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bstract

Applications for on-line data reconciliation and optimization must be efficient and numerically robust. The models in these applications are
arely changed and the same optimization problem is solved thousands of times with only minor changes in the parameters. This paper describes
suitable modeling framework for this type of applications that, with the aim of simplifying the creation of new models, makes the application
obust and avoids numerical difficulties. The model is based on a unit model structure where first-order derivatives, scaling and initial values are
roperties of the unit model. A new scaling procedure is proposed based on equation and variable pairing. The modeling framework and the use
f the proposed scaling procedure are demonstrated in two case studies, case 1 is simulation of a simple pipe model, case 2 is simulation, data
econciliation and optimization of a flash process.
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. Introduction

Typical process modeling tools are based on a unit model
tructure library, and then using streams to connect these.
nit models typically included are heaters, flash drums,
eat exchangers, distillation columns, reactors and so on
Westerberg, Hutcison, Motard, & Winter, 1979). The resulting
odel equations are solved sequentially or simultaneously.
Most chemical engineers prefer tools like PRO/II from SIM-

CI and Hysys from AspenTech. This may be due to an extensive
nit model library, a high quality user interface and a sequential
olver that solves one unit model at a time. In this environment it
s simple to locate a problem (like a non-converging unit model)
nd it is simple to do changes to the model on the worksheet
evel. On the other hand, sequential solvers are ineffective for
olving optimization problems, including data reconciliation.

For optimization problems, as well as for simulation of more
omplex processes with energy and mass recycles, simultaneous
Please cite this article in press as: Lid, T., Skogestad, S., Scaled steady stat
Engineering (2007), doi:10.1016/j.compchemeng.2007.04.003

olvers are preferred. Examples of tools for process modeling
sing simultaneous solvers are gProms from PSE, ASCEND
rom Carnegie Mellon University and Custom Modeler from
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spenTech. See Marquardt (1996) for an overview of these tools
nd others.

The strength of the generic modeling tools mentioned above
re the modeling capability, i.e. creation of new models, but
his is rarely needed in on-line optimization applications. On-
ine optimization of a process plant is typically separated into
hree main tasks: estimation of current state (data reconciliation),
ptimization and implementation (White, 1997). Models for on-
ine applications should be derived with the following in mind:

An optimization problem may be solved thousands of times a
year with only small changes in objective functions and spec-
ifications and the models are only rarely changed. Changes in
the model are only required when the plant is modified which
may be only once every 2–10 years.
The execution of the optimizer is often automated and is
generally not monitored by modeling experts. Robust con-
vergence properties of the solver are critical.
The optimizer must have on-line data exchange with the con-
trol and process planning systems. It is therefore often run
on computers closely connected to the control system with
e models for effective on-line applications, Computers and Chemical

limited access for changes.

In summary, the requirements for an on-line application
re a model with no overhead (unused functionality) to save

dx.doi.org/10.1016/j.compchemeng.2007.04.003
mailto:skoge@chemeng.ntnu.no
dx.doi.org/10.1016/j.compchemeng.2007.04.003
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omputation time, an effective and robust solver and simple
nterfaces to other systems for data transfer. The actual applica-
ion is typically “tailor made” and programmed in some object
riented programming language (C++ or similar).

This paper demonstrates a modeling procedure for this type
f on-line applications. Our experience is that too much time
n such projects is spent on finding model errors and avoiding
umerical difficulties and too little time on result analysis. This
odeling guideline will hopefully improve this. The models are

ased on a unit model structure and solved simultaneously using
general NLP (nonlinear programming) solver. The equations

nd variables are organized such that the same process model is
sed for simulation, data reconciliation and optimization of the
rocess.
Please cite this article in press as: Lid, T., Skogestad, S., Scaled steady stat
Engineering (2007), doi:10.1016/j.compchemeng.2007.04.003

Model residuals, first-order derivatives of the models, scaling
actors and initial values, are properties of the unit model. The
odel equations and numerical properties of each unit model

re verified before they are added to the process model. The

able 1
omenclature

Description Dimension

Process model variables nz × 1
˜ Scaled process model variables nz × 1

z Number of process model variables
Process model equations nf × 1

˜ Scaled process model equations nf × 1
Residual vector nf × 1

f Number of process model equations
Objective to be minimized
Measurement vector ny × 1
Measurement weighting matrix ny × ny

Measurement incident matrix ny × nz

n Equation and variable pairing matrix nf × nz

s Equation and variable pairing matrix ns × nz

y Number of measurements

s Fixed values matrix ns × nz

s Vector of fixed values ns × 1

s Number of specified variables

r Fixed values matrix nr × nz

r Vector of fixed values nr × 1

r Number of specified variables

opt Fixed values matrix nopt × nz

opt Vector of fixed values nopt × 1

opt Number of specified variables
Model variables nz × 1

s Simulation result nz × 1

r Data reconciliation result nz × 1

opt Optimization result nz × 1

0 Initial value nz × 1
Cost vector nz × 1

n Nonlinear equations scaling matrix nf × nf

l Linear equations scaling matrix ns × ns

v Variable scaling matrix nz × nz

o Objective scaling factor
Linearized equality constraints

˜ Scaled linearized equality constraints

est Estimation error
nit. Initial values
im. Simulation results
ec. Data reconciliation results
pt. Optimization results
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nit model equations are standardized to reduce the possibil-
ty of errors and simplify the modeling work. For example, all

ass balances have the same structure, similar scaling and same
ngineering units. This simplifies the development of new unit
odels and reduces the possibility of errors.
The examples given in this paper are simple, but the pro-

edure has been applied industrially on a crude unit pre-heater
rain (Lid, Skogestad, & Strand, 2002) where the resulting on-
ine application is still operating after several years. It has also
uccessfully been applied to a naphtha reformer model with more
han 500 equations and variables.

The model representation in this paper is very simple and a
omprehensive definition, more suited for commercial use, can
e found in Bogusch and Marquardt (1995).

In this paper all models are steady state, which is suitable
or most process plants with continuous operation. In the case
f processes where dynamic changes are central, the use of a
ynamic model should be considered.

The most important notation is summarized in Table 1.

. Simulation, data reconciliation and optimization
roblems

This section defines the simulation, data reconciliation and
ptimization problems considered in this work.

All three problems use a nonlinear steady state model of the
rocess, which is incorporated as a set of nonlinear equality
onstraints f(z) = 0. In addition, known variables are specified
y linear equality constraints Az = b. For each specification i,
he matrix A has a row A(i) with a single non-zero element A(i,
) = 1, such that the value of z(j) is specified to equal b(i).

The number of equations in the process model (f(z) = 0,
z = b) should be less than the number of variables, i.e. nf < nz.
he difference nz − nf − ns is the number of degrees of freedom

or the problem.

.1. Simulation

In the simulation case, specifications are added in As such
hat there are zero degrees of freedom, i.e. nz − nf − ns = 0. The
imulation problem is formally defined as

in
z

Js(z) s.t. f (z) = 0, Asz = bs (1)

here the “dummy” objective function is chosen as Js(z) = 0.
his is because with no degrees of freedom the objective function
as no influence on the solution. Note that the specifications
n Asz = bs must be selected such that there are no dependent
quations in f(z) and As, that is such that the matrix

∂f
⎤

e models for effective on-line applications, Computers and Chemical

∂z

As

⎦ (2)

as full rank.

dx.doi.org/10.1016/j.compchemeng.2007.04.003
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f1(z)

f2(z)

f3(z)

⎤
⎥⎦ (6)
ARTICLEACE-3450; No. of Pages 10

T. Lid, S. Skogestad / Computers and

.2. Data reconciliation

Data reconciliation is used to estimate the actual condition of
he process and is obtained as the solution of

in
z

J(z) s.t. f (z) = 0, Arz = br,

zr min ≤ z ≤ zr max (3)

here J = (y − Uz)TQ(y − Uz). All ny measurements are col-
ected in the measurement vector y. The “selection” matrix U
ives a mapping of the variables z into the measurements, such
hat Uz represents the estimated value of the measurements y.
he matrix U has ny rows and in each row there is only one
on-zero element U(i, j) = 1, that is y(i) corresponds to z(j).

The diagonal weighting matrix Q has elements Q(i, i) equal to
/σ(i)2, where σ(i)2 is the variance of the measurement noise of
easurement number i. Minimizing the objective function is the

ame as maximizing the Gaussian frequency function,
∑

ifi =
/(σ(i)

√
2π) exp(−0.5(y(i) − U(i)z)2/σ(i)2), which results in

least squares or maximum likelihood estimate of the process
tate. More about this and other objective functions can be found
n Tjoa and Biegler (1991) and Chen, Pike, Hertwig, and Hopper
1998).

Upper and lower bounds on variables are used to limit the
olution to acceptable values. For example all flows, tempera-
ures and pressures must satisfy z(j) ≥ 0.

If the value of a variable is known it can be specified using
he linear constraints.

The variables must be observable based on the measured
alues and the process model (Stanley & Mah, 1981). A min-
mal requirement is that the number of measurements satisfies
y > nz − nf − nr, where nr is the number of rows in Ar. If some
ariables are not observable then measurements must be added
r the actual variable value must be specified.

.3. Optimization

Optimal operation is calculated by minimization of a cost
unction subject to the process model, specified values and oper-
ting constrains:

min
z

J(z) s.t. f (z) = 0, Aoptz = bopt,

zopt min ≤ z ≤ zopt max (4)

here J(z) = p(z)Tz. In most cases p is a vector of fixed prices
elated to feed cost, energy cost and product values.

Values for variables like model parameters, feed conditions
nd other variables, not available for optimization, are specified
sing the linear equality constraints Aoptz = bopt. These variables
re set equal to the reconciled variable, bopt = Aoptzr.

Operating constraints are added as upper and lower bounds
n variables, zopt min and zopt max.
Please cite this article in press as: Lid, T., Skogestad, S., Scaled steady stat
Engineering (2007), doi:10.1016/j.compchemeng.2007.04.003

.4. NLP solver

A NLP solver is used for solving the simulation, data recon-
iliation and optimization problems. In this paper a general NLP
 PRESS
ical Engineering xxx (2007) xxx–xxx 3

olver is required to at least handle the following optimization
roblem definition:

Objective to be minimized J(z)

Linear equality constraints Az = b

Nonlinear equality constraints f (z) = 0

Variable bounds zmin < z < zmax

In addition it is expected to be able to utilize user speci-
ed first-order derivatives of the objective and of the nonlinear
onstraint functions.

Objective first-order derivatives
∂J(z)

∂z

NL constraints first-order derivatives
∂f (z)

∂z

The linearized equality constraints

=
⎡
⎣ ∂f (z)

∂z

A

⎤
⎦ (5)

re used for analysis of the numerical properties of the opti-
ization problem. If the condition number of H is large, then

he problem is said to be ill-conditioned and numerical problems
ay be expected (here large means > 106).
In this paper the solver fmincon from the Matlab Optimiza-

ion Toolbox® is used.

. Modeling framework

.1. Model structure

In the suggested model structure, a process model is a col-
ection of one or more unit models. A unit model describes a
mall part of the process like a flash drum, heater or a reactor.
he boundary of the unit model is selected such that the con-
ection to other unit models is by process streams. A general
nit model, as shown in Fig. 1, can have one or more input and
utput streams, shown as S1 − SN and internal variables shown
s �i. A process stream, connecting two unit models, is simply
set of shared variables describing the properties of the process

tream. A process model with three unit models and seven pro-
ess streams is shown in Fig. 2. Each unit model has a set of
quations fi(z) = 0 and the overall process model is a collection
f equations from these unit models:
e models for effective on-line applications, Computers and Chemical

Fig. 1. Unit model.

dx.doi.org/10.1016/j.compchemeng.2007.04.003
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grouped into two disjoint subsets where arcs connect the vari-
ables and equations. If all equation nodes are connected to only
one variable node and no node is left unmatched, the set of
equations and variables is said to have perfect matching.
Fig. 2. Process model.

he process model, r = f(z), as shown in Eq. (6), is a collection of
nit models where each unit model is represented by equations
ritten as ri = fi(z).
All unit models share the variable vector z. This variable

ector contains variables from all process streams and internal
ariables from all unit models:

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1

S2

...

S7

Θ1

Θ2

Θ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

ariables describing a process stream are typically compo-
ent molar fractions, flow, temperature and pressure. Some
ases may require other variables. For example, in units with
wo-phase streams, enthalpy may replace temperature as a vari-
ble. In this paper process stream variables are selected as

i = [ xT
j Fj Tj Pj ]

T

The unit model internal variables �i, can be heater duty, heat
ransfer coefficient and compressor efficiency.

With this fixed ordering of the variables in the variable vector
, a variable mapping is created. The variable mapping is used
o obtain the values of input and output stream variables and
nternal variables from the variable vector z, within each unit

odel. This requires that the stream number of the input and
utput streams is known within each unit model. The stream
umbers can be passed to the unit model as parameters in the
ctual function call.

The first-order derivatives of the process model are also cal-
ulated on a unit model basis:

∂f (z)

∂z
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂f1(z)

∂z
∂f2(z)

∂z
∂f3(z)

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)
Please cite this article in press as: Lid, T., Skogestad, S., Scaled steady stat
Engineering (2007), doi:10.1016/j.compchemeng.2007.04.003

here ∂fi(z)/∂z is a nfi × nz matrix. The above mentioned vari-
ble mapping is used in the column mapping of the individual
lements in ∂fi(z)/∂z.
 PRESS
ical Engineering xxx (2007) xxx–xxx

.2. Unit models

A unit model describes the behavior of some process unit
r process equipment and is based on equations of mass bal-
nce, energy balance and pressure-flow relations. Even if the
ndividual units may be different, the equations describing their
ehavior is very similar and there are benefits of standardization
f these equations.

The simplest unit model possible is a unit model with one inlet
tream and one outlet stream. The unit model has no holdup, no
eactions, no heat loss or pressure drop. It is visualized as a “pipe
odel” (Fig. 3) and is stated in Eq. (21).
This “pipe model” is of no practical use as a unit model but

orks well as a basic template for other unit models. Some
xamples:

A heater unit model can be made by adding a simple heat input
term Q in the energy balance. The heat input is an internal
variable in the model.
A heat exchanger can be made by combining two pipes. The
energy balance in the two models is modified by adding a heat
term, one negative and one positive. One additional equation
is added in the models describing the heat transfer. This can
be based on log mean temperature difference (LMTD), ε-Ntu
or other.
A CSTR reactor can be made by adding a reaction term, VNTr,
in the pipe model mass balance, where V is the reactor vol-
ume, N the reaction stoichiometric matrix and r is a vector of
reaction rates.
A flash drum can be made as a pipe with two outlet streams,
one vapor flow and one liquid flow. Equations for vapor–liquid
equilibrium (y − K(T, P)x = 0), sum of vapor components,
equal vapor–liquid pressure and temperature have to be added.

The idea in Section 4 is to develop a “pipe model” with good
umerical properties to serve as a template. Other unit models
ill then inherit these properties and only small adjustments will
e necessary.

In formulating models, it is easy to miss an equation. A gen-
ral recommendation or rule in modeling is to use set assignment
nd formally pair equations and variables. Since most variables
ppear in more than one equation this pairing is not unique.
evertheless this rule gives a valuable overview of the model

nd the pairing turns out to be useful in adding proper variable
pecifications and scaling of the variables and equations.

A systematic approach to the equation–variable pairing
s found in Maurya, Rengaswamy, and Venkatasubramanian
2003) and Mah (1990) where the equations and variable are
efined as nodes in a graph. The equations and variables are
e models for effective on-line applications, Computers and Chemical

Fig. 3. Pipe.

dx.doi.org/10.1016/j.compchemeng.2007.04.003
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.3. Initial values

When creating a large process model it is reasonable to start
ith a small part of the process, verify the results, and then add
ore process streams and process units until the total model is
nalized.

In this construction process the variable vector z will vary in
ize and the position of the individual variables in z will change
nd the generation of initial values, z0, will be a tedious task.

A simple solution is to let all unit models generate initial
alues for all unit model internal variables and for variables
elated to unit model exit streams. This may not result in initial
alues close to a solution but it may still be sufficient as a start-
ng value for generation of an improved set of initial values by
imulation. In addition, initial values for feed streams must be
enerated.

In a steady state model, assuming no multiple steady-states,
he initial value may influence convergence properties but has
o influence on the final solution itself. This is different for dif-
erential algebraic (DAE) systems where the initial value affects
he solution and must be a valid solution of the DAE system
t t = 0 (Pantelides, 1988). In this case the method described
bove may be an initial value for solving the DAE system at
= 0.

.4. Scaling

The performance of the NLP solver depends crucially on
ow the problem is formulated and an important issue is proper
caling. Note that the scaling is performed off-line. Thus, the
omputational complexity of the scaling itself is not impor-
ant. Rather, the objective of the scaling is to minimize the
omputation time and robustness for the subsequent on-line
omputations.

An unconstrained optimization problem is said to be poorly
caled if a change in x in one direction produces a much larger
hange in f = f(x) than in another direction (Nocedal & Wright,
999). The measure of poor scaling is not so clear in constrained
ptimization. Some of the methods are said to be scaling invari-
nt, like the SQP algorithm with BFGS update of the Hessian
as used in this paper), but they are still influenced by scaling
Biegler & Cuthrell, 1985). This is related to two issues. First,
he initial value of the Hessian is normally set equal to the iden-
ity matrix. If the true Hessian of the scaled problem is closer to
he identity matrix than the unscaled model this should result in
n improved estimate of the Hessian and improved performance
f the algorithm. Second, a poorly scaled model is likely to gen-
rate larger rounding errors which may degrade the performance
f the algorithm.

Scaling methods used within or as a part of a NLP solver are
n general based on properties of the estimated Hessian (Roma,
005; Zhu, 2005). The scaling methods related to the process
odel or constraints are based on residuals, variable values and
Please cite this article in press as: Lid, T., Skogestad, S., Scaled steady stat
Engineering (2007), doi:10.1016/j.compchemeng.2007.04.003

rst-order derivatives (Jacobian).
A scaled process model is written as

˜ (z̃) = 0 (9)

p

u
s
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˜ sz̃ = b̃ (10)

here the scaled variable z̃ = S−1
v z. The scaled model f̃ (z̃) =

nf (Svz̃) and for the scaled specification Ãs = SlAs and b̃ =
lbs. Sl, Sn and Sv are fixed diagonal scaling matrices.

The scaled objective function J̃(z̃) = SoJ(Svz̃) where So is a
xed factor. Three methods for scaling found in literature are in

he following sections.

.4.1. Method 1
Scaling based on variable bounds and initial equation residual

Biegler & Cuthrell, 1985):

vjj = 2aj where aj = int[log2(zmaxi − zmini
)] (11)

nii = 2−ai where ai = int[log2(|f (z0)|i)] (12)

lii = 2−ai where ai = int[log2(|Asz0 − bs|i)] (13)

here z0 is the initial value. The equation scaling factor is limited
o some maximum value in case the equation residual is close
o zero. More details and suggested improvements can be found
n the reference.

.4.2. Method 2
Scaling based on first-order derivatives (Kelly, 2004):

=
⎡
⎣ ∂f (z0)

∂z

As

⎤
⎦ (14)

vjj = ||Cj||−1
2 where j = 1, . . . , nz (15)

nii = ||Ci||−1
2 where i = 1, . . . , nf (16)

lii = ||Ci||−1
2 where j = nf + 1, . . . , nf + ns (17)

here Cj and Ci denotes the columns and rows of C, respec-
ively. Other norms like the 1-norm (||·||1) or the infinity norm
||·||∞) may also be used.

.4.3. Method 3
Scaling based on order of magnitude (Rodriguez-Toral,

orton, & Mitchell, 2001):

vjj = 10−aj where aj = int[log10(z0)j] (18)

The equation scaling factor is the reciprocal of an integer
ower of 10 of the value of a given term or group of terms,
ormally related to the scale factor of a relevant variable. As
n example, let a typical value of a mass balance term xiF be
.5 × 0.3 = 0.15. The scaling factor for the mass balance equa-
ion is then 10(−int(log10(0.15))) = 10. The objective scaling factor
s divided by an integer power of 10 close to its typical value.

.4.4. Method 4
New proposed scaling method based on variable and equation
e models for effective on-line applications, Computers and Chemical

airing.
This new scaling method is similar to method number 3 but

ses to a larger extent the structure of the model. The equation
caling factors are not based on the constraint term values but on

dx.doi.org/10.1016/j.compchemeng.2007.04.003
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alues of the first-order derivatives matrix. The proposed scaling
rocedure is

. Make a pairing of equations and variables:
The equation and variable pairing is given in the matrix P

where P(i, j) = 1 if variable number j is paired with equation
number i. All other elements in P are zero.

The equation and variable pairing for a unit model fi(z) is
given in a matrix Pni of dimension nfi × nz and variable pair-
ing for the specifications Asz = b is stated in Ps of dimension
ns × nz.

. Scale all variables such that the scaled variable has a value
close to one.

The variable scaling matrix Sv(j, j) = z̄j where z̄j is a
typical value of variable number j. The initial value, z0, is
used in this case.

. Scale all equations such that the absolute value of the ele-
ments of the first-order derivatives, corresponding to the
equation and variable pairing, is close to one:

Sni =
∣∣∣∣∣
[
I ×

(
∂fi(z)

∂z
SvP

T
ni

)]−1
∣∣∣∣∣ (19)

Sl = |[I × (AsSvP
T
l )]

−1| (20)

where × denotes element by element multiplication so that
Sni and Sl are diagonal matrices.

. The scaling factor for the objective function S0 is selected
such that the largest element of the first-order derivative J̃(z̃)
has an absolute value close to one.

. If any of the elements in the matrix H̃ = [f̃ (z̃)TÃT
s ]

T
have

large absolute values (where large is >100) then the equation
and variable pairing or variable scaling should be revised.
A possible solution is to pair the equation with the variable
corresponding to the large value in H̃ .

In order to illustrate the idea of this scaling strategy, assume
hat the variables and equations are reordered such that the ele-

ents along the diagonal of the first-order derivatives correspond
o the selected equation–variable pairing. The diagonal elements
f this matrix are now all equal to one and the off-diagonal ele-
ents are preferably smaller than one. With this scaling the set of

onstraints will be balanced where a change in one variable will
esult in a change of same magnitude in the equation residual.

The condition number of H̃ is used as a measure of improved
caling. This measure is based on the definition of poor scaling
n the unconstrained case where a change in the variable vector
in one direction produces a much larger change in the residual
= f(z) than in another direction.

A process model with a large condition number of the first-
rder derivatives will have larger rounding errors. If the matrix
f first-order derivatives ∂f/∂z has a high condition number a
mall change in �z, caused by rounding errors, may cause a
Please cite this article in press as: Lid, T., Skogestad, S., Scaled steady stat
Engineering (2007), doi:10.1016/j.compchemeng.2007.04.003

arge change in �r.
The objective function scaling factor, So, has a large influence

n the solution path of the solver during the iterations. A large
caling factor gives large deviations in the model equations in

T
b
i
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he solution path and rapid decrease in the objective. In case of
umerical problems, like temporarily negative values of flows
nd compositions, the scaling factor of the objective function
hould be reduced.

. Case study 1: “Pipe model”

A simple model of a pipe, as described in Section 3.2, demon-
trates the use of the suggested modeling procedures. This model
as two process streams, one inlet stream and one outlet stream.
he fluid is a mixture of two components, propane and butane

NC = 2). The variables are the composition, flow, temperature
nd pressure of the two process streams. The variable vector
rganized as zT = [ ST

1 ST
2 ] where ST

i = [ xT
i Fi Ti Pi ].

here are no internal variables in this model.
The equations of the pipe model are written as

F1x1 − F2x2 = 0, Σx2 − 1 = 0,

F1h(T1, x1) − F2h(T2, x2) = 0, P1 − P2 = 0 (21)

hese equations represent the mass balance, mole fraction sum-
ation, energy balance and pressure-flow relation (with no

ressure drop in this case).
The pipe model is in this case unit model number 1 and is in

hort-hand notation written as f1(z) = 0.
The number of variables in the variable vector z is

(NC + 3) = 10, with NC = 2 and the number of equations in
he pipe model is NC + 3 = 5. In order to solve the model equa-
ions, as in the simulation case, NC + 3 = 5 variables have to
e specified. In this case the inlet stream molar fraction, flow,
emperature and outlet stream pressure are specified:

1 = xs (22)

1 = Fs (23)

1 = Ts (24)

2 = Ps (25)

he specifications are implemented as linear constrains Asz = bs,
here As has nz columns and ns = 5 rows, one row for each

pecification. As is written as

s =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(26)

he values of the specific variables are collected in bs and bT
s =

xT
s Fs Ts Ps ]. The specification values Fs = 0.27 kmol/s,

s = 285 K, Ps = 30 bar and xs = [ 0.5 0.5 ]T which gives bs =
0.5 0.5 0.27 285 30 ]T.
e models for effective on-line applications, Computers and Chemical

The selected equation–variable pairings are listed in Table 2.
he equation–variable pairing is not unique and other valid com-
inations exist. An obvious requirement is that, if an equation
s paired with a variable, this variable must exist in the actual

dx.doi.org/10.1016/j.compchemeng.2007.04.003
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quation. In the pipe model this leaves two choices for pairing of
he outlet stream F2, component balance one (propane) or com-
onent balance two (butane). In this case the recommendation
s to pair F2 with the component balance of the component with
he largest molar fraction. This will in fact simplify the variable
nd equation scaling and remove the need for “extreme” scaling
actors.

The first-order derivatives of the pipe unit model, ∂f1(z)/∂z is
ritten as anf1 × nz matrix wherenf1 is the number of equations

n unit model number 1 and nz is the total number of variables
n the process model.

∂f1(z)

∂z
=

⎡
⎢⎢⎢⎢⎢⎣

F1 0 x1(1) 0 0

0 F1 x1(2) 0 0

1 1 0 0 0

F1
∂h(x1, T1)

x1(1)
F1

∂h(x1, T1)

x1(2)
h(x1, T1) F1

∂h(x1, T1)

T1
0 −

0 0 0 0 1

A simple verification of the model equations and calculation
f first-order derivatives is recommended:

Compare ∂fi(z)/∂z with numerically calculated derivatives.

H =
⎡
⎣ ∂f (z)

∂z

As

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.27 0 0.50

0 0.27 0.50

0 0 0

9203 10190 35913

0 0 0

· · · · · · · · ·
1 0 0

0 1 0

0 0 1

0 0 0
Please cite this article in press as: Lid, T., Skogestad, S., Scaled steady stat
Engineering (2007), doi:10.1016/j.compchemeng.2007.04.003

able 2
quation–variable assignment for the pipe unit model

escription Equation Pairing

nit model MB Eq. (1) x1(1)F1 − x2(1)F2 = 0 F2

nit model MB Eq. (2) x1(2)F1 − x2(2)F2 = 0 x2(2)

um of compositions
∑

x2 − 1 = 0 x2(1)

nergy balance F1h(T1, x1) − F2h(T2, x2) = 0 T2

ressure-flow relation P1 − P2 = 0 P1

pecification no. 1 A(1)z = b1 x1(1)

pecification no. 2 A(2)z = b2 x2(2)

pecification no. 3 A(3)z = b3 F1

pecification no. 4 A(4)z = b4 T1

pecification no. 5 A(5)z = b5 P2

0 0 0 0

o
T
a
i

a

f
f

v
a
d

a
T
a
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F2 0 −x2(1) 0 0

0 −F2 −x2(2) 0 0

0 0 0 0 0

h(x2, T2)

x2(1)
−F2

∂h(x2, T2)

x2(2)
−h(x2, T2) −F2

∂h(x2, T2)

T0
0

0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎦ (27)

Verify that equations are linearly independent. The rank of
the first-order derivative ∂fi(z)/∂z must equal the number of
equations nfi .
Specifications added in A (ref. Eqs. (1)–(4)) must be lin-
early independent of any unit model equation, i.e. the matrix

[ ∂fi(z)T/∂z AT ]
T

must have full rank.

he matrix of the first-order derivatives of the specifications and
ipe model, where ∂f(z)/∂z = ∂f1(z)/∂z, are shown in Eq. (28):

0 −0.27 0 −0.50 0 0

0 0 −0.27 −0.50 0 0

0 1 1 0 0 0

0 −9203 −10190 −35913 −34 0

1 0 0 0 0 −1

· · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

The condition number of H is 8.13 × 107. The main cause
f the high condition number is the energy balance equation.
his equation has large values compared to the other equation
nd changes in the paired variable, T2, has the least significant
nfluence on the equation residual.

In order to reduce the condition number, the model is scaled
ccording to the proposed method (Section 3.4.4).

The matrix of equation and variable pairing, P, is derived
rom Table 2 and the pairing is shown in Eq. (28) using bold
ont.

The values of flow, temperature and pressure
ariables are approximately 0.25 kmol/s, 280 K
nd 30 bar and the variable scaling matrix Sv =
iag([ 1 1 0.25 280 30 1 1 0.25 280 30 ]).
e models for effective on-line applications, Computers and Chemical

The equation scaling matrices Sn and Sl are computed
ccording to step 3 in the proposed scaling procedure.
his gives Sn = diag([ 10.0 2.0 1.0 0.00056 0.033 ])
nd Sl = diag([ 1.0 1.0 4.0 0.0036 0.033 ]).

dx.doi.org/10.1016/j.compchemeng.2007.04.003
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w

H

.75 0 0 −5.0 0 −1.0 0 0

.15 0 0 0 −1.0 −0.3 0 0

0 0 0 1.0 1.0 0 0 0

.48 0.39 0 −0.91 −1.0 −0.48 −1.0 0

0 0 1.0 0 0 0 0 −1.0

· · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

.0 0 0 0 0 0 0 0

0 1.0 0 0 0 0 0 0

0 0 0 0 0 0 0 1.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)
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The matrix of specifications and first-order derivatives are
ritten as:

˜ =

⎡
⎢⎣ ∂̃f (z)

∂z

Ãs

⎤
⎥⎦ =

[
Sn 0

0 Sl

] ⎡
⎣ ∂f (z)

∂z

As

⎤
⎦ Sv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.0 0 1

0 0.4 0

0 0

0.37 0.41 0

0 0

· · · · · · ·
1.0 0

0 1.0

0 0 1

0 0

0 0

s a result of the applied scaling the condition number of H is
educed from 8.1 × 107 to 6.8.

The pipe model is solved using Matlabs fsolve and
mincon. fsolve is based on a nonlinear least squares
lgorithm and fmincon is a SQP algorithm with BFGS
essian update (Matlab, 2000). The initial values z0 =
0.7 0.3 0.2 278 20 0.4 0.6 0.5 270 25 ]T is
sed as a starting point for both solvers.

The unscaled model was solved using 14 iterations using
solve and the scaled model was solved using 4 iterations. The
caled and unsealed model where both solved in three iterations
sing fmincon and scaling does not seem to have any signifi-
ant effect in this case. Still, when a unit model becomes part of a
arger model the condition number will increase further and the
ffect of scaling will be significant. To compare, the three scal-
ng methods presented in Section 3.4 where also applied to the
ipe model. The results are summarized in Table 3. The condi-
ion number for the unsealed model was 8.1 × 107. The smallest
ondition number for the scaled model, 6.8, was obtained using
caling method 4. Note that fsolve did not converge to a valid
olution using scaling method 2. The solver terminated (suc-
essfully) in 3 iterations at a solution where there was a 2.5 K
ifference in inlet and outlet temperature. The scaled variables
Please cite this article in press as: Lid, T., Skogestad, S., Scaled steady stat
Engineering (2007), doi:10.1016/j.compchemeng.2007.04.003

ad values in the order of 1 × 104 which may have caused the
ailure of convergence.

able 3
omparison of scaling procedures

caling Iterations Condition number of H̃

fsolve fmincon

nscaled 14 3 8.1 × 107

ethod 1 5 3 4.3 × 103

ethod 2 * 3 3.7 × 106

ethod 3 5 3 30
ethod 4 4 3 6.8

* Failed to converge.

t
2
e

. Case study 2: flash process with preheating

A simple flash process is here studied in order to demonstrate
he use of the above modeling guidelines in simulation, data
econciliation and optimization. The process, shown in Fig. 4,
as three unit models, a heat exchanger, a heater and a flash
rum. The three unit models are connected using six process
treams.

The model has three chemical components, propane, butane
nd pentane (NC = 3).

The process operating constraints are S1 (flow) < 0.3 kmol/s,
4 (pressure) > 28 bar and <40 bar, Hi (heat duty) < 5500 kW, S3
temperature) < 485 K and S6 (propane content) < 0.2 mol/mol.
he feed and energy price are respectively 100$/kmol and
.001$/kW and the product price are 50$/kmol for vapor product
nd 200$/kmol for liquid product.

The variables in the model include 6(NC + 3) = 36 process
tream variables (6(NC + 3)), two internal variables in the heat
xchanger (duty and heat transfer coefficient) and one internal
ariable in the heater (duty). This gives a total number of nz = 39
ariables.
e models for effective on-line applications, Computers and Chemical

The heat exchanger unit model has 2NC + 7 = 13 equations,
he heater has NC + 3 = 6 equations and the flash drum has
NC + 6 = 12 equations. This gives the total number of nf = 31
quations. The number of degrees of freedom is then nz − nf = 8.

Fig. 4. Flash process.

dx.doi.org/10.1016/j.compchemeng.2007.04.003
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Table 4
Results for flash process

Variables y σ p zmin zmax Initial, z0 Simulation, zs Reconciliation, zr Optimization, zopt

F1 0.20 0.025 100 0.30 0.20 0.25 0.20 0.28
T1 289.92 0.250 280.00 280.00 289.97 289.97
T2 308.06 0.250 320.00 301.77 308.02 302.78
T3 474.53 0.250 485.00 370.00 480.00 474.51 438.52
F4 0.11 0.025 −50 0.10 0.14 0.10 0.09
P4 31.45 0.500 28.00 40.00 30.00 31.50 30.22 28.00
T6 418.29 0.250 400.00 417.18 418.36 405.81
x6(l) 0.15 0.005 0.20 0.20 0.18 0.15 0.20
F6 0.10 0.025 −200 0.20 0.11 0.10 0.20
T6 383.90 0.250 380.00 369.75 383.88 387.92
UHX 0.010 0.015 0.010 0.010
Q 2
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opt(z)

There are 10 measurements: the propane composition, three
ows, five temperatures and pressure. The measurements are
hown on the figure using the symbols x1, F, T and P. The mea-
urements are generated by adding normal distributed noise to
simulation result, y = Uzy + ey where ey = N(0, σ).

In the simulation problem, as defined by Eq. (1), eight vari-
bles have to be specified. In this case feed composition (three
ariables), feed flow, feed temperature, heater outlet tempera-
ure, vapor product pressure and heat transfer coefficient are
pecified.

In data reconciliation, as defined by Eq. (3), only the feed
omposition is specified.

The objective of operation is to maximize the profit within
onstraints. In process optimization, as defined by Eq. (4), feed
omposition, feed temperature and the heat transfer coefficient
re specified. The specification values are set equal to the rec-
nciled values. Table 4 shows the optimization results. Only
ariables related to measurements and constraints are shown.

The optimal solution has three active constraints (shown as
old values in Table 4): minimum pressure (28.00), maximum
iquid product propane content (0.20) and maximum heater duty
5500). The operational profit was increased from a starting point
f 0.2$/s (reconciled) to a optimal of 9.8$/s.

To compare the results of solving the scaled (method 4)
nd unscaled data reconciliation problem, the relative estima-
ion error, d = ∑ny |(Uz − y) /y |, is used. Ten different
Please cite this article in press as: Lid, T., Skogestad, S., Scaled steady stat
Engineering (2007), doi:10.1016/j.compchemeng.2007.04.003

est j=1 r j j

ets of normal distributed measurement error were generated
nd for each set the unscaled and scaled data reconciliation and
ptimization problem was solved.

m
o
n

able 5
caling methods applied to flash process

Condition no. H̃ Number of iterations

Simulation Reconciliation

nscaled 5.0E+09 5 23
ethod 1 4.8E+05 4 14
ethod 2 7.0E+09 4 9
ethod 3 4.0E+03 4 28
ethod 4 5.1E+01 4 12
000 6264 4856 5500

2.48 −0.206 −9.848

In 8 of 10 runs the unscaled data reconciliation problem
onverges to a local optimum where dest ≈ 3. In these runs the
caled problem converges with an average of 10 iterations and
n average estimation error dest ≈ 0.3. In the other two runs, the
caled and unscaled problem converges to the same solution.
n this case the unscaled problem converged using 45 and 50
terations.

The optimization problem was solved using the reconciled
alues as described above. In 10 of 10 runs the scaled optimiza-
ion problem converged to the optimal solution with pressure,
roduct composition and heater duty as active constraints. In 10
f 10 runs, the unscaled optimization problem failed to converge
o the optimal solution and converged to a solution where only
he product composition constraint was active. In this case the
verage objective was Jopt ≈ −9.3.

To compare the four scaling methods presented in Section
.4 the simulation, data reconciliation and optimization problem
s solved for the flash process. The results are summarized in
able 5.

A valid solution of the data reconciliation and optimization
roblem are found using scaling methods 1, 3 and 4. A com-
on property of these methods is a reduction of the condition

umber of the constraint first-order derivatives, H̃ . The small-
st condition number (5.1) is achieved using method 4 which
lso solves these problems using the fewest number of iter-
tions. The condition number of a model increases with the
e models for effective on-line applications, Computers and Chemical

odel size and large models will benefit more from the use
f scaling methods that gives a large reduction in condition
umber.

Active constraints

Optimization dest Jopt

11 2.99 −9.34 x6(1)
7 0.30 −9.85 P4, x6(1), QHT

3 3.49 −5.84 QHT

10 0.30 −9.85 P4, x6(1), QHT

5 0.30 −9.85 P4, x6(1), QHT

dx.doi.org/10.1016/j.compchemeng.2007.04.003
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. Discussion

Multiple steady states are not handled by this method. Rather,
he scaling is performed at the desired steady-state.

Nonlinear inequality constraints can be added in this frame-
ork by introduction of slack variables according to Luenberger

1984). As a simple example we have that g(x) < c is equivalent
o g(x) − v = 0, v < c where v is a slack variable.

The simplified thermodynamic relations used in the case stud-
es are all explicit functions and have explicit functions for their
rst-order derivatives. For example, specific enthalpy is calcu-

ated as h = CpxT. The specific heat of a component, Cpi, is a
xed value for the liquid phase and a function of temperature
or the vapor phase (sixth order polynomial fitted to data from
IST (2005)). Vapor–liquid equilibrium is based on Raoult’s

aw and Antoine vapor pressure with parameters from the same
ource.

The described unit model structure is well suited for object
riented programming. A model written in C++ or similar pro-
ramming language, most commonly used in applications, will
e far more effective than the Matlab code used in the examples.

The use of sparse matrices and sparse math in the model and
olver code will also give a significant reduction in computa-
ional load. In the flash process case study the matrix H has
521 elements of which only 169 are non-zero.

. Conclusions

A procedure for building steady state models has been pre-
ented. The procedure is based on unit models which interact
hrough a shared variable vector. The unit models and speci-
cations form an “open equation” set, well suited as nonlinear
onstrains in an optimization problem. In the suggested structure
ach unit model can be developed, tested and scaled before it is
dded to the overall process model. This simplifies the modeling
ork and saves a lot of troubleshooting.
The scaling procedure, which is applied at unit model level,

esults in a significant improvement in the overall numerical
roperties of the model.

The numerical examples of the flash process optimization
hows that proper scaling reduces the number of iterations used
or solving each case. More important though, it makes the
esults more reliable. In both data reconciliation and optimiza-
ion, the solver failed in finding the optimal solution when using
n unsealed model.
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