
Elsevier Editorial System(tm) for Computers & Chemical Engineering

Manuscript Draft

Manuscript Number:

Title: Effective steady-state models for simulation, data reconciliation and optimization

Article Type: Special Issue: Reklaitis 65th Birthday

Keywords: Optimization, Data Reconciliation,Simulation, Unit Models, Scaling

Corresponding Author: Mr. Lid Tore,

Corresponding Author's Institution: Norwegian Univ. of Science and Technology (NTNU)

First Author: Lid Tore

Order of Authors: Lid Tore; Sigurd Skogestad

Abstract: Applications for on-line data reconciliation and optimization are required to be efficient and
numerically robust. The models in these applications are seldom changed and the same optimization
problem is solved thousands of times with only minor changes in the parameters. This paper describes a
suitable modeling framework for this type of applications that will simplify the creation of new models, makes
the application more robust and save time used for fighting numerical difficulties. The model is based on a
unit model structure where first-order derivatives, scaling and initial values are properties of the unit model.
A new scaling procedure is proposed which is based on equation and variable pairing. The odeling
framework and the use of the proposed scaling procedure are demonstrated in two case studies; simulation
of a simple pipe model and simulation, data reconciliation and optimization of a flash process.

Cover Letter:

Paper submitted by

Tore Lid
Statoil Mongstad
5954 Mongstad

and

Sigurd Skogestad
Department of Chemical Engineering
Norwegian Univ. of Science and Technology (NTNU)
Trondheim, Norway

Title
Effective steady-state models for simulation, data reconciliation and optimization

* Cover Letter

Effective steady-state models for simulation,
data reconciliation and optimization

Tore Lid
Statoil Mongstad
5954 Mongstad

Sigurd Skogestad ∗

Department of Chemical Engineering
Norwegian Univ. of Science and Technology (NTNU)

Trondheim, Norway

June 19, 2006

∗To whom all correspondence should be addressed (e-mail:skoge@chemeng.ntnu.no)

* Manuscript

Abstract

Applications for on-line data reconciliation and optimization are required to
be efficient and numerically robust. The models in these applications are
seldom changed and the same optimization problem is solved thousands of
times with only minor changes in the parameters. This paper describes a
suitable modeling framework for this type of applications that will simplify
the creation of new models, makes the application more robust and save
time used for fighting numerical difficulties. The model is based on a unit
model structure where first-order derivatives, scaling and initial values are
properties of the unit model. A new scaling procedure is proposed which is
based on equation and variable pairing. The modeling framework and the
use of the proposed scaling procedure are demonstrated in two case studies;
simulation of a simple pipe model and simulation, data reconciliation and
optimization of a flash process.

1 Introduction

1. The typical process modeling tool is based on a unit model structure
libraries, where unit models like heaters, flash drums and heat exchangers are
connected with process streams ((Westerberg, Hutcison, Motard & Winter
1979)). The model equations are solved sequentially or simultaneously.

Most chemical engineers prefer tools like PRO/II from SIMSCI and Hysys
from AspenTech. This may be due to a extensive unit model library, a high
quality user interface and a sequential solver that solves one unit model at
a time. In this environment it is simple to locate a problem (like a non-
converging unit model) and it is simple to do changes to the model on the
worksheet level. On the other hand, sequential solvers are ineffective for solv-
ing optimization problems like data reconciliation and process optimization
problems.

For optimization problems, as well as for simulation of more complex processes,
with energy and mass recycles, simultaneous solvers are preferred. Examples
of tools for process modeling using simultaneous solvers are gProms from
PSE and ASCEND from Carnegie Mellon University; see (Marquardt 1996)
for an overview of these tools and others.

The strength of the generic modeling tools mentioned above are the mod-
eling capability, i.e. creation of new models, but this is rarely needed in
on-line optimization applications. On-line optimization of a process plant is
typically separated into three main tasks; estimation of current state (data
reconciliation), optimization and implementation (White 1997). Models for
on-line applications should be derived with the following in mind:

• A optimization problem may be solved 1000 times a year with only
small changes in objective functions and specifications and the model
itself is only rarely changed. Changes in the model is only required
when the plant is modified. This may be once every two to ten years.

• The execution of the optimizer is often automated and is generally not
monitored by modeling experts. In this case the convergence properties
of the solver and model must be highly robust.

• The optimizer must have data exchange interfaces with the control and
process planning systems. It is therefore often run on computers closely
connected to the control system with limited access for changes.

In summary, the requirements for an on-line application are: a model with
no overhead (unused functionality) to save computation time, an effective

1

and robust solver and simple interfaces to other systems for data transfer.
The actual application is typically ”tailor made” and programmed in some
object oriented programming language (C++ or similar).

This paper demonstrates a modeling procedure for this type of on-line appli-
cations. Our experience is that too much time in such projects is spent on
model errors and numerical difficulties and too little time on result analysis.
This modeling guideline will hopefully improve this. The models are based
on a unit model structure and solved simultaneously using a general NLP
(non-linear programming) solver. The equations and variables are organized
such that the same process model is used for simulation, data reconciliation
and economical optimization of the process operation.

Model residuals, first order derivatives of the models, scaling factors and
initial values, are properties of the unit model. The model equations and
numerical properties of each unit model is verified before it is added to the
process model. The unit model equations are standardized to reduce the
possibility of errors and simplify the modeling work. For example, all mass
balances should have the same structure, similar scaling and same engineering
units. This simplifies the development of new unit models and reduces the
possibility of errors.

The examples given in this paper are simple, but the procedure has been
applied industrially on a crude unit pre-heater train (Lid, Skogestad & Strand
2002) where the resulting on-line application is still operating after several
years. It has also successfully been applied to a naphtha reformer model with
more than 500 equations and variables.

The model representation in this paper is very simple and a comprehensive
definition, more suited for commercial use, can be found in (Bogusch &
Marquardt 1995)

In this paper all models are steady state, which is suitable for most process
plants with continuous operation. In the case of processes with dynamic
behavior, like batch processes or processes containing changing holdups, the
use of a dynamic model should be considered.

The most important notation is summarized in table 1.

2

Description Dimension
z process model variables nz × 1
z̃ scaled process model variables nz × 1
nz number of process model variables
f process model equations nf × 1

f̃ scaled process model equations nf × 1
r residual vector nf × 1
nf number of process model equations
J objective to be minimized
y measurement vector ny × 1
Q measurement weighting matrix ny × ny

U measurement incident matrix ny × nz

Pn equation and variable pairing matrix nf × nz

Ps equation and variable pairing matrix ns × nz

ny number of measurements
As fixed values matrix ns × nz

bs vector of fixed values ns × 1
ns number of specified variables
Ar fixed values matrix nr × nz

br vector of fixed values nr × 1
nr number of specified variables
Aopt fixed values matrix nopt × nz

bopt vector of fixed values nopt × 1
nopt number of specified variables
z model variables nz × 1
zs simulation result nz × 1
zr data reconciliation result nz × 1
zopt optimization result nz × 1
z0 initial value nz × 1
p cost vector nz × 1
Sn nonlinear equations scaling matrix nf × nf

Sl linear equations scaling matrix ns × ns

Sv variable scaling matrix nz × nz

So objective scaling factor
H linearized equality constraints

H̃ scaled linearized equality constraints
dest Estimation error
Init. initial values
Sim. simulation results
Rec. data reconciliation results
Opt. optimization results

Table 1: Nomenclature3

2 Simulation, data reconciliation and opti-

mization problems

This section defines the simulation, data reconciliation and optimization
problems considered in this work.

All the above problems use a nonlinear steady state model of the process
incorporated as a set of nonlinear equality constraints. The model routine
returns a residual vector r = f(z) as a response to the NLP solver call. If z∗

is a solution to the optimization problem, then the process model equations
satisfy f(z∗) = 0.

If the value of one or more variable is known its value may be specified by a
row in a set of linear equality constraints Az = b. Each row in A corresponds
to a specification where the value of z(j) is specified to equal b(i). For each
specification i the matrix A has a row A(i) with a single nonzero element
A(i, j) = 1

The number of equation in the process model is expected to be less than the
number of variables, i.e. nf < nz. The difference nf − nz equals the number
of degrees of freedom in the model.

2.1 Simulation

In the simulation case ns = nz − nf specifications are added in As such that
there are zero degrees of freedom. The simulation problem is formally defined
as

min
z Js(z)

s.t. f(z) = 0

Asz = bs

(1)

where Js(z) = 0. In this case with no degrees of freedom the objective
function has no influence on the solution and is simply set equal to zero. The
specifications in Asz = bs must be selected such that there are no dependent
equations in f(z) and As.

4

2.2 Data reconciliation

Data reconciliation is used to estimate the actual condition of the process
and is obtained as the solution of

min
z J(z)

s.t. f(z) = 0

Arz = br

zr min ≤ z ≤ zr max

(2)

where J = (y − Uz)TQ(y − Uz). All ny measurements are collected in the
measurement vector y. The matrix U gives a mapping of the variables z into
the measurements where Uz represents the estimated value of the measure-
ments y. The matrix U has ny rows and in each row one nonzero value, equal
to one, in element U(i, j) where variable j correspond to measurement i in
the measurement vector y.

The diagonal weighting matrix Q has elements Q(i, i) equal to 1/σ(i)2, where
σ(i)2 is the variance of the measurement noise of measurement number i.

Minimizing the selected objective function has the same solution as maximiz-
ing the Gaussian frequency function,

∑
i fi = 1/(σ(i)

√
2π) exp(−0.5(y(i) −

z(i))2/σ(i)2), which results in a least squares or maximum likelihood estimate
of the process state. More about this and other objective functions can be
found in (Tjoa & Biegler 1991) and (Chen, Pike, Hertwig & Hopper 1998).

Upper and lower bounds on variables are used to limit the solution to accept-
able values. Typically all values related to flows, temperatures and pressures
must satisfy z(j) ≥ 0.

If the value of a variable is known it can be specified using the linear con-
straints.

The variables must be observable based on the measured values and the
process model (Stanley & Mah 1981). A minimal requirement is that the
number of measurements satisfies ny > nz −nf −nr, where nr is the number
of rows in Ar. If some variables are not observable then measurements must
be added or the actual variable value must be specified.

5

2.3 Optimization

Optimal operation is calculated by minimization of a cost function subject
to the process model, specified values and operating constrains.

min
z J(z)

s.t. f(z) = 0

Aoptz = bopt

zopt min ≤ z ≤ zopt max

(3)

where J(z) = p(z)Tz. In most cases p is a vector of fixed prices related to
feed cost, energy cost and product values.

Values for variables like model parameters, feed conditions and other vari-
ables, not available for optimization, are specified using the linear equality
constraints Aoptz = bopt. These variables are set equal to the reconciled
variable, bopt = Aoptzr.

Operating constraints are added as upper and lower bounds on variables,
zopt min and zopt max.

2.4 NLP Solver

A NLP solver is used for solving the simulation, data reconciliation and
optimization problems. In this paper a general NLP solver is required to at
least handle the following optimization problem definition:

Objective to be minimized J(z)
Linear equality constraints Az = b
Nonlinear equality constraints f(z) = 0
Variable bounds zmin < z < zmax

In addition it is expected to be able to utilize user specified first order deriv-
atives of the objective and of the nonlinear constraint functions.

Objective first order derivatives ∂J(z)
∂z

NL constraints first order derivatives ∂f(z)
∂z

The linearized equality constraints

H =

[
∂f(z)

∂z

A

]
(4)

6

are used for analysis of the numerical properties of the optimization problem.
If the condition number of H is large, then the problem is said to be ill-
conditioned and numerical problems may be expected (here large means >
106).

In this paper the solver fmincon from the Matlab Optimization ToolboxR© is
used.

3 Modeling framework

3.1 Model structure

In the suggested model structure, a process model is a collection of one or
more unit models. A unit model describes a small part of the process like a
flash drum, heater or a reactor. The boundary of the unit model is selected
such that the connection to other unit models is by process streams. A

S1
S2

SNSn

Sn+2

Sn+1

Θi

Figure 1: UnitModel

general unit model, as shown in figure 1, can have one or more input and
output streams, shown as S1 − SN and internal variables shown as Θi. A
process stream, connecting two unit models, is simply a set of shared variables
describing the properties of the process stream. A process model with three

S3

S2

Θ1

S4

Θ2 S5

S7

S6

Θ3S1

Figure 2: Process model

unit models and seven process streams is shown in figure 2. Each unit model

7

has a set of equations fi(z) = 0 and the overall process model is a collection
of equations from these unit models.

r = f(z) =

 f1(z)
f2(z)
f3(z)

 (5)

The process model, r = f(z), as shown in equation (5), is a collection of
unit models where each unit model is represented by equations written as
ri = fi(z).

All unit models share the variable vector z. This variable vector contains
variables from all process streams and internal variables from all unit models.

z =



S1

S2
...

S7

Θ1

Θ2

Θ3


(6)

Variables describing a process stream are typically component molar frac-
tions, flow, temperature and pressure. Some cases may require other vari-
ables. For example, in units with two-phase streams, enthalpy may replace
temperature as a variable. In this paper process stream variables are selected
as Si = [xT

j Fj Tj Pj]
T

The unit model internal variables Θi, can be heater duty, heat transfer coef-
ficient and compressor efficiency.

With this fixed ordering of the variables in the variable vector z, a variable
mapping is created. The variable mapping is used to obtain the values of
input and output stream variables and internal variables from the variable
vector z, within each unit model. This requires that the stream number of
the input and output streams is known within each unit model. The stream
numbers can be passed to the unit model as parameters in the actual function
call.

The first order derivatives of the process model are also calculated on a unit
model basis.

∂f(z)

∂z
=

 ∂f1(z)
∂z

∂f2(z)
∂z

∂f3(z)
∂z

 (7)

8

where ∂fi(z)
∂z

is a nfi × nz matrix. The above mentioned variable mapping is

used in the column mapping of the individual elements in ∂fi(z)
∂z

.

3.2 Unit Models

A unit model describes the behavior of some process unit or process equip-
ment and is based on equations of mass balance, energy balance and pressure-
flow relations. Even if the individual units may be different, the equations
describing their behavior is very similar and there are benefits of standard-
ization if these equations.

The simplest unit model possible is a unit model with one inlet stream and
one outlet stream. The unit model has no holdup, no reactions, no heat loss
or pressure drop. It is visualized as a ”pipe model” and is stated in equation
(20).

This ”pipe model” is of no practical use as a unit model but works well as a
basic template for other unit models. Some examples:

• A heater unit model can be made by adding a simple heat input term
Q in the energy balance. The heat input is an internal variable in the
model.

• A heat exchanger can be made by combining two pipes. The energy
balance in the two models is modified by adding a heat term, one
negative and one positive. One additional equation is added in the
models describing the heat transfer. This can be based on LMTD (log
mean temperature difference), ε-Ntu or other.

• A CSTR reactor can be made by adding a reaction term, V NTr, in
the pipe model mass balance, where V is the reactor volume, N is the
reaction stoichiometric matrix and r is a vector of reaction rates.

• A flash drum can be made as a pipe with two outlet streams, one
vapor flow and one liquid flow. Equations for vapor-liquid equilibrium
(y − K(T, P)x = 0), sum of vapor components, equal vapor-liquid
pressure and temperature have to be added.

The idea in section 4 is to develop a ”pipe model” with good numerical
properties to serve as a template. Other unit model will then inherit these
properties and only small adjustments will be necessary.

9

In formulating models, it is easy to miss an equation. A general recommenda-
tion or rule in modeling is to use set assignment and formally pair equations
and variables. Since most variables appear in more than one equation this
pairing is not unique. Nevertheless this rule gives a valuable overview of
the model and the pairing turns out to be useful in adding proper variable
specifications and scaling of the variables and equations.

3.3 Initial values

When creating a large process model it is reasonable to start with a small
part of the process, verify the results, and then add more process streams
and process units until the total model is finalized.

In this construction process the variable vector z will vary in size and the
position of the individual variables in z will change and the generation of
initial values, z0, will be a tedious task.

A simple solution is to let all unit models generate initial values for all unit
model internal variables and for variables related to unit model exit streams.
This may not result in initial values close to a solution but it may still be
sufficient as a starting value for generation of an improved set of initial values
by simulation. In addition, initial values for feed streams must be generated.

3.4 Scaling

The performance of the NLP solver depends crucially on how the problem
is formulated. One important issue is proper scaling. An unconstrained
optimization problem is said to be poorly scaled if a change in x in one
direction produce a much larger change in f = f(x) than in another direction
(Nocedal & Wright 1999).

The measure of poor scaling is not so clear in constrained optimization.
Some of the methods are said to be scaling invariant, like the SQP algorithm
with BFGS update of the Hessian (as used in this paper), but they are still
influenced by scaling (Biegler & Cuthrell 1985). This is related to two issues.
First, the initial value of the Hessian is normally set equal to the identity
matrix. If the true Hessian of the scaled problem is closer to the identity
matrix than the unscaled model this should result in a improved estimate of
the Hessian and improved performance of the algorithm. Second, a poorly
scaled model is likely to generate larger rounding errors which may degrade
the performance of the algorithm.

10

The scaled process model is written as

f̃(z̃) = 0 (8)

Ãsz̃ = b̃ (9)

where the scaled variable z̃ = S−1
v z. The scaled model f̃(z̃) = Snf(Svz̃) and

for the scaled specification Ãs = SlAs and b̃ = Slbs. Sl, Sn and Sv are fixed
diagonal scaling matrices.

The scaled objective function J̃(z̃) = SoJ(Svz̃) where So is a fixed factor.

Three methods for scaling found in literature are:

Method 1. Scaling based on variable bounds and initial equation residual
(Biegler & Cuthrell 1985).

Svjj
= 2aj where aj = int[log2(zmaxi

− zmini
)] (10)

Snii
= 2−ai where ai = int[log2(|f(z0)|i)] (11)

Slii = 2−ai where a =i int[log2(|Asz0 − bs|i)] (12)

where z0 is the initial value. The equation scaling factor is limited to some
maximum value in case the equation residual is close to zero. More details
and suggested improvements in the reference.

Method 2. Scaling based on first order derivatives (Kelly 2004).

C =

[
∂f(z0)

∂z

As

]
(13)

Svjj
= ||Cj||−1

2 where j = 1...nz (14)

Snii
= ||Ci||−1

2 where i = 1...nf (15)

Slii = ||Ci||−1
2 where j = nf + 1...nf + ns (16)

where Cj and Ci denotes the columns and rows of C respectively. Other
norms like the 1-norm (|| · ||1) or the infinity norm (|| · ||∞) may also be used.

Method 3. Scaling based on order of magnitude (Rodriguez-Toral, Morton
& Mitchell 2001).

Svjj
= 10−aj where aj = int[log10(z0)j] (17)

The equation scaling factor is the reciprocal of an integer power of 10 of the
value of a given term or group of terms, normally related to the scale factor
of a relevant variable. As an example, let a typical value of a mass balance
term xiF be 0.5 ·0.3 = 0.15. The scaling factor for the mass balance equation

11

is then 10(−int(log10(0.15))) = 10. The objective scaling factor is divided by a
integer power of 10 close to its typical value.

Method 4. New proposed scaling method based on variable and equation
pairing.

This new scaling method is similar to method number 3 but uses to a larger
extent the structure of the model. The equation scaling factors are not based
on the constraint term values but on values of the first order derivatives
matrix. The proposed scaling procedure is

1. Make a pairing of equations and variables:

The equation and variable pairing is given in the matrix P where
P (i, j) = 1 if variable number j is paired with equation number i.
All other elements in P are zero.

The equation and variable pairing for a unit model fi(z) is given in a
matrix Pni of dimension nfi

× nz and variable pairing for the specifica-
tions Asz = b is stated in Ps of dimension ns × nz.

2. Scale all variables such that the scaled variable has a value close to one

The variable scaling matrix Sv(j, j) = z̄j where z̄j is a typical value of
variable number j. The initial value, z0, is used in this case.

3. Scale all equations such that the absolute value of the elements of
the first order derivatives, corresponding to the equation and variable
pairing, is close to one.

Sni =

∣∣∣∣∣
[
I ×

(
∂fi(z)

∂z
SvP

T

ni

)]−1
∣∣∣∣∣ (18)

Sl =
∣∣∣[I × (AsSvP

T

l)]−1
∣∣∣ (19)

where × denotes element by element multiplication so that Sni and Sl

are diagonal matrices.

4. The scaling factor for the objective function So is selected such that the
largest element of the first order derivative J̃(z̃) has a absolute value
close to one.

5. If any of the elements in the matrix H̃ =
[
f̃(z̃)T ÃT

s

]T

have large ab-

solute values (where large is > 100) then the equation and variable

12

pairing or variable scaling should be revised. A possible solution is to
pair the equation with the variable corresponding to the large value in
H̃.

In order to illustrate the idea of this scaling strategy, assume that the vari-
ables and equations are reordered such that the elements along the diagonal
of the first order derivatives correspond to the selected equation-variable pair-
ing. The diagonal elements of this matrix are now all equal to one and the
off-diagonal elements are preferably smaller than one. With this scaling the
set of constraints will be balanced where a change in one variable will result
in a change of same magnitude in the equation residual.

The condition number of H̃ is used as a measure of improved scaling. This
measure is based on the definition of poor scaling in the unconstrained case
where a change in the variable vector z in one direction produce a much
larger change in the residual r = f(z) than in another direction.

A process model with a large condition number of the first order derivatives
will have larger rounding errors. If the matrix of first order derivatives ∂f

∂z
has

a high condition number a small change in ∆z, caused by rounding errors,
may cause a large change in ∆r.

The objective function scaling factor, So, has a large influence on the solution
path of the solver during the iterations. A large scaling factor gives large
deviations in the model equations in the solution path and rapid decrease
in the objective. In case of numerical problems, like temporarily negative
values of flows and compositions, the scaling factor of the objective function
should be reduced.

4 Case study 1: ”Pipe model”

A simple model of a pipe, as described in section 3.2, demonstrates the use of
the suggested modeling procedures. This model has two process streams, one

S1 S2

Figure 3: Pipe

inlet stream and one outlet stream. The fluid is a mixture of two components,
propane and butane (NC = 2). The variables are the composition, flow,
temperature and pressure of the two process streams. The variable vector

13

organized as zT = [ST
1 ST

2] where ST
i = [xT

i Fi Ti Pi]. There are no internal
variables in this model.

The equations of the pipe model are written as

F1x1 − F2x2 = 0∑
x2 − 1 = 0

F1h(T1, x1)− F2h(T2, x2) = 0

P1 − P2 = 0

(20)

These equations represent the mass balance, mole fraction summation, energy
balance and pressure-flow relation (with no pressure drop in this case).

The pipe model is in this case unit model number 1 and is in short-hand
notation written as f1(z) = 0.

The number of variables in the variable vector z is 2(NC + 3) = 10, with
NC = 2 and the number of equations in the pipe model is NC + 3 = 5. In
order to solve the model equations, as in the simulation case, NC + 3 = 5
variables have to be specified. In this case the inlet stream molar fraction,
flow, temperature and outlet stream pressure are specified.

x1 = xs (21)

F1 = Fs (22)

T1 = Ts (23)

P2 = Ps (24)

The specifications are implemented as linear constrains Asz = bs, where As

has nz columns and ns = 5 rows, one row for each specification. As is written
as

As =


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

 (25)

The values of the specific variables are collected in bs and bT
s = [xT

s Fs Ts Ps].
The specification values Fs = 0.27kmol/s, Ts = 285K, Ps = 30bar and
xs = [0.5 0.5]T which gives bs = [0.5 0.5 0.27 285 30]T

The selected equation-variable pairings are listed in table 2. The equation-
variable pairing is not unique and other valid combinations exist. An obvious
requirement is that, if a equation is paired with a variable, this variable
must exist in the actual equation. In the pipe model this leaves two choices

14

Description Equation Pairing

Unit model MB Eq. 1 x1(1)F1 − x2(1)F2 = 0 F2

Unit model MB Eq. 2 x1(2)F1 − x2(2)F2 = 0 x2(2)
Sum of compositions

∑
x2 − 1 = 0 x2(1)

Energy balance F1h(T1, x1)− F2h(T2, x2) = 0 T2

Pressure-flow rel. P1 − P2 = 0 P1

Specification no. 1 A(1)z = b1 x1(1)
Specification no. 2 A(2)z = b2 x1(2)
Specification no. 3 A(3)z = b3 F1

Specification no. 4 A(4)z = b4 T1

Specification no. 5 A(5)z = b5 P2

Table 2: Equation variable assignment for the pipe unit model

for pairing of the outlet stream F2, component balance one (propane) or
component balance two (butane). In this case the recommendation is to pair
F2 with the component balance of the component with the largest molar
fraction. This will in fact simplify the variable and equation scaling and
remove the need for ”extreme” scaling factors.

The first order derivatives of the pipe unit model,∂f1(z)
∂z

, is written as a nf1×nz

matrix where nf1 is the number of equations in unit model number 1 and nz

the total number of variables in the process model.

∂f1(z)
∂z

=


F1 0 x1(1) 0 0
0 F1 x1(2) 0 0
1 1 0 0 0

F1
∂h(x1,T1)

x1(1)
F1

∂h(x1,T1)
x1(2)

h(x1, T1) F1
∂h(x1,T1)

T1
0

0 0 0 0 1

−F2 0 −x2(1) 0 0
0 −F2 −x2(2) 0 0
0 0 0 0 0

−F2
∂h(x2,T2)

x2(1)
−F2

∂h(x2,T2)
x2(2)

−h(x2, T2) −F2
∂h(x2,T2)

To
0

0 0 0 0 −1



(26)

15

A simple verification of the model equations and calculation of first order
derivatives is recommended.

• Compare ∂fi(z)
∂z

with numerically calculated derivatives.

• Verify that equations are linearly independent. The rank of the first
order derivative ∂fi(z)

∂z
must equal the number of equations nfi

.

• Specifications added in A (ref. equation (1-3)) must be linearly inde-

pendent of any unit model equation. I.e. the matrix [∂fi(z)
∂z

T

AT]T must
have full rank

The matrix of the first order derivatives of the specifications and pipe model,
where ∂f(z)

∂z
= ∂f1(z)

∂z
, are shown in equation (27).

H =

[
∂f(z)

∂z

As

]
=



0.27 0 0.50 0 0 −0.27 0 −0.50 0 0
0 0.27 0.50 0 0 0 −0.27 −0.50 0 0
0 0 0 0 0 1 1 0 0 0

9203 10190 35913 34 0 −9203 −10190 −35913 −34 0
0 0 0 0 1 0 0 0 0 −1. .
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1


(27)

The condition number of H is 8.13 · 107. The main cause of the high condi-
tion number is the energy balance equation. This equation has large values
compared to the other equation and changes in the paired variable, T2, has
the least significant influence on the equation residual.

In order to reduce the condition number, the model is scaled according to
the proposed method (method 4 in section 3.4).

The matrix of equation and variable pairing, P , is derived from table 2 and
the pairing is shown in equation (27) using bold font.

The values of flow, temperature and pressure variables are approximately
0.25kmol/s, 280K and 30bar and the variable scaling matrix
Sv = diag([1 1 0.25 280 30 1 1 0.25 280 30]).

16

The equation scaling matrices Sn and Sl are computed according to step three
in the proposed scaling procedure. This gives Sn = diag([10.0 2.0 1.0 0.000056 0.033])
and Sl = diag([1.0 1.0 4.0 0.0036 0.033]).

The matrix of specifications and first order derivatives are written as:

H̃ =

[
∂̃f(z)

∂z

Ãs

]
=

[
Sn 0
0 Sl

] [
∂f(z)

∂z

As

]
Sv =



2.0 0 1.75 0 0 −5.0 0 −1.0 0 0
0 0.4 0.15 0 0 0 −1.0 −0.3 0 0
0 0 0 0 0 1.0 1.0 0 0 0

0.37 0.41 0.48 0.39 0 −0.91 −1.0 −0.48 −1.0 0
0 0 0 0 1.0 0 0 0 0 −1.0. .

1.0 0 0 0 0 0 0 0 0 0
0 1.0 0 0 0 0 0 0 0 0
0 0 1.0 0 0 0 0 0 0 0
0 0 0 1.0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1.0


(28)

As a result of the applied scaling the condition number of H̃ is reduced from
8.1 · 107 to 6.8.

The pipe model is solved using Matlabs fsolve and fminconin. fsolve is
based on a nonlinear least squares algorithm and fmincon is a SQP algo-
rithm with BFGS Hessian update (Matlab 2000). The initial values z0 =
[0.7 0.3 0.2 278 20 0.4 0.6 0.5 270 25]T is used as a starting point for both
solvers..

The unscaled model was solved using 14 iterations using fsolve and the
scaled model was solved using 4 iterations. The scaled and unscaled model
was both solved in 3 iterations using fmincon and scaling does not seam to
have any significant effect in this case. Still, when a unit model becomes a
part of a larger model the condition number will increase further and the
effect of scaling will be significant. To compare, the three scaling methods
presented in section 3.4 where also applied to the pipe model. The results
are summarized in table 3. The condition number for the unscaled model
was 8.1 · 107. The smallest condition number for the scaled model, 6.8, was
obtained using scaling method 4. Note that fsolve did not converge to a
valid solution using scaling method 2. The solver terminated (successfully)
in 3 iterations at a solution where there was a 2.5K difference in inlet and
outlet temperature. The scaled variables had values in the order of 1 · 104

17

Iterations Condition number of

Scaling fsolve fmincon H̃
Unscaled 14 3 8.1 · 107

Method 1 5 3 4.3 · 103

Method 2 * 3 3.7 · 106

Method 3 5 3 30
Method 4 4 3 6.8

Table 3: Comparison of scaling procedures

which may have caused the failure of convergence.

5 Case study 2: Flash process with preheat-

ing

A simple flash process is here studied in order to demonstrate the use of the
above modeling guidelines in simulation, data reconciliation and optimiza-
tion. The process, shown in figure 4, has three unit models, a heat exchanger,
a heater and a flash drum. The three unit models are connected using six
process streams.

S1(F,T) S2(T) S3(T)

S4(F,P)

S5(T)

S6(x1,F,T)

Q

Q,U

Figure 4: Flash process

The model has three chemical components, propane, butane and pentane
(NC = 3).

The process operating constraints are S1 (flow) < 0.3kmol/s, S4 (pressure)

18

> 28 bar and < 40 bar, H1 (heat duty) < 5500 kW, S3 (temperature) < 485K
and S6 (propane content) < 0.2 mol/mol. The feed and energy price are
respectively 100$/kmol and 0.001$/kW and the product price are 50$/kmol
for vapor product and 200$/kmol for liquid product.

The variables in the model include 6(NC + 3) = 36 process stream variables
(6(NC + 3)), two internal variables in the heat exchanger (duty and heat
transfer coefficient) and one internal variable in the heater (duty). This
gives a total number of nz = 39 variables.

The heat exchanger unit model has 2NC + 7 = 13 equations, the heater has
NC + 3 = 6 equations and the flash drum has 2NC + 6 = 12 equations.
This gives the total number of nf = 31 equations. The number of degrees of
freedom is then nz − nf = 8.

There are ten measurements; the propane composition, three flows, five tem-
peratures and pressure. The measurements are shown on the figure using the
symbols x1, F , T and P . The measurements are generated by adding normal
distributed noise to a simulation result, y = Uzy + ey where ey = N(0, σ).

In the simulation problem, as defined by equation (1), eight variables have to
be specified. In this case feed composition (three variables), feed flow, feed
temperature, heater outlet temperature, vapor product pressure and heat
transfer coefficient are specified.

In data reconciliation, as defined by equation (2), only the feed composition
is specified.

The objective of operation is to maximize the profit within constrains. In
process optimization, as defined by equation (3), feed composition, feed tem-
perature and the heat transfer coefficient are specified. The specification
values are set equal to the reconciled values. Table 4 shows the optimization
results. Only variables related to measurements and constraints are shown.

The optimal solution has three active constraints; minimum pressure (28.00),
maximum liquid product propane content (0.20) and maximum heater duty
(5500). The operational profit was increased from a starting point of 0.2$/s
(reconciled) to a optimal of 9.8$/s.

To compare the results of solving the scaled (method 4) and unscaled data
reconciliation problem, the relative estimation error, dest = Σ

ny

j=1|((Uzr −
y)j/yj|, is used. Ten different sets of normal distributed measurement error
was generated and for each set the unscaled and scaled data reconciliation
and optimization problem was solved.

In eight of ten runs the unscaled data reconciliation problem converges in

19

Init. Sim. Rec. Opt.
Var. y σ p zmin zmax z0 zs zr zopt

F1 0.20 0.025 100 0.30 0.20 0.25 0.20 0.28
T1 289.92 0.250 280.00 280.00 289.97 289.97
T2 308.06 0.250 320.00 301.77 308.02 302.78
T3 474.53 0.250 485.00 370.00 480.00 474.51 438.52
F4 0.11 0.025 -50 0.10 0.14 0.10 0.09
P4 31.45 0.500 28.00 40.00 30.00 31.50 30.22 28.00
T5 418.29 0.250 400.00 417.18 418.36 405.81
x6(1) 0.15 0.005 0.20 0.20 0.18 0.15 0.20
F6 0.10 0.025 -200 0.20 0.11 0.10 0.20
T6 383.90 0.250 380.00 369.75 383.88 387.92
UHX 0.010 0.015 0.010 0.010
QHT 0.001 5500 2000 6264 4856 5500
Jopt(z) 2.48 -0.206 -9.848

Table 4: Results for flash process

a local optima where dest ≈ 3. In these runs the scaled problem converges
with an average of ten iterations and an average estimation error dest ≈ 0.3.
In the other two runs the scaled and unscaled problem converges in the
same solution. In this case the unscaled problem converged using 45 and 50
iterations.

The optimization problem was solved using the reconciled values as described
above. In ten of ten runs the scaled optimization problem converged at
the optimal solution with pressure, product composition and heater duty
as active constraints. In ten of ten runs the unscaled optimization problem
failed to converge at the optimal solution and converged at a solution where
only the product composition constraint where active. In this case the with
a average objective was Jopt ≈ −9.3.

Cond.no. Number of iterations Active
H̃ Sim. Rec. Opt. dest Jopt Constraints

Unscaled 5.0E+09 5 23 11 2.99 -9.34 x6(1)
Method 1 4.8E+05 4 14 7 0.30 -9.85 P4,x6(1),QHT

Method 2 7.0E+09 4 9 3 3.49 -5.84 QHT

Method 3 4.0E+03 4 28 10 0.30 -9.85 P4,x6(1),QHT

Method 4 5.1E+01 4 12 5 0.30 -9.85 P4,x6(1),QHT

Table 5: Scaling methods applied to flash process

To compare the four scaling methods presented in section 3.4 the simulation,
data reconciliation and optimization problem is solved for the flash process.
The results are summarized in table 5.

A valid solution of the data reconciliation and optimization problem are

20

found using scaling method 1, 3 and 4. Common for these methods is that
the condition number of the constraints and first order derivatives, H̃, is
reduced. The smallest condition number (5.1) is achieved using method 4
which also solves these problems using the fewest number of iterations. The
condition number of a model increases with the model size and large models
will benefit more from the use of scaling methods that gives a large reduction
in condition number.

6 Discussion

The simplified thermodynamic relations used in the case studies are all ex-
plicit functions and have explicit functions for their first order derivatives.
For example, specific enthalpy is calculated as h = Cpx

T. The specific heat of
a component, Cpi, a fixed value for the liquid phase a function of temperature
for the vapor phase (sixth order polynomial fitted to data from (NIST 2005)).
Vapor-liquid equilibrium is based on Raoult’s law and Antoine vapor pressure
with parameters from the same source.

The described unit model structure is well suited for object oriented pro-
gramming. A model written in C++ or similar programming language, most
commonly used in applications, will be far more effective than the Matlab
code used in the examples.

The use of sparse matrices and sparse math in the model and solver code will
also give a significant reduction in computational load. In the flash process
case study the matrix H has 1521 elements of which only 169 are nonzero.

7 Conclusions

A procedure for building steady state models has been presented. The proce-
dure is based on unit models which interact trough a shared variable vector.
The unit models and specifications form an ”open equation” set, well suited
as nonlinear constrains in an optimization problem. In the suggested struc-
ture each unit model can be developed, tested and scaled before it is added
to the overall process model. This simplifies the modeling work and saves a
lot of troubleshooting.

The scaling procedure, which is applied at unit model level, results in a
significant improvement in the overall numerical properties of the model.
The numerical examples of the flash process optimization shows that proper

21

scaling reduces the number of iterations used for solving each case. More
important though, it makes the results more reliable. In both data recon-
ciliation and optimization, the solver failed in finding the optimal solution
when using an unscaled model.

8 Acknowledgement

The first author acknowledges Statoil Mongstad for the financial support.
The authors are grateful to Professor Terje Hertzberg at the Norwegian Uni-
versity of Science and Technology (NTNU) in Trondheim, for his interest
in this work, encouragement and helpful comments. The authors are also
grateful to Dr. Stig Strand at the Statoil Research Center in Trondheim for
many stimulating discussions and helpful comments.

References

Biegler, L. T. & Cuthrell, J. E. (1985). Improved infeasible path optimiza-
tion for sequential modular simulators-II: The optimization algorithm,
Computers & Chemical Engineering 9(3): 257–267.

Bogusch, R. & Marquardt, W. (1995). A formal representation of process
model equations, Computers & Chemical Engineering 19: S211–S216.

Chen, X., Pike, R. W., Hertwig, T. A. & Hopper, J. R. (1998). Optimal
implementation of on-line optimization, European Symposium on Com-
puter Aided Process Engineering pp. 435–442.

Kelly, J. D. (2004). Techniques for solving industrial nonlinear data recon-
ciliation problems, Computers & Chemical Engineering 28: 2837–2843.

Lid, T., Skogestad, S. & Strand, S. (2002). On line optimization of a crude
unit heat exchanger network, Chemical Process Control-6, AIChE Sym-
posium Series (326).

Marquardt, W. (1996). Trends in computer-aided modelling, Computers &
Chemical Engineering 20: 591–609.

Matlab (2000). Optimization Toolbox Version 2.1, The MathWorks Inc., 3
Apple Hill Drive, Natick, MA 01760-2098, UNITED STATES.

22

NIST (2005). NIST Chemistry WebBook, National Institute of Standards
and Technology, http://webbook.nist.gov/chemistry/.

Nocedal, J. & Wright, S. J. (1999). Numerical optimization, Springer series
in oprations research, Springer, New York.

Rodriguez-Toral, M. A., Morton, W. & Mitchell, D. R. (2001). The use of
new SQP methods for the optimization of utility systems, Computers &
Chemical Engineering 25: 287–300.

Stanley, G. M. & Mah, R. S. H. (1981). Observability and redundancy in
process data estimation, Chemical Engineering Science 36: 259–272.

Tjoa, I. B. & Biegler, L. T. (1991). Simultaneous strategies for data recon-
ciliation and gross error detection of nonlinear systems, Computers &
Chemical Engineering 15(10): 679–690.

Westerberg, A. W., Hutcison, H. P., Motard, R. L. & Winter, P. (1979).
Process flowsheeting, Cambridge university press, London.

White, D. C. (1997). Online optimization:what, where and estimating ROI,
Hydrocarbon Processing pp. 43–51.

23

