt X 1
Hopt Number of specified variables
z Model variables ng x 1
Zs Simulation result ny x 1
Zr Data reconciliation result n; x 1
Zopt Optimization result ny x 1
20 Initial value n; x 1
P Cost vector ng x 1
Sh Nonlinear equations scaling matrix ng X ng
Si Linear equations scaling matrix ng X Ng
Sy Variable scaling matrix ng X ng
So Objective scaling factor
H Linearized equality constraints
aH Scaled linearized equality constraints
dest Estimation error
Init. Initial values
Sim. Simulation results
Rec. Data reconciliation results
Opt. Optimization results

unit model equations are standardized to reduce the possibil-
ity of errors and simplify the modeling work. For example, all
mass balances have the same structure, similar scaling and same
engineering units. This simplifies the development of new unit
models and reduces the possibility of errors.

The examples given in this paper are simple, but the pro-
cedure has been applied industrially on a crude unit pre-heater
train (Lid, Skogestad, & Strand, 2002) where the resulting on-
line application is still operating after several years. It has also
successfully been applied to a naphtha reformer model with more
than 500 equations and variables.

The model representation in this paper is very simple and a
comprehensive definition, more suited for commercial use, can
be found in Bogusch and Marquardt (1995).

In this paper all models are steady state, which is suitable
for most process plants with continuous operation. In the case
of processes where dynamic changes are central, the use of a
dynamic model should be considered.

The most important notation is summarized in Table 1.

2. Simulation, data reconciliation and optimization
problems

This section defines the simulation, data reconciliation and
optimization problems considered in this work.

All three problems use a nonlinear steady state model of the
process, which is incorporated as a set of nonlinear equality
constraints f{(z)=0. In addition, known variables are specified
by linear equality constraints Az=>b. For each specification i,
the matrix A has a row A(i) with a single non-zero element A(i,
j)=1, such that the value of z(j) is specified to equal b(i).

The number of equations in the process model (f(z)=0,
Az=b) should be less than the number of variables, i.e. ny<n,.
The difference n, — ny — ny is the number of degrees of freedom
for the problem.

2.1. Simulation

In the simulation case, specifications are added in Ay such
that there are zero degrees of freedom, i.e. n; — ng—ny=0. The
simulation problem is formally defined as
f@)=0,

min  J(2) s.t. Asz = by (D
Z

where the “dummy” objective function is chosen as Js(z)=0.
This is because with no degrees of freedom the objective function
has no influence on the solution. Note that the specifications
in Agz=bs must be selected such that there are no dependent
equations in f{z) and A, that is such that the matrix

of
oz &)
As

has full rank.
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2.2. Data reconciliation

Data reconciliation is used to estimate the actual condition of
the process and is obtained as the solution of

leil’l J(Z) S.t. f(Z) = 0, ArZ = br,

Zrmin = Z = Zrmax 3)

where J=(y— Uz)TQ(y — Uz). All ny measurements are col-
lected in the measurement vector y. The “selection” matrix U
gives a mapping of the variables z into the measurements, such
that Uz represents the estimated value of the measurements y.
The matrix U has ny, rows and in each row there is only one
non-zero element U(i, j) = 1, that is y(i) corresponds to z(j).

The diagonal weighting matrix Q has elements Q(i, i) equal to
1/6(i)2, where o(i)? is the variance of the measurement noise of
measurement number i. Minimizing the objective function is the
same as maximizing the Gaussian frequency function, Y, f; =
1/(0(i)v/27) exp(—0.5(y(i) — U(i)z)* /o (i)*), which results in
a least squares or maximum likelihood estimate of the process
state. More about this and other objective functions can be found
in Tjoa and Biegler (1991) and Chen, Pike, Hertwig, and Hopper
(1998).

Upper and lower bounds on variables are used to limit the
solution to acceptable values. For example all flows, tempera-
tures and pressures must satisfy z(j) > 0.

If the value of a variable is known it can be specified using
the linear constraints.

The variables must be observable based on the measured
values and the process model (Stanley & Mah, 1981). A min-
imal requirement is that the number of measurements satisfies
ny > n; — ny— ny, where n; is the number of rows in A;. If some
variables are not observable then measurements must be added
or the actual variable value must be specified.

2.3. Optimization

Optimal operation is calculated by minimization of a cost
function subject to the process model, specified values and oper-
ating constrains:

Inzin J(2) st. f(z)=0, Aoptz = bopta

Zoptmin = Z = Zoptmax 4

where J(z) =p(z) z. In most cases p is a vector of fixed prices
related to feed cost, energy cost and product values.

Values for variables like model parameters, feed conditions
and other variables, not available for optimization, are specified
using the linear equality constraints Aqgpiz = bopt. These variables
are set equal to the reconciled variable, bope = AgptZr.

Operating constraints are added as upper and lower bounds
on variables, Zopt min and Zopt max-

2.4. NLP solver

A NLP solver is used for solving the simulation, data recon-
ciliation and optimization problems. In this paper a general NLP

solver is required to at least handle the following optimization
problem definition:

Objective to be minimized J(2)
Linear equality constraints Az=1D>
Nonlinear equality constraints  f(z) =0

Variable bounds Zmin < Z < Zmax

In addition it is expected to be able to utilize user speci-
fied first-order derivatives of the objective and of the nonlinear
constraint functions.

aJ
Objective first-order derivatives a(Z)
Z
a
NL constraints first-order derivatives J;(Z)
Z
The linearized equality constraints
f (z)
H=| oz ®)
A

are used for analysis of the numerical properties of the opti-
mization problem. If the condition number of H is large, then
the problem is said to be ill-conditioned and numerical problems
may be expected (here large means > 10).

In this paper the solver fmincon from the Matlab Optimiza-
tion Toolbox® is used.

3. Modeling framework
3.1. Model structure

In the suggested model structure, a process model is a col-
lection of one or more unit models. A unit model describes a
small part of the process like a flash drum, heater or a reactor.
The boundary of the unit model is selected such that the con-
nection to other unit models is by process streams. A general
unit model, as shown in Fig. 1, can have one or more input and
output streams, shown as S — Sy and internal variables shown
as ©;. A process stream, connecting two unit models, is simply
a set of shared variables describing the properties of the process
stream. A process model with three unit models and seven pro-
cess streams is shown in Fig. 2. Each unit model has a set of
equations f;(z) =0 and the overall process model is a collection
of equations from these unit models:

f1@)
r=f@=| /2 (6)
f3(2)
81 ' | Sn+1 .
So . P | - Sn+2 >
Q]
Sn : SN
—_—> >

Fig. 1. Unit model.
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3.2. Unit models
Sy
7 S A unit model describes the behavior of some process unit
or process equipment and is based on equations of mass bal-
== L ance, energy balance and pressure-flow relations. Even if the
S O & O3 | s individual units may be different, the equations describing their

Fig. 2. Process model.

The process model, r =£(z), as shown in Eq. (6), is a collection of
unit models where each unit model is represented by equations
written as 7; =f;(z).

All unit models share the variable vector z. This variable
vector contains variables from all process streams and internal
variables from all unit models:

Sy
hY)

2=\ g (N
©
CJ)
O3

Variables describing a process stream are typically compo-
nent molar fractions, flow, temperature and pressure. Some
cases may require other variables. For example, in units with
two-phase streams, enthalpy may replace temperature as a vari-
able. In this paper process stream variables are selected as
si=1xT F 1, P

The unit model internal variables ®;, can be heater duty, heat
transfer coefficient and compressor efficiency.

With this fixed ordering of the variables in the variable vector
z, a variable mapping is created. The variable mapping is used
to obtain the values of input and output stream variables and
internal variables from the variable vector z, within each unit
model. This requires that the stream number of the input and
output streams is known within each unit model. The stream
numbers can be passed to the unit model as parameters in the
actual function call.

The first-order derivatives of the process model are also cal-
culated on a unit model basis:

of1(2)
0z
f(z) | 9f2(2)
0z a0z
9f3(z)
a0z

®

where 9f;(z)/9z is a nf; X n, matrix. The above mentioned vari-
able mapping is used in the column mapping of the individual
elements in 9f;(z)/0z.

behavior is very similar and there are benefits of standardization
of these equations.

The simplest unit model possible is a unit model with one inlet
stream and one outlet stream. The unit model has no holdup, no
reactions, no heat loss or pressure drop. It is visualized as a “pipe
model” (Fig. 3) and is stated in Eq. (21).

This “pipe model” is of no practical use as a unit model but
works well as a basic template for other unit models. Some
examples:

e A heater unit model can be made by adding a simple heat input
term Q in the energy balance. The heat input is an internal
variable in the model.

e A heat exchanger can be made by combining two pipes. The
energy balance in the two models is modified by adding a heat
term, one negative and one positive. One additional equation
is added in the models describing the heat transfer. This can
be based on log mean temperature difference (LMTD), e-Ntu
or other.

e A CSTR reactor can be made by adding a reaction term, VNTr,
in the pipe model mass balance, where V is the reactor vol-
ume, N the reaction stoichiometric matrix and r is a vector of
reaction rates.

e A flash drum can be made as a pipe with two outlet streams,
one vapor flow and one liquid flow. Equations for vapor—liquid
equilibrium (y — K(T, P)x=0), sum of vapor components,
equal vapor-liquid pressure and temperature have to be added.

The idea in Section 4 is to develop a “pipe model” with good
numerical properties to serve as a template. Other unit models
will then inherit these properties and only small adjustments will
be necessary.

In formulating models, it is easy to miss an equation. A gen-
eral recommendation or rule in modeling is to use set assignment
and formally pair equations and variables. Since most variables
appear in more than one equation this pairing is not unique.
Nevertheless this rule gives a valuable overview of the model
and the pairing turns out to be useful in adding proper variable
specifications and scaling of the variables and equations.

A systematic approach to the equation—variable pairing
is found in Maurya, Rengaswamy, and Venkatasubramanian
(2003) and Mah (1990) where the equations and variable are
defined as nodes in a graph. The equations and variables are
grouped into two disjoint subsets where arcs connect the vari-
ables and equations. If all equation nodes are connected to only
one variable node and no node is left unmatched, the set of
equations and variables is said to have perfect matching.

5O )s

Fig. 3. Pipe.
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3.3. Initial values

When creating a large process model it is reasonable to start
with a small part of the process, verify the results, and then add
more process streams and process units until the total model is
finalized.

In this construction process the variable vector z will vary in
size and the position of the individual variables in z will change
and the generation of initial values, zg, will be a tedious task.

A simple solution is to let all unit models generate initial
values for all unit model internal variables and for variables
related to unit model exit streams. This may not result in initial
values close to a solution but it may still be sufficient as a start-
ing value for generation of an improved set of initial values by
simulation. In addition, initial values for feed streams must be
generated.

In a steady state model, assuming no multiple steady-states,
the initial value may influence convergence properties but has
no influence on the final solution itself. This is different for dif-
ferential algebraic (DAE) systems where the initial value affects
the solution and must be a valid solution of the DAE system
at r=0 (Pantelides, 1988). In this case the method described
above may be an initial value for solving the DAE system at
t=0.

3.4. Scaling

The performance of the NLP solver depends crucially on
how the problem is formulated and an important issue is proper
scaling. Note that the scaling is performed off-line. Thus, the
computational complexity of the scaling itself is not impor-
tant. Rather, the objective of the scaling is to minimize the
computation time and robustness for the subsequent on-line
computations.

An unconstrained optimization problem is said to be poorly
scaled if a change in x in one direction produces a much larger
change in f=f(x) than in another direction (Nocedal & Wright,
1999). The measure of poor scaling is not so clear in constrained
optimization. Some of the methods are said to be scaling invari-
ant, like the SQP algorithm with BFGS update of the Hessian
(as used in this paper), but they are still influenced by scaling
(Biegler & Cuthrell, 1985). This is related to two issues. First,
the initial value of the Hessian is normally set equal to the iden-
tity matrix. If the true Hessian of the scaled problem is closer to
the identity matrix than the unscaled model this should result in
an improved estimate of the Hessian and improved performance
of the algorithm. Second, a poorly scaled model is likely to gen-
erate larger rounding errors which may degrade the performance
of the algorithm.

Scaling methods used within or as a part of a NLP solver are
in general based on properties of the estimated Hessian (Roma,
2005; Zhu, 2005). The scaling methods related to the process
model or constraints are based on residuals, variable values and
first-order derivatives (Jacobian).

A scaled process model is written as

f@ =0 )

Az =0 (10)

where the scaled variable z = S Iz. The scaled model f(z) =
Snf(SyZ) and for the scaled specification Ag = SiA and b =
S1bs. S1, Sy and Sy are fixed diagonal scaling matrices.

The scaled objective function J(Z) = S,J(SyZ) where S,, is a
fixed factor. Three methods for scaling found in literature are in
the following sections.

3.4.1. Method 1
Scaling based on variable bounds and initial equation residual
(Biegler & Cuthrell, 1985):

Sij = 2% where a; = int[logz(zmax,- — Zmin;)] (11)
Sn; =27%  wherea; = int[log,(| f(z0)li)] (12)
S, =27  wherea; = int[log,(|Aszo — bsi)] (13)

where z is the initial value. The equation scaling factor is limited
to some maximum value in case the equation residual is close
to zero. More details and suggested improvements can be found
in the reference.

3.4.2. Method 2
Scaling based on first-order derivatives (Kelly, 2004):

d£(z0)
C= 9z (14)
Ay
Se; =IICjll3"  wherej=1,...,n; (15)
Snl.[.=||C,-||2_1 wherei =1,...,n¢ (16)
S = ICills" wherej=ny+1,...,n7 4 ns a7)

where C; and C; denotes the columns and rows of C, respec-
tively. Other norms like the 1-norm (]|-||1) or the infinity norm
(]]:loc) may also be used.

3.4.3. Method 3
Scaling based on order of magnitude (Rodriguez-Toral,
Morton, & Mitchell, 2001):

Sy; = 107%  wherea; = int[log,((z0);] (18)

The equation scaling factor is the reciprocal of an integer
power of 10 of the value of a given term or group of terms,
normally related to the scale factor of a relevant variable. As
an example, let a typical value of a mass balance term x;F be
0.5 x 0.3=0.15. The scaling factor for the mass balance equa-
tion is then 10(~1t002100-15)) — 10_ The objective scaling factor
is divided by an integer power of 10 close to its typical value.

3.4.4. Method 4

New proposed scaling method based on variable and equation
pairing.

This new scaling method is similar to method number 3 but
uses to a larger extent the structure of the model. The equation
scaling factors are not based on the constraint term values but on
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values of the first-order derivatives matrix. The proposed scaling
procedure is

1. Make a pairing of equations and variables:

The equation and variable pairing is given in the matrix P
where P(i, j)=1 if variable number j is paired with equation
number i. All other elements in P are zero.

The equation and variable pairing for a unit model f;(z) is
givenin a matrix Py; of dimensionn s, x n, and variable pair-
ing for the specifications Az =b is stated in Ps of dimension
ng X nz.

2. Scale all variables such that the scaled variable has a value
close to one.

The variable scaling matrix Sy(j, j) = Z; where Z; is a
typical value of variable number j. The initial value, 7, is
used in this case.

3. Scale all equations such that the absolute value of the ele-
ments of the first-order derivatives, corresponding to the
equation and variable pairing, is close to one:

()

Si= |l x (AsSyPDI | (20)

Sni =

19)

where x denotes element by element multiplication so that
Spi and 8 are diagonal matrices.

4. The scaling factor for the objective function Sy is selected
such that the largest element of the first-order derivative J(Z)
has an absolute value close to one.

5. If any of the elements in the matrix H = []‘(Z)TZ\;F]T have
large absolute values (where large is >100) then the equation
and variable pairing or variable scaling should be revised.
A possible solution is to pair the equation with the variable
corresponding to the large value in H.

In order to illustrate the idea of this scaling strategy, assume
that the variables and equations are reordered such that the ele-
ments along the diagonal of the first-order derivatives correspond
to the selected equation—variable pairing. The diagonal elements
of this matrix are now all equal to one and the off-diagonal ele-
ments are preferably smaller than one. With this scaling the set of
constraints will be balanced where a change in one variable will
result in a change of same magnitude in the equation residual.

The condition number of H is used as a measure of improved
scaling. This measure is based on the definition of poor scaling
in the unconstrained case where a change in the variable vector
z in one direction produces a much larger change in the residual
r=f(z) than in another direction.

A process model with a large condition number of the first-
order derivatives will have larger rounding errors. If the matrix
of first-order derivatives df/0z has a high condition number a
small change in Az, caused by rounding errors, may cause a
large change in Ar.

The objective function scaling factor, S,, has a large influence
on the solution path of the solver during the iterations. A large
scaling factor gives large deviations in the model equations in

the solution path and rapid decrease in the objective. In case of
numerical problems, like temporarily negative values of flows
and compositions, the scaling factor of the objective function
should be reduced.

4. Case study 1: “Pipe model”

A simple model of a pipe, as described in Section 3.2, demon-
strates the use of the suggested modeling procedures. This model
has two process streams, one inlet stream and one outlet stream.
The fluid is a mixture of two components, propane and butane
(NC=2). The variables are the composition, flow, temperature
and pressure of the two process streams. The variable vector
organized as zT = [ST ST]where ST =[x] F, T, P
There are no internal variables in this model.

The equations of the pipe model are written as

Fix; — F»x, =0, Xx)—1=0,
Fih(Ty, x1) — Foh(T7,x2) =0, P —-P,=0 2D

These equations represent the mass balance, mole fraction sum-
mation, energy balance and pressure-flow relation (with no
pressure drop in this case).

The pipe model is in this case unit model number 1 and is in
short-hand notation written as f;(z) =0.

The number of variables in the variable vector z is
2(NC+3)=10, with NC=2 and the number of equations in
the pipe model is NC +3 =5. In order to solve the model equa-
tions, as in the simulation case, NC +3 =5 variables have to
be specified. In this case the inlet stream molar fraction, flow,
temperature and outlet stream pressure are specified:

X = X (22)
F| = Fy (23)
T =T, (24)
P, =P (25)

The specifications are implemented as linear constrains Agz = b,
where Ag has n, columns and ng=5 rows, one row for each
specification. Ay is written as

1 00000O0O0O 0O
01 00000GO0TO0O0

As=10 0 1.0 000000 (26)
0001000000
0000O0O0O0O0GO0 1

The values of the specific variables are collected in bs and b! =
[xsT F; T Pg]. The specification values Fg=0.27 kmol/s,

Ts=285K,Ps=30barandx; = [0.5 0.5 ]T which gives by =

[05 05 027 285 307

The selected equation—variable pairings are listed in Table 2.
The equation—variable pairing is not unique and other valid com-
binations exist. An obvious requirement is that, if an equation
is paired with a variable, this variable must exist in the actual

Engineering (2007), doi:10.1016/j.compchemeng.2007.04.003

Please cite this article in press as: Lid, T., Skogestad, S., Scaled steady state models for effective on-line applications, Computers and Chemical



dx.doi.org/10.1016/j.compchemeng.2007.04.003

+Model
CACE-3450; No.of Pages 10

T. Lid, S. Skogestad / Computers and Chemical Engineering xxx (2007) xxx—xxx 7

equation. In the pipe model this leaves two choices for pairing of
the outlet stream F,, component balance one (propane) or com-
ponent balance two (butane). In this case the recommendation
is to pair F, with the component balance of the component with
the largest molar fraction. This will in fact simplify the variable
and equation scaling and remove the need for “extreme” scaling
factors.

The first-order derivatives of the pipe unit model, df;(z)/9z is
writtenasan s, X n, matrix where n g, is the number of equations
in unit model number 1 and 7, is the total number of variables
in the process model.

F 0 x1(1) 0 0
0 Fi x1(2) 0 0
fi(z) 1 1 0 0 0
oh(xy, T oh(xy, Ty oh(xy, T
0z 1 (x1, T1) F (x1, T1) Wt Ty (x1, T1)
x1(1) x1(2) Ty
0 0 0 0 1

A simple verification of the model equations and calculation
of first-order derivatives is recommended:

e Compare df;(z)/0z with numerically calculated derivatives.

[0.27 0 0.50
0 0.27  0.50
0 0 0
9203 10190 35913
9f (z) 0 0 0
H = 0z =
As 1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
Table 2
Equation—variable assignment for the pipe unit model
Description Equation Pairing
Unit model MB Eq. (1) xi(HF —x(DF>, =0 F>
Unit model MB Egq. (2) x12Q)F; —x22)F, =0 x2(2)
Sum of compositions sz —-1=0 x2(1)
Energy balance Fih(Ty, x1) — Fh(T2,x2) =0 T,
Pressure-flow relation P —P,=0 Py
Specification no. 1 A(Dz=b; x1(1)
Specification no. 2 AQR)z=by x2(2)
Specification no. 3 AQ3)z=b3 Fy
Specification no. 4 Ad)z=by T,
Specification no. 5 A(5)z=bs P,

_F2

e Verify that equations are linearly independent. The rank of
the first-order derivative df;(z)/0z must equal the number of
equations 7 ;.

e Specifications added in A (ref. Egs. (1)-(4)) must be lin-
early independent of any unit model equation, i.e. the matrix
[8fi()T/oz AT ]T must have full rank.

The matrix of the first-order derivatives of the specifications and

pipe model, where 9f(z)/0z = df1(z)/dz, are shown in Eq. (28):

-F 0 —x(1) 0 0
0 —F —x2(2) 0 0
3h(()X2, 1) 3h(()X2, 1) " Bh(zXz, 1) ’ @7)
o e MR Sheee 0
0 0 0 0 -1
0 0 -027 0 050 0 0]
0 0 0 —027 —050 0 0
0o 0 1 1 0 0 0
34 0 —9203 —10190 —35913 —34 0
0 1 0 0 0 0 -1
(28)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1

The condition number of H is 8.13 x 107. The main cause
of the high condition number is the energy balance equation.
This equation has large values compared to the other equation
and changes in the paired variable, 7>, has the least significant
influence on the equation residual.

In order to reduce the condition number, the model is scaled
according to the proposed method (Section 3.4.4).

The matrix of equation and variable pairing, P, is derived
from Table 2 and the pairing is shown in Eq. (28) using bold
font.

The values of flow, temperature and pressure
variables are approximately 0.25 kmol/s, 280K
and 30bar and the variable scaling matrix Sy =
diag([1 1 0.25 280 30 1 1 025 280 30]).

The equation scaling matrices S, and S; are computed
according to step 3 in the proposed scaling procedure.
This gives S, = diag([10.0 2.0 1.0 0.00056 0.033])
and §; = diag([1.0 1.0 4.0 0.0036 0.033]).
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The matrix of specifications and first-order derivatives are

written as:

(20 0 175

0 04 0.15

0 0 0

0.37 0.41 0.48

Q) 3f (2) o 0 0

H = 3z = lsn 0 0z Sy =

Aq 0 S As 1.0 0 0
0 1.0 0

0 0 10

0 0 0

L0 0 0

As a result of the applied scaling the condition number of H is
reduced from 8.1 x 107 to 6.8.

The pipe model is solved using Matlabs fsolve and
fmincon. fsolve is based on a nonlinear least squares
algorithm and fmincon is a SQP algorithm with BFGS
Hessian update (Matlab, 2000). The initial values zg =
[0.7 03 02 278 20 04 06 05 270 25 ]T is
used as a starting point for both solvers.

The unscaled model was solved using 14 iterations using
fsolve and the scaled model was solved using 4 iterations. The
scaled and unsealed model where both solved in three iterations
using fmincon and scaling does not seem to have any signifi-
cant effect in this case. Still, when a unit model becomes part of a
larger model the condition number will increase further and the
effect of scaling will be significant. To compare, the three scal-
ing methods presented in Section 3.4 where also applied to the
pipe model. The results are summarized in Table 3. The condi-
tion number for the unsealed model was 8.1 x 107. The smallest
condition number for the scaled model, 6.8, was obtained using
scaling method 4. Note that £solve did not converge to a valid
solution using scaling method 2. The solver terminated (suc-
cessfully) in 3 iterations at a solution where there was a 2.5K
difference in inlet and outlet temperature. The scaled variables
had values in the order of 1 x 10* which may have caused the
failure of convergence.

Table 3

0 0 -50 0 -10 0 0
0O 0 0 -10 —03 0 0
0 0 10 10 0 0o 0
039 0 —091 —1.0 —048 —1.0 0
0 1.0 0 0 0 0 -10
(29)
0 0 0 0 0 0 0
0 0 0 0 0 0o 0
0 0 0 0 0 0o 0
0 0 0 0 0 0o 0
0 0 0 0 0 0 10

5. Case study 2: flash process with preheating

A simple flash process is here studied in order to demonstrate
the use of the above modeling guidelines in simulation, data
reconciliation and optimization. The process, shown in Fig. 4,
has three unit models, a heat exchanger, a heater and a flash
drum. The three unit models are connected using six process
streams.

The model has three chemical components, propane, butane
and pentane (NC =3).

The process operating constraints are S (flow) <0.3 kmol/s,
S4 (pressure) > 28 bar and <40 bar, Hi (heat duty) <5500 kW, S3
(temperature) <485 K and S¢ (propane content) < (0.2 mol/mol.
The feed and energy price are respectively 100$/kmol and
0.001$/kW and the product price are 50$/kmol for vapor product
and 200$/kmol for liquid product.

The variables in the model include 6(NC +3)=36 process
stream variables (6(NC + 3)), two internal variables in the heat
exchanger (duty and heat transfer coefficient) and one internal
variable in the heater (duty). This gives a total number of n; =39
variables.

The heat exchanger unit model has 2NC + 7 =13 equations,
the heater has NC+3=6 equations and the flash drum has
2NC+ 6 =12 equations. This gives the total number of ny=31
equations. The number of degrees of freedom is then n, — ny=8.

Ss(XhF‘T) .
Comparison of scaling procedures >
Scaling Iterations Condition number of A )_K

S4(F,P)
fsolve fmincon h/ﬁ,u - o

Unscaled 14 3 8.1 x 107 SiFT) TN/ ST SyT) "\
Method 1 5 3 43%10° T 8
Method 2 * 3 3.7 x 106
Method 3 5 3 30
Method 4 4 3 6.8 S(T)

* Failed to converge.

Fig. 4. Flash process.
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Table 4
Results for flash process
Variables y o p Zmin Zmax Initial, zg Simulation, zg Reconciliation, z; Optimization, zop
Fi 0.20 0.025 100 0.30 0.20 0.25 0.20 0.28
T, 289.92 0.250 280.00 280.00 289.97 289.97
T, 308.06 0.250 320.00 301.77 308.02 302.78
T3 474.53 0.250 485.00 370.00 480.00 474.51 438.52
Fy 0.11 0.025 -50 0.10 0.14 0.10 0.09
Py 31.45 0.500 28.00 40.00 30.00 31.50 30.22 28.00
Te 418.29 0.250 400.00 417.18 418.36 405.81
x6(1) 0.15 0.005 0.20 0.20 0.18 0.15 0.20
Fe 0.10 0.025 —200 0.20 0.11 0.10 0.20
Te 383.90 0.250 380.00 369.75 383.88 387.92
Unx 0.010 0.015 0.010 0.010
Our 0.001 5500 2000 6264 4856 5500
Jopt(2) 2.48 —0.206 —9.848

There are 10 measurements: the propane composition, three
flows, five temperatures and pressure. The measurements are
shown on the figure using the symbols x1, F, T and P. The mea-
surements are generated by adding normal distributed noise to
a simulation result, y = Uz, + e, where e, =N(0, o).

In the simulation problem, as defined by Eq. (1), eight vari-
ables have to be specified. In this case feed composition (three
variables), feed flow, feed temperature, heater outlet tempera-
ture, vapor product pressure and heat transfer coefficient are
specified.

In data reconciliation, as defined by Eq. (3), only the feed
composition is specified.

The objective of operation is to maximize the profit within
constraints. In process optimization, as defined by Eq. (4), feed
composition, feed temperature and the heat transfer coefficient
are specified. The specification values are set equal to the rec-
onciled values. Table 4 shows the optimization results. Only
variables related to measurements and constraints are shown.

The optimal solution has three active constraints (shown as
bold values in Table 4): minimum pressure (28.00), maximum
liquid product propane content (0.20) and maximum heater duty
(5500). The operational profit was increased from a starting point
of 0.2%/s (reconciled) to a optimal of 9.8%/s.

To compare the results of solving the scaled (method 4)
and unscaled data reconciliation problem, the relative estima-
tion error, degt = Z?y:”(UZr — ¥);/yjl, is used. Ten different
sets of normal distributed measurement error were generated
and for each set the unscaled and scaled data reconciliation and
optimization problem was solved.

Table 5
Scaling methods applied to flash process

In 8 of 10 runs the unscaled data reconciliation problem
converges to a local optimum where deg; = 3. In these runs the
scaled problem converges with an average of 10 iterations and
an average estimation error deg; & 0.3. In the other two runs, the
scaled and unscaled problem converges to the same solution.
In this case the unscaled problem converged using 45 and 50
iterations.

The optimization problem was solved using the reconciled
values as described above. In 10 of 10 runs the scaled optimiza-
tion problem converged to the optimal solution with pressure,
product composition and heater duty as active constraints. In 10
of 10 runs, the unscaled optimization problem failed to converge
to the optimal solution and converged to a solution where only
the product composition constraint was active. In this case the
average objective was Jopt ~ —9.3.

To compare the four scaling methods presented in Section
3.4 the simulation, data reconciliation and optimization problem
is solved for the flash process. The results are summarized in
Table 5.

A valid solution of the data reconciliation and optimization
problem are found using scaling methods 1, 3 and 4. A com-
mon property of these methods is a reduction of the condition
number of the constraint first-order derivatives, H. The small-
est condition number (5.1) is achieved using method 4 which
also solves these problems using the fewest number of iter-
ations. The condition number of a model increases with the
model size and large models will benefit more from the use
of scaling methods that gives a large reduction in condition
number.

Condition no. A Number of iterations

Active constraints

Simulation Reconciliation Optimization dest Jopt
Unscaled 5.0E+09 5 23 11 2.99 —9.34 xe(1)
Method 1 4.8E+05 4 14 0.30 —9.85 Py, x6(1), Ot
Method 2 7.0E+09 4 9 3 3.49 —5.84 Our
Method 3 4.0E+03 4 28 10 0.30 —9.85 Py, x6(1), Ot
Method 4 5.1E+01 4 12 5 0.30 —9.85 Py, x6(1), Qur
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6. Discussion

Multiple steady states are not handled by this method. Rather,
the scaling is performed at the desired steady-state.

Nonlinear inequality constraints can be added in this frame-
work by introduction of slack variables according to Luenberger
(1984). As a simple example we have that g(x) < ¢ is equivalent
to g(x) — v =0, v < ¢ where v is a slack variable.

The simplified thermodynamic relations used in the case stud-
ies are all explicit functions and have explicit functions for their
first-order derivatives. For example, specific enthalpy is calcu-
lated as h:Cpr. The specific heat of a component, Cp;, is a
fixed value for the liquid phase and a function of temperature
for the vapor phase (sixth order polynomial fitted to data from
NIST (2005)). Vapor-liquid equilibrium is based on Raoult’s
law and Antoine vapor pressure with parameters from the same
source.

The described unit model structure is well suited for object
oriented programming. A model written in C++ or similar pro-
gramming language, most commonly used in applications, will
be far more effective than the Matlab code used in the examples.

The use of sparse matrices and sparse math in the model and
solver code will also give a significant reduction in computa-
tional load. In the flash process case study the matrix H has
1521 elements of which only 169 are non-zero.

7. Conclusions

A procedure for building steady state models has been pre-
sented. The procedure is based on unit models which interact
through a shared variable vector. The unit models and speci-
fications form an “open equation” set, well suited as nonlinear
constrains in an optimization problem. In the suggested structure
each unit model can be developed, tested and scaled before it is
added to the overall process model. This simplifies the modeling
work and saves a lot of troubleshooting.

The scaling procedure, which is applied at unit model level,
results in a significant improvement in the overall numerical
properties of the model.

The numerical examples of the flash process optimization
shows that proper scaling reduces the number of iterations used
for solving each case. More important though, it makes the
results more reliable. In both data reconciliation and optimiza-
tion, the solver failed in finding the optimal solution when using
an unsealed model.
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