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The appropriate selection of controlled variables is one of the most important tasks in plantwide control. In
this paper, we consider the selection of secondary temperature measurements for indirect composition control
of distillation columns. The maximum gain rule (maximize minimum singular value of scaled gain matrix)
is compared to the exact local method, and it is found that the gain rule should be used with care for ill-
conditioned plants like distillation columns. We also consider the use of optimal combinations of measurements
to further reduce the effect of disturbances and implementation errors.

1. Introduction

The selection of controlled variables is one of the most
important tasks in control structure design1 because this choice
can limit the operational (economic) performance of the whole
control system. This problem is combinatorial in nature and has
been addressed by many authors.2-6

For problems where the constraints are active, it is clear that
the active constraints should be selected as controlled variables.
On the other hand, if the optimum is unconstrained, the choice
of controlled variables is much more difficult because there are
no limit on the possible variables or combinations.

In this paper, we consider the problem of indirect control,
where the issue is to select secondary variables (c ) y2) such
that we indirectly achieve good control of the primary variables
(y1) in spite of disturbances (d) and implementation errors (ny2).
In our case, the primary variables (y1) are the product composi-
tions in the distillation column and the candidate secondary
measurements (c ) y2) include temperatures, flows, and flow
ratios. Figure 1 shows the block diagram representation of
indirect control, where the matrix H represents the selection/
combination of measurements y.

c)Hym )H(y+ yn) (1)

We assume that the number of controlled variables (nc) is
equal to the number of inputs (nu), so that the controller K in
Figure 1 is square. We consider two cases for the selection of
controlled variables c ) Hy:

1. Control individual measurements (H is then a selection
matrix where each row has one 1 element and the rest are 0s).

2. Control measurements combinations (H is then a full static
matrix).

The issue in the first case is to select from the set of candidate
measurements y a subset of nc measurements. For the distillation
example, we have nu ) 2 inputs (L and V) and we want to
select nc ) nu ) 2 temperature measurements. In the second
case, the truly optimal solution is to use all the measurements
(about 50 for the distillation example). However, to simplify
one normally first selects a subset of the candidate measurements
and then finds nc ) nu ) 2 linear combinations of the selected
measurements (as given by H).

Moore3 proposed to select individual controlled variables
(measurements) c using a singular value decomposition (SVD)
analysis of the steady-state gain matrix Gall from the inputs u
to all the candidate measurements y. After decomposing the gain
matrix Gall ) UΣVT, he proposed to use the orthonormal matrix
U (matrix of left singular vectors) to locate the most sensitive
measurements (with largest absolute values), which should be
used as controlled variables.

On the basis of the idea of self-optimizing control,7 Halvorsen
et al.8 derived rigorously the closely related method of selecting
controlled variables that maximize the minimum singular value,
σ_(G′), of the appropriately scaled gain matrix from inputs u to
the selected outputs c. The “maximum gain rule”8 is the
following: Select controlled Variables c such that we maximize
the minimum singular Value of the scaled gain matrix G′, σ_(G′),
where

G′ ) S1GS2 (2)

Here, G is the steady-state gain matrix from manipulated
variables u to selected controlled variables c.

c)Gu (3)

where G ) HGy, and S1 and S2 are the output and input scalings,
respectively.

The first part of this paper analyzes the maximum gain rule
by comparing it with the exact local method of Halvorsen et
al.8

The second part is related to selecting the optimal combination
of variables that minimizes the effects of disturbances and
implementation error.6,9,10 One approach is the two-step pro-
cedure of Alstad and Skogestad,10 where in the first step the
maximum gain rule is used to select the best set of measure-
ments, and in the second step we find H. For finding H, Hori et
al.9 presented a simple method that achieves perfect indirect
control (with zero disturbance loss), and the same result can be
obtained from the nullspace method of Alstad and Skogestad.10

However, these methods do not consider implementation
(measurement) errors yn. This weakness is overcome with the
“exact local method”8 for which Alstad et al.11 derived an
analytical solution for the optimal H.

All these methods are compared on a binary distillation case
study, where U ) [L V], y1 ) [xtop

H xbtm
L ], and y includes

temperatures and/or flows. The distillation column was selected
because it is “ill-conditioned” with a large variation in gain
depending on the input direction, and the scaling S2 is expected
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to be more critical in such cases. The objective function J to be
minimized is the relative steady-state deviation from the desired
setpoint,

J)∆X2 ) (xtop
H - xtop,s

H

xtop,s
H )2

+ (xbtm
L - xbtm,s

L

xbtm,s
L )2

(4)

where xtop
H is the composition of the heavy key-component (H)

in the top of the column and xbtm
L is the composition of the light

key-component (L) in the bottom.

2. Maximum Gain Rule

The maximum gain rule states that one should select
controlled variables to maximize the minimum singular value
of G′ ) S1GS2. The minimum singular value has the monotonic
property, which means that we can use a branch and bound
algorithm to search for the configuration with the largest
minimum singular value, thus avoiding the evaluation of all
possible configurations.12

To derive the maximum gain rule, and in particular to derive
the correct scaling S2, we consider the loss L as the difference
between the actual value of the cost function J(u,d), obtained
with a specific control strategy, e.g. with the controlled variable
c is constant, and the truly optimal value of the cost function
Jopt(d), that is,

L(u, d)) J(u, d)- Jopt(d) (5)

In our case, with indirect control, Jopt(d) ) 0; see eq 4. The
second-order expansion of the loss function is8

L(u, d)) 1
2

(c- copt(d))TG-TJuuG
-1(c- copt(d)) (6)

where Juu is the matrix of second derivatives of J with respect
to u (Hessian matrix) and G is the gain matrix from the inputs
u to c. Defining z ) Juu

-1/2G-1(c - copt(d)), eq 6 becomes8

L(u, d)) 1
2

|| z||2
2 (7)

Introducing ec ) c - copt(d) and assuming that each controlled
variable ci is scaled such that the sum of its optimal range (copt)
and its implementation error (ny) is unity, i.e., for combined
errors the 2-norm is less or equal to 1, Halvorsen et al.8 show
that the worst-case loss is

Lmax ) max
||ec′ ||2e1

1
2

||z||2
2e

1

2(σ(S1GJuu
-1⁄2))2

(8)

To minimize the loss Lmax, the (correct) maximum gain rule
is then to maximize σ_(S1GS2), where S2 ) Juu

-1/2.
2.1. Output Scaling (S1). An important part of the maximum

gain rule is to scale the output variables appropriately, i.e., such
that ||ec′||2 e 1 holds. The outputs are scaled with respect to
their “span”, which is the sum of

1. optimal variation (copt) due to disturbances d
2. effect of implementation error (cn) and we have

S1 ) diag{1 ⁄ span(ci)} (9)

where

span(ci)) |opt var|+ |implem error|) |copt|i + |cn|i (10)

From a linear model, the optimal variation may be obtained as
follows. Write the linear steady-state model as follows:

y1 )G1u+Gd1d (11)

c)Gu+Gdd (12)

where y1 are the primary variables, c are the measurements
(candidate controlled variables), u are manipulated variables,
and d are disturbances. In the presence of disturbances (d),
perfect control of the primary variables (y1 ) 0) is obtained
with

uopt )-G1
-1Gd1d (13)

The resulting optimal variation of the measurements (c) is

copt ) (-GG1
-1Gd1 +Gd)d (14)

Remark: We here use perfect control (y1 ) 0) as the reference
for computing the optimal variation. This is recommended even
for cases where some manipulated variables are kept constant
(e.g., reflux L is constant) such that y1 ) 0 is not possible,
because perfect control of y1 is in any case the objective.

2.2. Input scaling (S2). From eq 8, the best (correct) input
“scaling” for the maximum gain rule is to select S2 ) Juu

-1/2.
The term “scaling” is a bit misleading because Juu

-1/2 is
generally not a diagonal matrix.

Simplified Scaling (Assuming Juu Unitary). In many cases,8

it is assumed that S2 ) Juu
-1/2 is unitary, which is referred to

as simplified scaling. For the minimum singular value, the
property σ_(AB) g σ_(A)σ_(B) holds for any nonsingular matrices
A and B of any dimension.13 From eq 8, we then have that
σ_(G′) ) σ_(S1GJuu

-1/2) g σ_(Juu
-1/2)σ_(S1G). Here, σ_(Juu

-1/2) )
1/σj(Juu)1/2, and we derive from eq 8 an upper bound for the
maximum loss

Lmax ) max
||ec′ ||2e1

Le
σj(Juu)

2(σ(S1G))2
(15)

To analyze the tightness of this bound, we derive a lower
bound from the inequality13 σj(AB) g σ_(A)σj(B). From eq 8, we
then have σj(S1GJuu

-1/2) g σ_(Juu
-1/2)σj(S1G), and using σj(S1G)

) 1/σ_(S1G), we then find

σ_(Juu)

2(σ_(S1G))2
e Lmaxe

σj(Juu)

2(σ_(S1G))2
(16)

That is, for systems that can be scaled such that Juu has a small
condition number (γ(Juu) ) σj(Juu)/σ_(Juu)), the lower and upper
bounds are close. In particular, if Juu is unitary then γ(Juu) ) 1
and simplified scaling is exact.

3. Exact Local Method

To evaluate the maximum gain rule presented in the last
section, we calculate the maximum loss for each set of controlled
variables using the exact local method.8 The exact value of the
worst-case local loss is

Lmax ) max
||ec′ ||2e1

L)
(σj([Md Mny]))

2

2
(17)

where

Md ) Juu
1⁄2(Juu

-1Jud -G-1Gd)Wd (18)

Mny ) Juu
1⁄2G-1Wn (19)

Md represents the loss in the primary variables caused by
disturbances, and Mny represents the loss caused by implementa-
tion error.

The magnitude of the disturbances and implementation error
enter into the diagonal matrices Wd and Wn, respectively. Note
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that the elements in Wn are equal to |cn|i introduced earlier.
Normally, the source of the implementation error is the
measurement error for y and we have

Wn )HWny (20)

where Wny is a diagonal matrix of the expected measurement
errors for y; see yn in eq 1.

For indirect control, consider a quadratic cost function

J) y1
TQy1 + uTRu (21)

where Q and R are weighting matrices (both are symmetric
positive-definite). From eq 11, we then have

Juu ) 2(G1
TQG1 +R) (22)

Jud ) 2G1
TQGd1 (23)

For the distillation example, with the cost function in eq 4,
the weighting matrices are Q ) diag([1/(xtop,s

H )2 1/(xbtm,s
L )2]) and

R ) 0.
We here use the exact local method as an analysis tool. One

may also use the exact local method to select optimal measure-
ments. However, minimizing σ_(G′) requires the evaluation of
fewer combinations, and each evaluation is also less time-
consuming.

4. Case Study: Distillation Column

The variable selection methods (maximum gain rule and exact
local method) are applied to a binary distillation column
(“column A” of Skogestad and Postlethwaite).13 The chemical
components are denoted L (light) and H (heavy). The mixture
is assumed to be ideal with a constant relative volatility (RLH

) 1.5). The main disturbances are the feed flow rate (F), feed
enthalpy (qF), and feed composition (zF). The feed is about 50%
mol of light component (zF ) 0.5). The primary controlled
variables are the product compositions

y1 ) [ xtop

xbtm ]
The objective of the column is to get a top product with 99%
light component (and 1% heavy) (xtop,s

H ) 0.01), and a bottom
product with 1% light component (xbtm,s

L ) 0.01). The column
has 41 stages (including the reboiler and the total condenser),
and these stages are numbered from bottom to top (see Figure
2).

This is a conventional distillation column with a given feed
and pressure, and it has four degrees of freedom: reflux flow
rate (L), vapor boilup (V), distillate flow rate (D), and bottoms
flow rate (B), i.e., u0 ) [L V D B]T. We need to stabilize two
liquid levels, and for this, we selected B and D. This gives the

conventional LV-configuration, where L and V are the remaining
steady-state degrees of freedom for composition control, u )
[L V]. Note that the steady-state gain matrix G1 from u ) [L V]
to y1 is generally ill-conditioned. In our case, the gain matrices
are

G1 ) [1.085 -1.098
0.875 -0.862 ]

and

Gd1 ) [0.586 1.119 1.092
-0.394 -0.881 -0.868 ]

so

Juu
-1⁄2 ) [0.263 0.259

0.259 0.262 ] and

Jud ) 104[1.961 3.970 3.889
-1.996 -3.976 -3.895 ] (24)

The condition number γ ) σj/σ_ is the same for both G1 and
Juu

-1/2 in this case, γ(G1) ) γ(Juu
-1/2) ) 145.6 (they are the

same because R ) 0 and Q ) �I, where � is any constant
different from zero). Note that an unitary matrix has a condition
number of 1, so Juu is far from unitary. The minimized condition
number (with respect to diagonal scaling) is also large, γ*(G1)
) minD1,D2 γ(D1G1D2) ) 141.9.

Our objective is to use the two available degrees of freedom
to keep the top and bottom compositions (primary variables y1)
close to their optimal values; see eq 4. As compositions are
difficult to measure (due to long time delays, high cost, etc.),
we want to use indirect control where temperatures and/or flows
(including flow ratios L/D, L/F, V/B, V/F) are used as secondary
controlled variables (c). For simplicity, we assume that the

Figure 1. Block diagram of indirect control with selection of measurements.

Figure 2. Distillation column.
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temperature Ti (°C) on each stage i can be calculated as a linear
function of the liquid composition in each stage14

Ti ) 0xA,i + 10xB,i (25)

This may seem unrealistic, but results using detailed models
show that this is actually of minor importance.15 To compare
the maximum gain rule with the exact method, we use the
maximum composition deviation:15

∆Xmax ) √Jmax ) √Lmax (26)

where Lmax is calculated from eq 17 (exact method) or estimated
from eqs 8 (maximum gain rule) and 15 (simplified maximum
gain rule).

4.1. Output Scaling (S1). The output scaling is S1 ) 1/(|∆copt|
+ ∆cn) where

|∆copt|) |dcopt

dzF
|∆zF

E + |dcopt

dF |∆FE + |dcopt

dqF
|∆qF

E + |∆cn| (27)

Here, ∆zF
E, ∆FE, and ∆qF

E are the expected (typical) distur-
bances and ∆cn is the expected implementation/measurement
error for controlling the measurements. For temperatures, the
implementation error (∆cn ) ∆T n) is assumed to be the same
for all stages (∆T n ) (0.5 °C), while the implementation error
is (10% for flow rates and (15% for flow ratios. The expected
magnitudes of the disturbances are 20% for feed rate F, 10%
for feed composition zF, and 10% for feed enthalpy qF.

The resulting optimal variations ∆copt for temperatures along
the column obtained using eq 14 are shown in Figure 3.
Temperatures on stages close to the feed stage are more sensitive
to disturbances, while the stages close to the ends are affected
more by the implementation error (the optimal variation is zero
at the ends). Also, the figure shows that the main disturbance
is in the feed composition. The optimal variation in temperature
with feed flowrate is zero, because we have assumed constant
efficiency for the column. This result confirms what is reported
in the literature.16

4.2. Input scaling (S2). In this section, we want to compare
the maximum gain rule (section 2) and the simplified maximum
gain rule (section 2.2) with the exact local method (section 3).
The three methods were compared using the composition deviations

estimated by eqs 8 (maximum gain rule, S1GJuu
-1/2), 15 (simplified

maximum gain rule, S1G), and 17 (exact local method). Figure
4 shows the results with two symmetrically located temperatures
as controlled variables. A “good” location should have a
composition deviation ∆X of about 1 or less. This figure shows
that the three methods give almost the same best temperatures,
but note that the estimated ∆X is a factor 100 times higher when
we use σ_(S1G) (simplified maximum gain rule). This happens
because, as shown earlier, the condition number for this process
is very large (145.6).

In Table 1, we consider the more general case where the
candidates two controlled variables are any combination of
temperatures and flows (including flow ratios L/D, L/F, etc.).
Table 1 shows that the simplified maximum gain rule using
σ_(S1G) gives again completely wrong (too high) estimates for
∆X in most cases. The simplified method gives that the best
control configuration with the largest value of σ_(S1G) is to keep
L/F and V/B constant. However, this is actually a poor choice
with an exact loss of 18.60.

On the other hand, with the correctly scaled gain matrix G′
) S1GJuu

-1/2, the results with the maximum gain rule are very
close to the exact method. The upper bound on ∆X from eq 8
is at most a factor 2.008 higher than the correct ∆X from eq
17. The (correct) maximum gain rule gives T9-T32 as the best
set of controlled variables (exact loss of 0.675). This is close
to the optimum (minimum) steady-state composition deviation
(∆X) of 0.530, which is obtained when we control temperatures
on stages 12 and 30, that is, with the temperatures symmetrically
located on each side of the feed stage. Thus, although the
maximum gain rule using G′ ) S1GJuu

-1/2 is not exact, it gives
results in terms of temperature selection that are very similar
to the exact method. It is thus suitable for screening of candidate
controlled variables.

5. Linear Combination of Measurements

Thus far, we have considered single measurements as
controlled variables. Another option is to use combinations of
measurements c ) Hy, where H is a combination rather than a
selection matrix. The goal of using several measurements is to
further reduce the effect of disturbances and implementation
errors. The use of using multiple temperatures to control
distillation columns has been suggested also by other authors.17,18

Figure 3. Optimal temperature variations and total span (output scaling
S1).

Figure 4. Comparison of composition deviation estimates (S1GJuu
-1/2 (eq

8), S1G (eq 15), and exact local method (eq 17)).
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For a given set of measurements (ys), the combination matrix
H can be evaluated in two different ways:

1. Nullspace method: Perfect disturbance rejection9 with the
assumption of no measurement/implementation error gives

H) G̃1G̃′-1 (28)

where G̃1 ) [G1 Gd1] and G̃′ ) Wny
-1G̃ ) Wny

-1[G Gd]. It is
here assumed that the number of measurements is ny ) nu +
nd, such that G̃′ is invertible.

For the LV-distillation column case study, we here consider
only temperatures as possible measurements and we do not
consider the feed flowrate as a disturbance because its optimal
variation in temperature is zero (see section 4.1). Then, we have
2 inputs (nu ) 2), 2 disturbances (zF, qF, i.e. nd ) 2), and we
need to select four temperatures (ny ) 4) to obtain perfect
disturbance rejection.

2. Exact local method: The combined effect of disturbances
and implementation error is minimized by finding the matrix H
that minimize the 2-norm of M ) [Md Mn] in eq 17. It can be
shown that this is equivalent to minimizing ||HF̃||22 subject to
HGy ) Juu

1/2, where F̃ ) [FWd Wny] and F ) -(GyJuu
-1Jud -

Gd
y). From this, one can derive an analytic expression for H11

HT ) (F̃F̃T)-1Gy(GyT(F̃F̃T)-1Gy)-1Juu
1⁄2 (29)

Equation 29 holds for any number of measurements (ny).
Note that the solutions in eq 28 and 29 are not unique, so if

H is an optimal solution, another optimal solution is H1 ) DH,
where D is a nonsingular matrix of dimension nu × nu.

5.1. Two-Step Procedure. To avoid the evaluation of the
exact loss (eq 17) for all possible combinations of measurements,
Alstad et al.11 suggested a two-step approach to obtain the
combination of variables.

1. Select the set of measurements applying the suboptimal
method of Alstad et al.11 to maximize the minimum singular
value of the scaled matrix G̃′. The hope is that the scaling S1

and the maximum gain rule should result in a set which is also
insensitive to implementation error.

2. Find H from eq 28 or 29.
5.1.1. Step 1: Selection of Measurements. The suboptimal

approach of maximizing σj(G̃′), where G̃′ ) S1G̃ ) [S1G S1Gd]
was applied to selecting four temperatures in the distillation
column. The temperatures selected are on stages 9, 16, 24, and
33.

5.1.2. Step 2: Perfect Disturbance Rejection. For the
distillation column example with (from step 1)

[c1

c2 ] )H[ T9

T16

T24

T33
] (30)

we find that zero disturbance loss is obtained with

H) G̃1G̃′-1 ) [-0.7068 0.0444 0.0911 -0.0663
0.0442 -0.0376 -0.0766 0.6903 ]

(31)

As the H-matrix is not unique, we have normalized it so that
its 2-norm is equal to 1, i.e., ||H||2 ) 1.

The maximum loss, which in this case is caused by measure-
ment error only, is 0.822 (calculated by exact local method).
Surprisingly, this loss is larger than the value of 0.530 obtained
with the best two single temperatures (see Table 1). This is
because the measurement selection in step 1 is suboptimal and
because the implementation error is not considered when using
eq 28.

5.1.3. Step 2: Exact Local Method. Next, eq 29, which also
accounts for implementation error, was used to obtain the
optimal combination of the four temperatures in eq 30. The
resulting H-matrix is

H) [0.4751 0.3980 -0.2433 -0.0474
-0.0770 0.1070 -0.2456 -0.6905 ] (32)

which gives a maximum loss of 0.582. In this case, the loss
due to disturbance is 0.370 (it is nonzero since we do not have
perfect disturbance rejection) and the loss due to implementation
error is 0.516. The total loss of 0.582 is less than with perfect
disturbance rejection (0.822), but again is larger than the best
combination of two temperatures (0.530). This is because the
measurement selection in step 1 is suboptimal.

To correct for this, we tried another method for selecting
measurements in step 1 (“optimal rule” in the work of Alstad
et al.),11 where we minimize σj(J̃[G Gd]-1Wny). However,
applying this to the distillation example gives temperatures T11,
T19, T21 and T33, and the maximum loss is 1.0226, which is
even worse than before. The conclusion is therefore that the
two-step procedure performs poorly for our distillation case
study.

5.2. One-Step Procedure with Four Measurements. We
here use the exact local method to directly find the truly optimal
combination in one step. There are

Table 1. Steady-State Composition Deviation ∆X with Control of Individual Measurements (c)

Maximum Gain Rule

configuration exact method assume Juu unitary (simplified) S2 ) Juu
-1/2 (correct)

fixed variables (c) ∆X (eq 17) σ_(S1G) est. ∆X (eq 15) σ_(S1GJuu
-1/2) est ∆X (eq 8) ∆X (eq 8)/∆X (eq 17)

T12-T30 0.530 1.508 131 0.783 0.903 1.704
T12-T29 0.541 1.442 137 0.752 0.941 1.739
T14-T28 0.595 1.241 159 0.645 1.100 1.849
T9-T32 0.675 1.548 127 0.792 0.893 1.323
T15-T26 0.706 0.956 206 0.499 1.417 2.007
T15-L/F 0.916 1.531 129 0.607 1.164 1.271
T16-V/F 1.148 1.125 175 0.498 1.419 1.236
T19-L 1.223 0.815 242 0.400 1.767 1.445
T15-L/D 1.321 0.727 272 0.342 2.067 1.565
T22-V 1.470 0.639 309 0.305 2.320 1.578
T24-V/B 1.711 0.571 345 0.261 2.712 1.585
T1-T41 5.000 0.271 728 0.141 5.000 1.000
L/D-V/B 15.80 0.878 225 0.040 17.80 1.127
L/F-V/B 18.60 1.603 123 0.028 25.60 1.376
L-B 21.10 0.805 245 0.020 35.20 1.668
D-V 21.20 0.634 311 0.020 35.20 1.660
L/F-V/F 90.00 1.600 124 0.007 109.0 1.211
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[41
4 ] ) 41 × 40 × 39 × 38

4 × 3 × 2
) 101 270

possible combinations of four temperatures, and we obtained
the best set of four temperatures (T10, T11, T31, and T32) by
applying the exact local method to all combinations. However,
note that Kariwala6 has derived a branch and bound algorithm
that could alternatively have been used to find the best solution
in a more efficient way.

The corresponding optimal combination matrix from eq 29
is

H1 )DH) [ 0.4087 0.4962 0.1880 0.1349
-0.2269 -0.2980 -0.4831 -0.3994 ]

(33)

The maximum loss in this case is 0.440 (0.302 due to
disturbances and 0.407 due to implementation error), which is
now smaller than the best combination of two temperatures
(0.530).

It is interesting to note that it is optimal to select neighboring
temperatures (T10/T11 and T31/T32), and it is also interesting to
note that this location is close to the optimal with only two
measurements (T12 and T30). Apparently, neighboring temper-
atures are optimal for reducing the effect of measurement errors.

Note that H is not unique and by choosing

D) [ 1 0.389
-0.555 -1 ]

we find that another optimal combination matrix is

H1 )DH) [0.320 0.380 0 -0.020
0 0.023 0.379 0.325 ] (34)

which confirms that the optimal combination is approximately
to control an average of T10 and T11 and an average of T31 and
T32.

5.3. All Measurements. To compare with the theoretically
optimal solution, we consider the case where we combine all
41 temperatures. The matrix H was calculated using the
analytical solution for the exact local method, eq 29, resulting
in a maximum loss of 0.226 (0.067 due to disturbance and 0.216
to implementation error), which is the lowest possible.

The results for all the cases studied are summarized in Table
2.

6. Summary and Conclusions

The problem of controlled variable selection is the following:
We have nu independent variables (inputs) u and we want to
select from the candidate measurements y a set of nc ) nu

controlled variables c ) Hy. The objective is that with constant
setpoints (cs) for these controlled variables, the cost J should
be close to its optimal value, in spite of unknown disturbances
and implementation/measurement errors. In this paper, the cost
function J is the setpoint deviation for the primary variables y1

(indirect control); see eq 4.

The number of candidate measurements y is generally larger
or equal to the number of inputs, because we generally include
in the set of candidate measurements y also the inputs u. In
practice, we very rarely use all measurements. Thus, finding c
) Hy consists of two steps:

Step 1. Select a subset of ny measurements to be used for
control.

Step 2. Find H.
In Step 2, there are two main cases:
(a) ny ) nc: control of individual measurements (no further

work is required to find H, e.g., we may select H ) I).
(b) ny > nc: control measurements combinations. Here, H is

a full matrix and two methods have been proposed to find H:
1. Perfect disturbance rejection (measurement errors ne-

glected): H is computed from eq 28. In eq 28, it is assumed
that ny ) nu + nd, so that G̃ is invertible, but more generally,
the extended nullspace method may be used.11

2. Minimize the combined effect of disturbance and measure-
ment errors (exact local method): H computed from eq 29.11

For a specific choice of controlled variables, c ) Hy, one
may use the exact local method, eq 17, to compute the resulting
loss Lmax for combined disturbances and measurement errors.
An upper bound on Lmax is provided by eq 8, from which we
get the maximum gain rule: Select measurements to maximize
σ_(S1GJuu

-1/2), where G is the steady-state gain matrix from u
to c ) Hy and S1 ) diag{1/span(ci)}, where span(ci) ) |ci,opt|
+ |cni|.

Note that efficient branch and bounds algorithms have been
derived for both selecting individual measurements according
the maximum gain rule and for selecting optimal measurement
combinations according to the exact local method.19,20

Several interesting insights can be derived from the results
in this paper:

1. For ill-conditioned plants, like distillation columns, one
needs to include in the maximum gain rule the correct input
scaling S2 ) Juu

-1/2 (where Juu is the Hessian of the cost
function). The simplified maximum gain rule, where we
maximize σ_(S1G), should be avoided for ill-conditioned plants
(where the condition number of Juu is large). This is clearly
illustrated by the results in Table 1.

2. Table 1 shows that the upper bound on Lmax ) ∆X2 in eq
8, which is the basis for the maximum gain rule, provides a
good estimate. It is within a factor 2.012 ) 4.03 of the correct
value for the distillation column example.

3. The two-step procedure, where we first select measure-
ments according to the method suggested by Alstad et al.,11

did not perform well for the distillation example. For the case
with four measurements (ny ) 4), this method selects uncor-
related measurements along the entire column (T9, T16, T24, T33),
whereas the optimal method for this particular example, with
the effect of measurement errors taken properly into account,
is to use correlated measurements from the middle of each
section (T10, T11, T31, T32).

4. The benefit of adding measurements beyond the minimum
(ny ) 2) is small for this particular example and control of two
individual measurements (T12, T30) is acceptable. From Table
2, we find that this gives a product composition deviation (Lmax

1/

2) of 0.530, whereas the best with four temperatures is 0.440
and that with 41 temperatures is 0.226.

In conclusion, the maximum gain rule (maximize σ_(S1GS2)
with S2 ) Juu

-1/2) can be used for selecting individual
measurements as controlled variables (ny ) nc), and even better
results can be obtained with the exact local method, eq 17. For
measurement combinations (ny > nc), the optimal H for the exact

Table 2. Composition Deviation ∆X for Various Configurations:
Summary

∆X

controlled variables c1-c2 disturbance meas noise total

T12-T30 0.376 0.513 0.530
H [T9, T16, T24, T33] (31 from eq 28) 0 0.822 0.822
H [T9, T16, T24, T33] (32 from eq 29) 0.370 0.516 0.582
H [T10, T11, T31, T32] (33 from eq 29) 0.302 0.407 0.440
H [all temperatures] (from eq 29) 0.067 0.216 0.226
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local method is given by eq 29. Kariwala and Cao6 have derived
efficient branch and bound methods that avoid the need to
evaluate all possible combinations.
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