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Abstract

The appropriate selection of controlled variables is one of the most
important tasks in plantwide control. In this paper, we consider the

selection of secondary controlled variables for indirect control and the
importance of input and output scalings. The objective is to keep

the primary variables close to their desired setpoint at steady-state
without controlling them directly. We use the maximum scaled gain
rule (maximize minimum singular value) and compare it to the exact

local method. It is also shown here that the issue of input scaling may
be crucial for ill-conditioned plants. Another issue is the selection

of optimal combination of variables, where several measurements are
combined to reduce the effect of disturbances and implementation

error in the primary variables. A two-step methodology to select the
combination of variables is evaluated. The methodology is applied to

the selection of control structures for a binary distillation column.
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Figure 1: Block diagram of indirect control with selection of measurements.

1 Introduction

The selection of controlled variables is one of the most important tasks in
control structure design1 because this choice can limit the performance of
the whole control system. This problem is combinatorial in nature and has
been addressed by many authors.2;3;4;5;6

For problems where the constraints are active, it is clear that the active
constraints should be selected as controlled variables. On the other hand, if
the optimum is unconstrained, the choice of controlled variables is much more
difficult because there are no limit on the possible variables or combinations.

In this paper, we are concerned with the regulatory control layer, where
one issue is to select secondary variables (c = y2) such that we indirectly
achieve good control of the primary variables (y1) in spite of disturbances
(d) and implementation errors (ny2

). Candidate measurements in this pa-
per include temperatures, flows and flow ratios. Figure 1 shows the block
diagram representation of indirect control, where matrix H represents the
selection/combination of measurements y. In the first part of this paper, we
consider the common case with control of individual measurements c, where
H is a selection matrix where each row has one 1 (and the rest 0’s).

The idea of self-optimizing control7 was originally formulated by Morari
et al.,8 inspired by the work of Findeisen et al.9 It is when keeping the
selected variables c constant, indirectly gives acceptable operation or, more
precisely, a small loss L in the presence of disturbances and implementation
error (without the need of re-optimizing the plant when disturbances occur).
Here, the loss L is defined as the difference between the actual value of the
cost function obtained with a specific control strategy and the truly optimal
value of the cost function, i.e. L = J − Jopt(d).10

For the selection of the controlled variables, c, there are some desirable
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properties (requirements) that should be fulfilled:7

1. We want a small optimal variation ∆copt(d) to disturbances in the
selected variables, i.e. the optimum value of the controlled variables
should be insensitive to disturbances.

2. We want variables c with a large sensitivity,3;11 or more generally, large
gain in terms of the minimum singular value,3 σ(G), from the inputs
u to the secondary variables c.

3. We want to be able to control the selected controlled variables tightly
(small “implementation” error), i.e. they should be easy to measure
and control accurately.

Moore3 proposed to select controlled variables c using an SVD-analysis
of the steady-state gain matrix Gall from the inputs u to all the candidate
measurements y. After decomposing the gain matrix Gall = UΣV T , he pro-
posed to use the orthonormal matrix U (matrix of left singular vectors) to
locate the most sensitive measurements (with largest absolute values), which
should be used as controlled variables.

These requirements can be conflicting, as there is a trade-off between high
gain and small implementation error, Halvorsen et al.10 derived rigorously
the closely related method of selecting controlled variables that maximize the
minimum singular value, σ(G′), of the appropriately scaled gain matrix from
inputs u to the selected outputs c. The “maximum gain rule”10 is: Select
controlled variables c such that we maximize the minimum singular value of
the scaled gain matrix G′, σ(G′), where

G′ = S1GS2 (1)

Here, G is the steady-state gain matrix from u (manipulated variables) to c
(controlled variables). S1 and S2 are the output and input scalings, respec-
tively.

The output scalings S1 are obviously important as the objective is to
select the outputs (controlled variables), and the output scalings indirectly
include the control objective through the optimal variation, see Eq. (8).
However, the input scaling has been simplified by assuming that S2 is a
diagonal or unitary matrix.10 This assumption may seem to be of minor
importance because the inputs are anyway given. The main goal of this
paper is to reexamine this assumption.

To do this, we compare the maximum gain rule with the exact local
method10 on a binary distillation column, where u = [ L V ], y1 = [xH

top xL
btm ]

and c = Hy is a combination of temperatures and/or flows. The distillation

3



column was selected because it is “ill-conditioned” with a large variation in
gain depending on the input direction, and the scaling S2 is expected to be
more critical in such cases. The objective function J to be minimized is the
relative steady-state deviation from the desired setpoint,

J = ∆X2 =

(

xH
top − xH

top,s

xH
top,s

)2

+

(

xL
btm − xL

btm,s

xL
btm,s

)2

(2)

where xH
top is the composition of the heavy key-component (H) in the top of

the column and xL
btm is the composition of the light key-component (L) in

the bottom.
The second part of this paper is related to selecting the optimal com-

bination of variables that minimizes the effects of disturbances and imple-
mentation error.6;12;13 Here, we use the two-step procedure of Alstad and
Skogestad.13 In the first step, we apply the Maximum Gain Rule to select
the best set of measurements to be used for indirect control. In the second
step, we obtain the matrix H in order to reduce the effect of disturbances
and implementation error. Hori et al.12 presented a simple way to evaluate
matrix H in order to achieve perfect indirect control (zero disturbance loss).
The same result was obtained by Alstad and Skogestad13 using the null space
method. The problem with these methods is that they do not include the
implementation error. Alstad et al.14 derived an analytical solution for the
exact local method to find the optimal combination of measurements H for
the case with combined disturbances and measurement errors, and all these
methods are compared on the distillation case study.

2 Maximum gain rule

In the Maximum Gain Rule, the objective is to select controlled variables to
maximize the minimum singular value of G′ = S1GS2. The minimum singular
value has the monotonic property, which means that we can use a branch
and bound algorithm to search for the configuration with largest minimum
singular value, thus avoiding the evaluation of all possible configurations.15

To evaluate the maximum gain rule, and in particular the effect of the
scaling S2, we define the loss L as the difference between the actual value of
the cost function J(u, d), obtained with a specific control strategy, e.g. with
the controlled variable c is constant, and the truly optimal value of the cost
function Jopt(d), that is,

L(u, d) = J(u, d)− Jopt(d) (3)
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In our case, with indirect control, Jopt(d) = 0, see Eq. (2).
The second-order expansion of the loss function is10

L(u, d) =
1

2
(c − copt(d))TG−T JuuG

−1(c − copt(d)) (4)

where Juu is the matrix of second derivatives of J (Hessian matrix) and G is
the gain matrix from inputs u to c.

Defining z = J−1/2
uu G−1(c − copt(d)), Eq. (4) becomes10

L(u, d) =
1

2
‖z‖2

2 (5)

Introducing ec = c− copt(d) and assuming that each controlled variable ci

is scaled such that the sum of its optimal range (copt) and its implementation
error (ny) is unity, i.e., for combined errors the 2-norm is less or equal to 1,
Halvorsen et al.10 showed that the worst-case loss is

Lmax = max
‖e′

c
‖2≤1

1

2
‖z‖2

2 =
1

2
(

σ
(

S1GJ
−1/2
uu

))2
(6)

The (exact) maximum gain rule is then to maximize σ (S1GS2), where
S2 = J−1/2

uu .

2.1 Maximum gain rule: Output scaling (S1)

An important part of the maximum gain rule is to scale the output variables
appropriately, i.e., such that ‖e′c‖2 ≤ 1 holds. The outputs are scaled with
respect to their “span”, which is the sum of

1. optimal variation (copt) due to disturbances d

2. effect of implementation error (ny)

and we have
S1 = diag{1/span (ci)} (7)

where

span (ci) = |opt. var.| + |implem. error| = |copt|i + |ny|i (8)

The optimal variation may be obtained as follows. Write the linear steady-
state model as:

y1 = G1u + Gd1d (9)

c = Gu + Gdd (10)
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where y1 are the primary variables, c are the measurements (candidate con-
trolled variables), u are manipulated variables and d are disturbances. In the
presence of disturbances (d), perfect control of the primary variables (y1 = 0)
is obtained with

uopt = −G−1
1 Gd1d (11)

The resulting optimal variation of the measurements (c) is

copt = (−GG−1
1 Gd1 + Gd)d (12)

Remark: We here use perfect control (y1 = 0) as the reference for com-
puting the optimal variation. This is recommended even for cases where
some manipulated variables are kept constant (e.g. reflux L is constant)
such that y1 = 0 is not possible, because perfect control of y1 is in any case
the objective.

2.2 Maximum gain rule: Input scaling (S2)

From Eq. (6), the best (correct) input “scaling” for the maximum gain rule
is to select S2 = J−1/2

uu , where Juu is the Hessian matrix of the cost function
J (matrix of second derivatives of J with respect to u). The term “scaling”
is a bit misleading because J−1/2

uu is generally not a diagonal matrix. In many
cases,10 it is assumed that S2 = J−1/2

uu is unitary, which is referred to as
simplified scaling.

2.2.1 S2 = J−1/2
uu (correct)

From Eq. (6), the correct maximum gain rule states that, in order to mini-
mize the loss L, we need to find the set of controlled variables c that maximize
σ(S1GJ−1/2

uu ).

2.2.2 Simplified scaling (assuming Juu unitary)

For the minimum singular value, the property σ(AB) ≥ σ(A) · σ(B) holds
for any non-singular matrices A and B of any dimension.16 So, from Eq. (6),

we have that σ (G′) = σ
(

S1GJ−1/2
uu

)

≥ σ
(

J−1/2
uu

)

σ (S1G). As σ
(

J−1/2
uu

)

=

1/σ̄ (Juu)
1/2, we derive from Eq. (6) an upper bound for the maximum loss

Lmax = max
‖e′c‖2≤1

L ≤
σ̄ (Juu)

2 (σ (S1G))2
(13)

To analyze the tightness of this bound, we derive a lower bound from the
inequality16 σ̄(AB) ≥ σ(A)·σ̄(B). From Eq. (6), we then have σ̄

(

S1GJ−1/2
uu

)

≥
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σ
(

J−1/2
uu

)

σ̄ (S1G), and using σ̄ (S1G) = 1/σ (S1G), we then find

σ (Juu)

2 (σ (S1G))2
≤ Lmax ≤

σ̄ (Juu)

2 (σ (S1G))2
(14)

That is, for systems that can be scaled such that Juu has a small condition
number (γ(Juu) = σ̄ (Juu) /σ (Juu)), the lower and upper bounds become
close to each other and the simplified minimum singular method is guaranteed
to apply. In Eq. (13), we have equality when we assume that Juu is a unitary
matrix (simplified scaling) because then σ̄ (Juu) /σ (Juu) = 1.

3 Exact local method

To evaluate the maximum gain rules presented in the last section, we cal-
culate the maximum loss for each set of controlled variables using the exact
local method.10 This method utilizes a Taylor series expansion of the loss
function, and the exact value of the worst-case local loss becomes

Lmax = max
‖e′

c
‖2≤1

L =
(σ̄ ([ Md Mny ]))2

2
(15)

where
Md = J1/2

uu (J−1
uu Jud − G−1Gd)Wd (16)

Mny = J1/2
uu G−1Wn (17)

Md represents the loss in the primary variables caused by disturbances
and Mny represents the loss caused by implementation error.

The magnitude of the disturbances and implementation error enter into
the diagonal matrices Wd and Wn, respectively. The steady-state gains G and
Gd and the second order derivatives Juu and Jud may be obtained numerically
by applying small perturbations in the inputs u.

In our case, we are interested in indirect control of the top and bottom
compositions (see cost function for the distillation column in Eq. (2)), and
Juu and Jud can be obtained analytically.

More generally, consider a quadratic cost function

J = yT
1 Qy1 + uTRu (18)

where Q and R are weighting matrices (both are symmetric positive-definite).
From Eq. (9), we then have

Juu = 2
(

GT
1 QG1 + R

)

(19)
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Jud = 2GT
1 QGd1 (20)

In our case, as the cost function is defined by Eq. (2), the weighting matrices

are Q = diag
(

[

1/
(

xH
top,s

)2

1/
(

xL
btm,s

)2
]

)

and R = 0 .

Compared to the exact method, the branch and bound algorithm for
minimizing σ(G′) usually requires the evaluation of fewer combinations, and
each evaluation is also less time consuming.

4 Case study: Distillation column

The variable selection methods (maximum gain rule and exact local method)
are applied to a binary distillation column. The chemical components are
assumed “ideal” and denoted L (light) and H (heavy). It is assumed that
the relative volatility is constant (αLH = 1.5). The main disturbances are
the feed flow rate (F ), feed enthalpy (qF), and feed composition (zF ). The
example is “column A”17 with a feed of 50% mol of light component. The
objective of the column is to keep 1% of heavy component in the top (and
99% lights) and 1% of light component in the bottom. The column has 41
stages (including the reboiler and the total condenser) and these stages are
numbered from bottom to top (see Figure 2).

A conventional distillation column with a given feed and pressure con-
trolled using cooling has 4 degrees of freedom left: reflux flow rate (L),
vapor boilup (V ), distillate flow rate (D), and bottoms flow rate (B), i.e.,
u0 = [ L V D B ]T . We need to control two liquid levels to stabilize
the column. This consumes two degrees of freedom because levels do not
have steady-state effect and we are left with two steady-state degrees of free-
dom18 for composition control, which are here selected as u = [L V ]. Note
that the steady-state gain matrix G1 from u = [ L V ] to y1 is generally

ill-conditioned. In our case, the gain matrix is G1 =
[

1.085 −1.098
0.875 −0.862

]

, so

J−1/2
uu =

[

0.263 0.259
0.259 0.262

]

(21)

The condition number γ = σ̄/σ is the same for both G1 and J−1/2
uu in this case,

γ (G1) = γ
(

J−1/2
uu

)

= 145.6 (they are the same because R = 0 and Q = βI ,

where β is any constant different from zero). Note that an unitary matrix
has a condition number of 1, so Juu is far from unitary. The minimized
condition number with respect to diagonal scaling is also large, γ∗(G1) =
minD1,D2

γ(D1G1D2) = 141.9.
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Figure 2: Distillation column.
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Our objective is to use the two available degrees of freedom to keep the top
and bottom compositions (primary variables y1) close to their optimal values,
see Eq. (2). As compositions are difficult to measure (due to long time delays,
high cost, etc.), we want to use indirect control where temperatures and/or
flows (including flow ratios L/D, L/F , V/B, V/F ) are used as secondary
controlled variables (c). For simplicity, we assume that the temperature
Ti(

◦C) on each stage i can be calculated as a linear function of the liquid
composition in each stage19

Ti = 0xA,i + 10xB,i (22)

This may seem unrealistic, but results using detailed models show that this
is actually of minor importance.20 To compare the maximum gain rule with
the exact method, we use the maximum composition deviation:17

∆Xmax =
√

Jmax =
√

Lmax (23)

where Lmax is calculated from Eq. (15) (exact method) or estimated from
Eqs (6) (maximum gain rule) and (13) (simplified maximum gain rule).

4.1 Output scaling (S1)

The output scaling is S1 = 1/∆copt where

∆copt =|
dcopt

dzF
|∆zE

F + |
dcopt

dF
|∆F E + |

dcopt

dqF
|∆qE

F + |∆cn| (24)

Here, ∆zE
F , ∆F E, and ∆qE

F are the expected (typical) disturbances and
∆cn is the expected implementation/measurement error for controlling the
measurements. For temperatures, the implementation error (∆cn = ∆T n)
is assumed to be the same for all stages (∆T n = ±0.5◦C), while the im-
plementation error is ±10% for flow rates and ±15% for flow ratios. The
expected magnitude of the disturbances are 20% for feed rate F , 10% for
feed composition zF and 10% for feed enthalpy qF .

The resulting optimal variations for temperatures along the column ob-
tained using Eq. (12) are shown in Figure 3. Temperatures on stages close to
the feed stage are more sensitive to disturbances, while the stages close to the
ends are affected more by the implementation error (the optimal variation is
zero at the ends). Also, the figure shows that the main disturbance is in the
feed composition. The optimal variation in temperature with feed flowrate
is zero, because we have assumed constant efficiency for the column. This
result confirms what is found in the literature.21
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Figure 3: Optimal variations and total span (output scaling S1).

4.2 Input scaling (S2)

In this section, we want to compare the maximum gain rule (section 2.2.1)
and the simplified maximum gain rule (section 2.2.2) with the exact local
method (section 3). The three methods were compared using the composi-
tion deviations estimated by Eqs (6) (maximum gain rule, S1GJ−1/2

uu ), (13)
(simplified maximum gain rule, S1G), and (15) (exact local method). Figure
4 shows the results with two symmetrically located temperatures as con-
trolled variables. A “good” location should have a composition deviation
∆X of about 1 or less. This figure shows that the three methods give almost
the same best temperatures, but note that the estimated ∆X is a factor 100
times higher when we use σ (S1G). This happens because, as shown earlier,
the condition number for this process is very large (145.6).

In Table 1, we consider the more general case where the candidates two
controlled variables are any combination of temperatures and flows (including
flow ratios L/D, L/F , etc). Table 1 shows that the simplified maximum gain
rule using σ (S1G) gives again completely wrong (too high) estimates for ∆X
in most cases. The simplifiedmethod gives that the best control configuration
with the largest value of σ(S1G) is to keep L/F and V/B constant. However,
this is actually a poor choice with an exact loss of 18.60.
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Table 1: Steady-state composition deviation ∆X for distillation column for
various configurations.

Maximum gain rule

Configuration Exact method Assume Juu unitary S2 = J
−1/2

uu

(simplified) (correct)

Fixed variables (c) ∆X(Eq.15) σ(S1G) Est. ∆X σ(S1GJ
−1/2

uu ) Est. ∆X
(Eq. 13) (Eq. 6)

T12-T30 0.530 1.508 131 0.783 0.903
T12-T29 0.541 1.442 137 0.752 0.941
T14-T28 0.595 1.241 159 0.645 1.100
T9-T32 0.675 1.548 127 0.792 0.893

T15-T26 0.706 0.956 206 0.499 1.417
T15-L/F 0.916 1.531 129 0.607 1.164
T16-V/F 1.148 1.125 175 0.498 1.419
T19-L 1.223 0.815 242 0.400 1.767
T15-L/D 1.321 0.727 272 0.342 2.067
T22-V 1.470 0.639 309 0.305 2.320
T24-V/B 1.711 0.571 345 0.261 2.712
T1-T41 5.000 0.271 728 0.141 5.000
L/D-V/B 15.80 0.878 225 0.040 17.80
L/F -V/B 18.60 1.603 123 0.028 25.60
L-B 21.10 0.805 245 0.020 35.20
D-V 21.20 0.634 311 0.020 35.20
L/F -V/F 90.00 1.600 124 0.007 109.0
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Figure 4: Comparison of composition deviation estimates (S1GJ−1/2
uu , S1G,

and exact local method).

On the other hand, with the correctly scaled gain matrix G′ = S1GJ−1/2
uu ,

the results with the maximum gain rule are very close to the exact method,
giving T9-T32 as the proposed best set of controlled variables (exact loss of
0.675). This is close to the minimum steady-state composition deviation
(∆X) of 0.530, which is obtained when we control temperatures on stages 12
and 30, that is, with the temperatures symmetrically located on each side of
the feed stage. Thus, although the maximum gain rule using G′ = S1GJ−1/2

uu

is not exact, it gives results in terms of temperature selection that are very
similar to the exact method. It is thus suitable for screening of candidate
controlled variables.

5 Linear combination of measurements

So far we have considered the selection of single measurements. Another op-
tion is to use combinations of measurements c = Hy, where H is a combina-
tion rather than a selection matrix. The goal of using several measurements
is to further reduce the effect of disturbances and implementation errors. As
the number of possible measurements is usually very large, it is necessary to
select the best set of measurements that minimize the loss. The issue of using
multiple temperatures to control distillation columns has been described in
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other papers.22;23

5.1 Two-step procedure

To avoid the evaluation of the exact loss (Eq. 15) for all possible combinations
of measurements, Alstad et al.14 suggest a two-step approach to obtain the
combination of variables.

1. Choose the set of measurements applying the ”Maximum Gain Rule”
presented by Alstad et al.,14 i.e., maximize the minimum singular value
of the scaled matrix G̃′ = S1G̃ = [ S1G S1Gd ].

2. The combination matrix H can be evaluated in two different ways:

- Perfect disturbance rejection12

H = G̃1G̃
′−1 (25)

where G̃1 = [G1 Gd1 ].

- Exact local method: Minimize the combined effect of disturbances
and implementation error by finding the matrix H that minimize
the 2-norm of M = [ Md Mn ] in Eq. (15). It can be shown that
this is equivalent to minimizing ‖HF̃‖2

2 subject to HGy = J1/2
uu ,

where F̃ = [ FWd Wny ] and F = −(GyJ−1
uu Jud−Gy

d). One finds14

HT = (F̃ F̃ T )−1Gy(GyT (F̃ F̃ T )−1Gy)−1J1/2
uu (26)

Note that the solution in Eq. (26) is not unique, so if H is an optimal
solution, another optimal solution is H1 = DH, where D is a non-singular
matrix of dimension nu × nu.

For the LV-distillation column case study, we consider only temperatures
as possible measurements and we do not consider the feed flowrate as a
disturbance because its optimal variation in temperature is zero (see Section
4.1). Then, we have 2 inputs (nu = 2), 2 disturbances (zF , qF , i.e. nd = 2),
and we need to select 4 temperatures (ny = 4) to obtain perfect disturbance
rejection.

5.1.1 Step 1: selection of measurements

The heuristic of maximizing σ̄
(

G̃′
)

, where G̃′ = S1G̃ = [ S1G S1Gd ] was
applied to select 4 temperatures to control the distillation column. The
temperatures selected are on stages 9, 16, 24, and 33.
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5.1.2 Step 2: perfect disturbance rejection

For the distillation column example with (from step 1)

[

c1

c2

]

= H











T9

T16

T24

T33











(27)

zero disturbance loss is obtained with

H = G̃1G̃
′−1 =

[

−0.7068 0.0444 0.0911 −0.0663
0.0442 −0.0376 −0.0766 0.6903

]

(28)

As the H-matrix is not unique, we have normalized it so that its 2-norm
is equal to 1, i.e., ‖H‖2 = 1.

The maximum loss, which in this case is caused by measurement error
only, is equal to 0.822 (calculated by exact local method). Interestingly, this
combination gives a maximum loss larger than the obtained by the best two
single temperatures (see Table 1). This happens because the measurement
selection in Step 1 in non-optimal.

5.1.3 Step 2: exact local method

Eq. (26), which also accounts for implementation error, was used to obtain
the optimal combination of the same four temperatures, as in Eq. (27). The
resulting H-matrix is

H =
[

0.4751 0.3980 −0.2433 −0.0474
−0.0770 0.1070 −0.2456 −0.6905

]

(29)

which gives a maximum loss of 0.582. In this case, the loss due to disturbance
is 0.370 (since we do not have perfect disturbance rejection) and due to
implementation error is 0.516. Again, the maximum loss is larger than the
best combination of two temperatures (0.530).

5.2 Exact local method with four measurements

Thus, the two-step procedure fails to give a good result in this case, so we
here use the exact local method to find the truly optimal combination. The
best set of 4 temperatures (10, 11, 31, and 32) were found evaluating the
exact local method for all possible combinations (41×40×39×38

4×3×2
= 101270 com-

binations), but Kariwala6 derived a branch and bound algorithm that could
alternatively have been used to find the best solution in a more efficient way.
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It is interesting to note that it is optimal to select neighboring temperatures
close to the location of the optimal with only two measurements (T12 −T30).
Apparently, this is to reduce the effect of measurement error. The resulting
optimal combination using Eq. (26) is

H =
[

0.4087 0.4962 0.1880 0.1349
−0.2269 −0.2980 −0.4831 −0.3994

]

(30)

The estimated maximum loss in this case is 0.440 (0.302 due to disturbances
and 0.407 due to implementation error), which is now smaller than the best
combination of two temperatures (0.530).

Note that H is not unique, and by choosing D =
[

1 0.389
−0.555 −1

]

, we

find that another optimal combination matrix is

H =
[

0.320 0.380 0 −0.020
0 0.023 0.379 0.325

]

(31)

and we see that the optimal combination is approximately to control a com-
bination of T10 and T11 and a combination of T31 and T32.

5.3 Combining all measurements

A two-step procedure is not needed if we combine all 41 temperatures. In
this case, the matrix H can be calculated using the analytical solution for the
exact local method, Eq. (26), resulting in a maximum loss of 0.226 (0.067
due to disturbance and 0.216 to implementation error), which is the lowest
possible.

The results for all the cases studied are summarized in Table 2.

Table 2: Composition deviation ∆X for various configurations: summary.
Loss

Controlled variables c1 − c2 Disturbance Meas. Noise Total

T12-T30 0.376 0.513 0.530
H [T9, T16, T24, T33] ((28) from Eq. 25) 0 0.822 0.822
H [T9, T16, T24, T33] ((29) from Eq. 26) 0.370 0.516 0.582
H [T10, T11, T31, T32] ((30) from Eq. 26) 0.302 0.407 0.440
H [All temperatures] (Eq. 26) 0.067 0.216 0.226

6 Conclusions

In this paper, we evaluated a systematic way of selecting secondary controlled
variables using the maximum scaled gain rule.
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The maximum gain rule involving S1GJ−1/2
uu , see Eq. (6), is preferred

if we can obtain easily the Hessian Juu. The results are very close to the
optimum and do not require the evaluation of all possible candidates. So, for
large systems, the maximum gain rule is a preferred choice.

The simplified maximum gain rule involving S1G, see Eq. (13), is the
easiest to apply because it does not require an evaluation of the Hessian
Juu. This rule is usually good but unfortunately it can give wrong result for
ill-conditioned systems, like some distillation columns (see Table 1). This
problem could be avoided by choosing a different set of base variables u such
that Juu is close to an unitary matrix.

The output scaling (S1) is an important factor, especially when we have
different kinds of candidate controlled variables like temperatures and flows.

The selection of combinations of measurements to minimize the effect
of disturbances and implementation error was also considered. A two-step
approach may be used, where in the first step the measurements are selected
and, in the second, the combination of the selected measurements is obtained.
The results show that this methodology, although it is not exact, is able to
obtain a control structure with a small effect of implementation error (step
1) and disturbances (step 2) in the primary variables.
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