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bstract

In many cases, economic optimal operation is the same as maximum plant throughput, which is the same as maximum flow through the
ottleneck(s). This insight may greatly simplify implementation. In this paper, we consider the case where the bottlenecks may move, with parallel
ows that give rise to multiple bottlenecks and with crossover flows as extra degrees of freedom. With the assumption that the flow through

he network is represented by a set of units with linear flow connections, the maximum throughput problem is then a linear programming (LP)
roblem. We propose to implement maximum throughput by using a coordinator model predictive controller (MPC). Use of MPC to solve the LP
as the benefit of allowing for a coordinated dynamic implementation. The constraints for the coordinator MPC are the maximum flows through

he individual units. These may change with time and a key idea is that they can be obtained with almost no extra effort using the models in the
xisting local MPCs. The coordinator MPC has been tested on a dynamic simulator for parts of the Kårstø gas plant and performs well for the
imulated challenges.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

Real-time optimization (RTO) offers a direct method of max-
mizing an economic objective function. Most RTO systems are
ased on detailed non-linear steady-state models of the entire
lant, combined with data reconciliation to update key param-
ters, such as feed compositions and efficiency factors in units,
ee, for example, Marlin and Hrymak (1996). Typically, the RTO
pplication reoptimizes and updates on an hourly basis the set
oints for the lower-layer control system, which may consists of
et points of local MPCs based on simple linear dynamic models.

steady-state RTO is not sufficient if there are frequent changes
n active constraints of large economic importance. For exam-
le, this could be the case if the throughput bottleneck in a plant
oves frequently, which is the case for the application studied

n this paper. At least in theory, it is then more suitable to use

ynamic optimization with a non-linear model, which may be
ealized using dynamic RTO (DRTO) or non-linear MPC with
n economic objective (Kadam et al., 2003; Tosukhowong, Lee,

∗ Corresponding author.
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ee, & Lu, 2004; Strand, 1991). However, a centralized dynamic
ptimization of the entire plant is undesirable (Lu, 2003). An
lternative is to use local unit-based MPCs, but the resulting
teady-state target calculation may be far from optimal (Havlena

Lu, 2005). Cheng, Forbes, and Yip (2004, 2006, 2007) have
uggested to approach this “coordination” problem by identify-
ng appropriate interactions for linking constraints to find the
teady-state targets for the local MPCs. Rawlings and Stewart
2007) discuss a cooperative distributed MPC framework, where
he local MPC objective functions are modified to achieve sys-
em wide control objectives. Ying and Joseph (1999) propose a
wo-stage MPC complement that track changes in the optimum
aused by disturbances. The approach permits dynamic tracking
f the optimum which is not achievable with a steady-state RTO
sed in conjunction with a single-stage MPC.

In this paper, we present a different and simpler solution that
chieves economic optimal operation without any of these com-
lexities. This solution applies to the common case where prices
nd market conditions are such that economic optimal opera-

ion of the plant is the same as maximizing plant throughput.
he main objective is then to maximize the feed to the plant,
ubject to achieving feasible operation (satisfying operational
onstraints in all units). This insight may be used to implement

mailto:skoge@chemeng.ntnu.no
dx.doi.org/10.1016/j.compchemeng.2007.05.012
skoge
Sticky Note
Note: The "coordinator MPC" coordinates the flows through the network and NOT the setpoints of the local MPCs. The "coordinator MPC" uses as MVs the flows not used by the local MPCs  (feeds, crossovers), and the CVs are the remaining capacities R computed by the local MPCs.  

However, note that there is a coordination between the individual MPCs because feed flows (which depends on other MPCs) are used as disurbances (DVs).
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ptimal operation, without the need for dynamic optimization
ased on a detailed model of the entire plant.

From linear network theory, the max-flow min-cut theorem
Ford & Fulkerson, 1962) states that the maximum throughput in
linear network is limited by the “bottleneck(s)” of the network

Aske, Skogestad, & Strand, 2007). In order to maximize the
hroughput, the flow at the bottlenecks should always be at their

aximum. In particular, if the actual flow at the bottleneck is
ot at its maximum at any given time, then this gives a loss in
roduction that can never be recovered (sometimes referred to
s a “lost opportunity”).

The throughput manipulators (TPMs) are the degrees of free-
om available for implementing maximum throughput. They
ffect the flow through the entire plant (or at least in more than
ne unit), and therefore cannot be used to control an individual
nit or objective. Ideally, in terms of maximizing plant produc-
ion and minimizing the back off, the TPM should be located at
he bottleneck (Aske et al., 2007). However, the bottleneck may

ove depending on plant operating conditions (e.g. feed com-
osition), and it is generally very difficult to change the TPM,
nce a decision on its location has been made. The reason is that
he location of the TPM affects the degrees of freedom avail-
ble for local control, and thus strongly affects the structure of
he local control systems and in particular the structure of the
nventory control system (Buckley, 1964; Price & Georgakis,
993). The TPM will therefore generally be located away from
he bottleneck, for example, at the feed. For dynamic reasons, it
ill then not be possible to achieve maximum flow through the
ottleneck at all times, and a loss in production is inevitable.

The use of a coordinator controller that uses the throughput
anipulators (uc = TPMs) to control the remaining local capac-

ty (yc = R = F l
max − F l) in the units as illustrated in Fig. 1.

n the simplest case with a fixed bottleneck and feed rate as
he TPM, the coordinator may be a single-loop PI-controller
ith the feed rate as the manipulated variable (uc) and the bot-

leneck flow as the controlled variable (yc), Skogestad (2004).
owever, more generally the coordinator must be a multivari-

ble controller. Note from Fig. 1 that the “coordinator” and the
local” controllers for the individual units are actually on the
ame level in the control hierarchy, like in decentralized control.
evertheless, the term coordinator is used because the TPMs
trongly affect all the units and because in general the coordina-
or controller must be designed based on a flow network model
f the entire plant. An alternative to the decentralized structure

ig. 1. The coordinator uses the throughput manipulators (uc = TPMs) to control
he remaining capacity (yc = R) in the units.

n
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ig. 2. Proposed control structure where the coordinator MPC receives infor-
ation from the local MPC about the remaining capacity (R) in the units.

s to combine all the local MPCs into a large combined MPC
pplication that include the throughput manipulators as degrees
f freedom.

Optimal operation corresponds to R = 0 in the bottleneck, but
f the maximum flow through the bottleneck is a hard constraint,
hen to avoid infeasibility (R < 0) dynamically, we need to “back
ff” from the optimal point

ack off (b) = Rs = F l
max − F l

s (1)

More generally, the back off is the distance to the active con-
traint needed to avoid dynamic infeasibility in the presence of
isturbances, model errors, delay and other sources for imperfect
ontrol (Govatsmark & Skogestad, 2005; Narraway & Perkins,
993). The back off is a “safety factor” and should be obtained
ased on information about the disturbances and the expected
ontrol performance.

In this paper, we consider cases where the bottlenecks may
ove and with parallel trains that give rise to multiple bot-

lenecks and multiple throughput manipulators. This requires
ultivariable control and the proposed coordinator MPC both

dentifies the bottlenecks and implements the optimal policy. The
onstraints for the coordinator MPC are non-negative remaining
apacities (R ≥ b ≥ 0) in all units. The values of R may change
ith time and a key idea is that they can be obtained with almost
o extra effort using the existing local MPCs, as illustrated in
ig. 2.

The paper is organized as follows. Economic optimal opera-
ion and the special case of maximum throughput is discussed
n Section 2. Section 3 describes the coordinator MPC in addi-
ion to the capacity calculations in the local MPCs. Section 4
escribes a dynamic simulation case study for a gas plant. A
iscussion follows in Section 5 before the paper is concluded in
ection 6.

. Maximum throughput as a special case of optimal
peration
Mathematically, the optimum is found by minimizing the cost
(i.e. maximize the profit (−J)), subject to satisfying given spec-

fications and model equations (f = 0) and operational constraints

skoge
Sticky Note
Note that this is a decentralized setup, but there is indirect coordination/decoupling -
both between the local MPCs and between the coordinator and the local MPCs -  because 
1. Inclusion of feed disturbances to the local MPCs give one-way decoupling. 
2. Since the process itself is sequential (one-way interactive) this gives almost complete decoupling.

Some more details about the "coordination" between coordinator and local MPCs:
Coordinator: uc=TPM, yc=R (remaining capacities)
Local MPC: ul = [Tcolumnset, Reflux, ..], yl = [compositions, pressure, etc.]

- uc does affect yl (BUT ul is a feed flow disturbance to the local MPCs)
- ul does NOT affect yc=R (the available capacity should not depend on ul!) 
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g ≤ 0). At steady-state:

min
u

J(x, u, d)

s.t. f (x, u, d) = 0

g(x, u, d) ≤ 0

(2)

Here, u are the degrees of freedom (or manipulated variables,
Vs), d the disturbances and x the (dependent) state variables.

he degrees of freedom are split into those used for local control
ul) and the TPMs used for throughput coordinator (uc),

=
[

ul

uc

]
(3)

typical profit function is

−J) =
∑

j

pPjPj −
∑

i

pFiFi −
∑

k

pQk
Qk (4)

here Pj are the product flows, Fi the feed flows, Qk the utility
uties (heating, cooling, power) and p denote the prices.

In many cases, and especially when the product prices are
igh, optimal operation of the plant (maximize −J) is the same
s maximizing throughput. To understand this, let F denote the
verall throughput in the plant, and assume that all feed flows
re set in proportion to F,

i = kF,iF (5)

Then, under the assumption of constant efficiency in the units
independent of throughput) and assuming that all intensive
property) variables are constant, all extensive variables (flows
nd heat duties) in the plant will scale with the throughput F,
.g. Skogestad (1991). In particular, we have that

j = kP,jF ; Qk = kQ,kF (6)

here the gains kP,j and kQ,k and are constants. Note from (6)
hat the gains may be obtained from nominal (denoted 0) mass
alance data:

P,j = Pj0

F0
; kF,i = Fi0

F0
; kQ,k = Qk0

F0
(7)

ubstituting (5) and (6) into (4) gives

−J)=
⎛
⎝∑

j

pPjkP,j −
∑

i

pFikF,i −
∑

k

pQk
kQ,k

⎞
⎠ F=pF

(8)

here p is the operational profit per unit of feed F processed.
rom the above derivation, p is a constant for the case with
onstant efficiencies. We assume p > 0 such that we have a
eaningful case where the products are worth more than the

eedstocks and utilities. Then, from (8) it is clear that maximiz-

ng the profit (−J) is equivalent to maximizing the throughput
. However, F cannot go to infinity, because the operational
onstraints (g ≤ 0) related to achieving feasible operation (indi-
ectly) impose a maximum value for F.

b
r
t
c
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In practice, the gains kP,j and kQ,k and are not constant,
ecause the efficiency of the plant changes. Usually, opera-
ion becomes less efficient and p decreases when F increases.
evertheless, as long as p remains positive, d(−J)/dF = p > 0 is
on-zero, and we have a constrained optimum with respect to
he throughput F. From (8), we see that p will remain positive
nd optimal operation is the same as maximum throughput if
he feed is available and product prices pP,j are sufficiently high
ompared to the prices of feeds and utilities.

. Coordinator MPC for maximizing throughput

The overall feed rate (or more generally the throughput)
ffects all units in the plant. For this reason, the throughput is
sually not used as a degree of freedom for control of any indi-
idual unit, but is instead left as an “un-used” degree of freedom
o be set at the plant-wide level. Most commonly, the through-
ut manipulators (uc) are set manually by the operator, but the
bjective here is to coordinate them to achieve economic optimal
peration.

It is assumed that the local controllers (e.g. local MPCs)
re implemented on the individual units. These adjust the local
egrees of freedom ul such that the operation is feasible. How-
ver, local feasibility requires that the feed rate to the unit F l

k

s below its maximum capacity, F l
k,max, and one of the tasks of

he plant-wide coordinator is to make sure that this is satisfied.
l
k,max may change depending on disturbances (e.g. feed compo-
ition) and needs to be updated continuously. One method is to
se the already existing models in the local MPCs, as discussed
n Section 3.2.

.1. The coordinator MPC

The steady-state optimization problem (2) can be simpli-
ed when the optimal solution corresponds to maximizing plant

hroughput. Consider the steady-state optimization problem

ax
uc

(−J) s.t. (9)

l = Guc (10)

= F l
max − F l ≥ b ≥ 0 (11)

c
min ≤ uc ≤ uc

max (12)

Here, Fl is a vector of local feeds to the units and R is a
ector of remaining capacities in the units. If the objective is to
aximize throughput with a single feed, then (−J) = F. More

enerally, with different values of the feedstocks and products,
he profit function in (4) is used. G is a linear steady-state network

odel from the throughput manipulators uc (independent feed
nd crossover flows) to all the local flows Fl. In order to achieve
easible flow through the network, it is necessary that R ≥ 0 in all
nits. However, to guarantee dynamic feasibility, an additional

ack off from the capacity constraint may be required, which is
epresented by the vector b in (11). The main difference from
he original optimization problem (2) is that only uc (TPMs) are
onsidered as degrees of freedom for the optimization in (9)–(12)
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nd that the original constraints for the units (f = 0, g ≤ 0) are
eplaced by a linear flow network and flow constraints (R ≥ b).

It is assumed that the local controllers generate close-to
ptimal values for the remaining degrees of freedom ul, while
atisfying the original equality (f = 0) and inequality constraints
g ≤ 0). This implies that no coordination of the local controllers
s required, or more specifically that constant set points for
he local controllers give close to optimal operation. In other
ords, it is assumed that we for the local units can identify

self-optimizing” controlled variables Skogestad (2000). If this
s not possible then centralized optimization (RTO or maybe
ven DRTO) is required.

With the linear profit function (−J) in (4), the optimization
roblem in (9)–(12) is an LP problem. The optimal solution to an
P problem is always at constraints. This means that the number
f active constraints in (11) and (12) must be equal to the number
f throughput manipulators, uc. Note that an active constraint in
11) corresponds to having Rk = F l

max,k − F l
k = bk, that is, unit

is a bottleneck. This agrees with the max-flow min-cut theorem
f linear network theory. However, to solve the LP problem, we
ill not make use of the max-flow min-cut theorem.
The steady-state optimization problem in (9)–(12) can be

xtended to the dynamic optimization problem:

in
uc

(J − Js)
2 + �ucTQu�uc s.t. (13)

l = Gdynu
c (14)

= F l
max − F l ≥ b ≥ 0 (15)

c
min ≤ uc ≤ uc

max (16)

uc
min ≤ �uc ≤ �uc

max (17)

Maximum throughput under the presence of disturbances is
ynamic in nature, and here, Gdyn is a linear dynamic model
rom uc (manipulated variables, MVs) to the remaining capacity
n each unit, Rk. Obtaining the dynamic models may be time
onsuming. However, it is possible to use simple mass balances
o calculate the steady-state gains of Gdyn, see (7).

The dynamic cost function (13) includes penalty on the MV
oves to ensure robustness and acceptable dynamic perfor-
ance. The constraints are: back off on capacity to each unit

15), MV high and low limits (16) and MV rate of change limits
17). MV rate of change is mainly a safeguard for errors and is
ormally not used for tuning.

The term �ucTQu�uc makes the objective function
uadratic, whereas the objective function in the original prob-
em (9) is linear. To obtain a quadratic objective function that fits
irectly into the MPC software used here, we have used a com-
on trick of introducing a quadratic term (J − Js)2. The profit

et point Js is a high and unreachable with a lower priority than
he capacity constraints. An alternative approach would be to
nclude a linear term in J in (13).

Standard MPC implementations perform at each time step

wo calculations (Qin & Badgwell, 2003). First, the steady-state
ptimization problem with all the constraints is solved to obtain
feasible steady-state solution. Second, the dynamic problem is

olved using the feasible targets obtained from the steady-state

o
w
(

cal Engineering 32 (2008) 195–204

alculation. In our case, the steady-state part gives a feasible set
oint for the profit (or total flow) that replaces Js in the sub-
equent solution of the dynamic problem. The dynamic terms
nvolving �uc do not matter in the steady-state part, so the
teady-state solution is identical to the LP problem in (9)–(12).

It is assumed that the local controllers (including local MPCs)
re closed before obtaining the dynamic flow model Gdyn. To
nsure stability, it is then advisable that the coordinator operates
ith a longer time horizon than the local MPCs.

.2. Capacity calculations using local MPCs

An important parameter for the coordinator is the maximum
ow for the individual (local) units, F l

max. A key idea in the
resent work is to obtain updated values using on-line informa-
ion (feedback) from the plant. Note that it is not critical that
he estimate of the maximum capacity is correct, except when
he unit is actually approaching its maximum capacity and the
orresponding capacity constraint R = F l

max − F l ≥ b becomes
ctive. The use of on-line information from the actual plant will
nsure that this is satisfied.

In simple cases, one may update the maximum capacity using
he distance (�constraint ≥ 0) to a critical constraint in the unit,

l
max = F l + c�constraint

here c is a constant and Fl is the present flow through the unit.
or example, for a distillation column �pmax − �p could be
ifference between the pressure drop corresponding to flooding
nd the actual pressure drop.

In more complex cases, there may be more than one con-
traint that limits the operation of the unit and thus its maximum
apacity. MPC is often implemented on the local units to improve
ynamic performance and avoid complex logic. The maximum
eed for each unit k can then be easily estimated using the already
xisting models and constraints in the local MPC applications.
he only exception may be that the model must be updated to

nclude the feed to the unit, F l
k, as an independent variable. The

aximum feed to the unit k is then obtained by solving the
dditional steady-state problem:

l
k,max = max

ul
k
,F l

k

F l
k (18)

ubject to the linear model equations and constraints of the local
PC, which is a LP problem. Here, ul

k is the vector of manipu-
ated variables in the local MPC, and the optimization is subject
o satisfying the linear constraints for the unit. To include past

V moves and disturbances, the end predictions of the variables
hould be used instead of the present values.

. Kårstø gas processing case study
The Kårstø plant treats gas and condensate from central parts
f the Norwegian continental shelf. The products are dry gas,
hich is exported through pipelines, and natural gas liquids

NGL) and condensate, which are exported by ships. The Kårstø

skoge
Sticky Note
Change "To ensure stability" to "For good performance", because a long time horizon is by itself not sufficient to achieve stability. 
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Fig. 3. The simulated

lant plays a key role in the pipeline structure in the Norwe-
ian Sea and therefore is maximum throughput usually the main
bjective.

Also, from an isolated Kårstø point of view, the plant has rela-
ive low feed and energy costs and high product prices that favors
igh throughputs. There are no recycles in the plant. Usually,
eed is available and can be manipulated within given limits.

The feed enters the plant from three different pipelines and
he feed composition may change frequently in all three lines.
hanges in feed compositions can move the main bottleneck

rom one unit to another and affect the plant throughput. The
oordinator MPC approach has been tested with good results
sing the Kårstø Whole Plant simulator. This is a dynamic sim-
lator built in the software D-SPICE®.

.1. The case

To demonstrate the applicability of the coordinator MPC, we
se a detailed simulator model of parts of the Kårstø plant. To
void the need for large computer resources to run the process
imulator, only parts of the whole plant are used in the case study,
ee Fig. 3. The selected parts include two fractionation trains,
100 and T300. Both trains have a deethanizer, depropanizer,
ebutanizer and a butane splitter. In addition T300 has two sta-
ilizers in parallel. There are six throughput manipulators (uc)
s indicated by valves in Fig. 3: two main train feeds, two liquid
treams to the trains from the dew point control unit (DPCU),
crossover from train T100 to T300, and a flow split for the

arallel stabilizers in train T300.
The local MPCs and the coordinator are implemented in

tatoils SEPTIC1 MPC software (Strand & Sagli, 2003). Data
xchange between the simulator and the MPC applications
s done by the built-in D-SPICE®OPC server. The detailed
ynamic simulator was used to obtain “experimental” step
esponse models (G ) in the coordinator MPC. This approach
dyn
as been found to work well in practice (Strand & Sagli,
003).

1 Statoil Estimation and Prediction Tool for Identification and Control.

s

(
(
(

of the Kårstø plant.

.2. Implementation of the local MPCs

The main control objective for each column is to control the
uality in the top and bottom streams, by manipulating boil-up
V) and reflux flow (L). In addition, the column must be kept
nder surveillance to avoid overloading, which is an important
ssue when maximizing throughput. Column differential pres-
ure (�p) is used as an indicator of flooding (Kister, 1990). The
emaining feed capacity for each column (Rk) is calculated in
he local MPC.

The LV-configuration with a temperature loop is used for
egulatory control of the columns (Skogestad, 2007), and the
ocal MPCs are configured as follows:

CV (set point + constraint): Impurity of heavy key component.
CV (set point + constraint): Impurity of light key component.
CV (constraint): Column differential pressure.
MV: Reflux flow rate set point.
MV: Tray temperature set point in lower section.
DV: Column feed flow.

These MVs correspond to ul (local degrees of freedom), and
Vs are the same as yl. The feed rate is a disturbance variable

DV) for the local MPC, and is used as a degree of freedom when
olving the extra LP problem to obtain the remaining capacity
R) to be used by the coordinator. Some of the columns have
dditional limitations that are included as CVs in the local MPC.
he product qualities are described as impurity of the key com-
onent and a logarithmic transformation is used to linearize over
he operating region (Skogestad, 1997). The high limits on the
roduct qualities are given by the maximum levels of impurity
n the sales specifications and the differential pressure high limit
s placed just below the flooding point.

The control specification priorities for solving the steady-
tate feasibility problem for the local MPC are as follows:
1) High limit differential pressure.
2) Impurity limits.
3) Impurity set points.
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here (1) has the highest priority. The priority list is used in
he steady state part in the MPC solver and leads to relaxation
f the impurity set points (and in worst case limits) to avoid
xceeding the differential pressure high limit (Strand & Sagli,
003). By quality relaxation the column can handle the given
eed rate without flooding the column. The low-priority quality
et points are not used when solving the extra steady-state LP
roblem to obtain the remaining capacity R, because set point
eviations are acceptable if the alternative is feed reduction.

The local MPC applications are built with experimental step
esponse models as described in Aske, Strand, and Skogestad
2005). The prediction horizon is 3–6 h, which is significantly
onger than the closed-loop response time. The sample time in
he local MPC is set to 1 min. From experience, this is sufficiently
ast for the distillation column applications and is the actual
ample time used in the plant today.

.3. The design and implementation of the coordinator
PC

The objective function for the coordinator is to maximize
he total plant feed, −J = F =

∑
Fi, which is the sum of the

rain feeds and the flows from the DPCU (FEEDT300VWA +
1FC5288VWA +21FC5334VWA+21FR1005VWA). The CVs
nd MVs for the coordinator MPC are:

CV (high set point): Total feed flow F to the plant (PLANT
FEED).
CVs (constraints): Remaining feed capacity Rk in columns, 10
in total (R-ET100, R-PT100, R-BT100, R-BS100, R-STAB1,
R-STAB2, R-ET300, R- PT300, R-BT300, R-BS300).
CV (constraint): T100 deethanizer sump level controller out-
put (LC OUTLET).
MV: Feed train 100 (21FR1005VWA).
MV: Feed train 300 (FEEDT300VWA).
MV: Feed from DPCU to train 100 (21FC5334VWA).
MV: Feed from DPCU to train 300 (21FC5288VWA).
MV: Crossover flow from T100 to T300 (24FC5074VWA).
MV: Stabilizers feed split (27FC3208VWA).

These MVs correspond to uc (coordinator degrees of free-
om). The deethanizer sump level controller output CV (gives
he feed to PT100) is used to avoid emptying or overfilling up
he sump level in ET100 when manipulating the crossover. The
otal plant feed has a high unreachable set point with low pri-
rity. The remaining feed capacity low limits, and high and low
imits of the level controller output have high priority.

Note that each train has two feeds; one train feed and one
rom the dew point control unit (DPCU). The two feeds have
ifferent compositions, and this makes it possible for the coor-
inator to adjust the feed composition, and thus adjust the load to
pecific units. The two stabilizers are identical in the simulator,
o the stabilizer split (27FC3208VWA) will ensure equal load to

he stabilizers. The coordinator uses experimental step response

odels, obtained in the same way as for the local MPCs. The
odels were obtained at 80–95% of the maximum throughput,
hich is typical for the current plant operation. The coordinator

4

1
c
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xecution rate is slower than in the local MPCs to ensure robust-
ess and is here chosen to be 3 min. The prediction horizon is
et to 20 h.

The coordinator attempts to maximize the total feed rate
hile satisfying the capacity constraints for the units. Since the

apacity constraints are “hard”, it is necessary to introduce at
teady-state a back off b to ensure R ≥ 0 also dynamically. Tun-
ng of the coordinator MPC is a trade-off between robustness
nd MV (feed) variation on the one side and keeping the flows
hrough the bottlenecks close their maximum on the other side.
he required back off b needs to be obtained after observing
ver some time the performance of coordinator MPC. In the
ase study, the value of b is about 1–2% of the feed to the unit.

.4. Results from the simulator case study

The coordinator MPC performance is illustrated with three
ifferent cases:

Take the plant from unconstrained operation (with given feed
rate) to maximum throughput (at t = 0 min).
Change in feed composition (at t = 360 min).
Change in a CV limit in a local MPC (at t = 600 min).

All three cases are common events at the Kårstø plant. Feed
omposition changes are the most frequent ones. The coordina-
or should also be able to handle operator changes in the local

PCs as illustrated by changing a local CV limit.
The most important CVs in the coordinator MPC are dis-

layed in Fig. 4 and the corresponding coordinator MVs are
hown in Fig. 5. CVs far from their constraints are omitted. The
ertical lines in the Figures indicate the time where disturbances
re introduced (Cases 2 and 3). The back off from the capacity
onstraints is indicated by dashed horizontal lines in Fig. 4. Fig. 6
hows the response of a local MPC application (BS100).

.4.1. Case 1: Take the plant to maximum throughput
Initially, the plant is not operating at maximum throughput,

nd Fig. 5 shows that all four feed rates are ramped up over the
rst hour. The crossover (24FC5074VWA in Fig. 5) is reduced to
nload train 300 where BS300 is close to its capacity limit even
nitially (the plant is not steady state at t = 0 min). From Fig. 4,
T100 and the T300 stabilizers (Stab1 and Stab2) impose a bot-

leneck upstream of the crossover, whereas BS300 is a bottleneck
ownstream the crossover, at least for some period. The remain-
ng capacity in BS300 violates its lower limit of b = 1.6 t/h, and
s actually just below zero for some time. Hence, the back off

is not sufficiently large to keep the remaining capacity just
bove zero in this case. From Fig. 6, we see that the local MPC
pplication for BS100 relaxes the quality set points because the
olumn reaches the differential pressure high limit.
.4.2. Case 2: Change in feed composition
A feed composition step change is introduced to the train

00 feed (sum of 21FR1005VWA and 21FC5335VWA). The
omposition change is given in Table 1 and occurs at time
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Fig. 4. The most important CVs in the coordinator MPC (

= 360 min, at the first vertical line in Figs. 4–6. The reduc-
ion in ethane content leads to an increase in the remaining feed
apacity in ET100, which is a bottleneck at that time, and the
oordinator can increase the train feed. However, the increase

n iso-butane content reduces the remaining feed capacity in the
urther downstream butane splitter (BS100), which becomes a
ew bottleneck. The coordinator increases the crossover to make
se of some remaining capacity in train 300.

able 1
he feed composition change in the T100 feed at t = 360 min

omponent Nominal (mol%) Points change (%)

thane 37.3 −1.1
ropane 35.4 0.71

so-Butane 5.64 5.6
-Butane 11.3 −0.34
so-Pentane 1.79 0.09
-Pentane 1.79 0.10

r
M
T
(
s
l
l
i

5

(
m

with CV limits (dotted). Vertical lines indicate new case.

.4.3. Case 3: Change in a CV limit in a local MPC
The bottom quality high limit in BS100 is reduced at a time

here BS100 is already operating at its capacity limit, as can
e seen at t = 600 min in Fig. 6. This leads to a reduction in the
emaining feed capacity in BS100 of about 2 t/h. The coordinator

PC responds by increasing the crossover flow from T100 to
300 in addition to T100 feed reduction. The two butane splitters

BS100 and BS300) are now the bottlenecks together with the
tabilizers. As expected, the overall effect of the stricter quality
imit is reduction in the total plant feed. The reduction takes a
ong time, however, because the bottleneck in the butane splitters
s quite far from the plant feeds.

. Discussion
The main assumption behind the proposed coordinator MPC
see (13)–(17)), is that optimal operation corresponds to maxi-
um throughput. This will always be the case if the flow network



202 E.M.B. Aske et al. / Computers and Chemical Engineering 32 (2008) 195–204

he co

(
a
m
u
n
a
p
t
m
h
s
p

i
r
c

c
e

m
b
c
t
d
p

b
a
a
t
b
n
M
a

Fig. 5. MVs in t

Gdyn) is linear because we then have a LP problem. However,
s discussed in Section 2, even a non-linear network will have
aximum throughput as the optimal solution provided the prod-

ct prices are sufficiently high. Thus, the use of a linear flow
etwork model (Gdyn) in the coordinator MPC is not a critical
ssumption. The coordinator identifies the maximum through-
ut solution based on feedback about the remaining capacity in
he individual units, and the main assumption for the network
odel is that the gains (from feed rates to remaining capacities)

ave the right sign. Nevertheless, a good network model, both
tatic and dynamic, is desired because it improves the dynamic
erformance of the coordinator MPC.

In this application, the remaining capacity is obtained for
ndividual units. However, in some cases, for example, reactor-
ecycle systems, it may be better to consider system bottlenecks

aused by the combination of several units (Aske et al., 2007).

By using a decoupled strategy based on the remaining feed
apacity in each unit, the coordinator MPC exploits the already
xisting models in the local MPCs. This leads to a much smaller

n
r
t

ordinator MPC.

odelling effort compared to alternative approaches, like RTO
ased on a detailed non-linear model of the entire plant. The
omputation time in the coordinator MPC is small, and facili-
ates fast corrections of disturbances, model errors and transient
ynamics. The coordinator MPC effectively solves the DRTO
roblem with acceptable accuracy and execution frequency.

An alternative coordinator MPC strategy would be to com-
ine all the local MPCs into one large combined MPC
pplication including the throughput manipulators. However, for
complete plant the application will be over-complex leading

o challenging modelling and maintenance. The improvement
y using a combined approach compared to our simple coordi-
ator MPC is expected to be minor since the set points to the
PC are not coordinated. Set point coordination would require
non-linear model for the entire plant, for example, RTO.
A back off from the maximum throughput in the units is
ecessary due to unmeasured disturbances and long process
esponse times. The back off should be selected according
o the control performance and acceptable constraint viola-
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Fig. 6. CVs, MVs and DV in BS100 MPC. Horiz

ions. In general, the back off can be reduced by improving
he dynamic network model and including more plant infor-

ation to allow for feed-forward control. For example, feed
omposition changes could be included in the coordinator MPC
o improve performance. Due to the lack of fast and explicit
eed composition measurements in the plant, feed composition
hanges are treated as unmeasured disturbances in the simu-
ations in the current concept. However, the concept can be
xtended by using intermediate flow measurements as indicator
or feed composition changes. Therefore, the use of alterna-
ive model structures that will simplify and propagate model
orrections from intermediate flow measurements should be
valuated.

The most effective way of reducing the back off is to introduce
hroughput manipulators that are located closer to the bottle-
ecks. This reduces the dynamic response time and gives tighter

ontrol of the flow through the bottleneck. In the case study,
he crossover flow introduces a throughput manipulator in the

iddle of the plant, which improves the throughput control of
he units downstream the crossover. It is also possible to include

M
c
d
T

lines are set points (dashed) and limits (dotted).

dditional dynamic throughput manipulators that make use of
he dynamic buffer capacity in the various units and intermediate
anks in the network.

The coordinator requires that the local MPC are well tuned
nd work well. If the local MPC is not well tuned, a larger back
ff is needed to avoid constraint violation in the coordinator
PC. In the case study, the BS300 MPC should be retuned to

ive less oscillations at high throughputs.

. Conclusion

In many cases, optimal operation is the same as maximum
hroughput. In terms of realizing maximum throughput there
re two issues, first identifying bottleneck(s) and second, imple-
enting maximum flow at the bottleneck(s). The first issue is

olved by using the models and constraints from the local unit

PC applications to obtain an estimate of the remaining feed

apacity of each unit. The second issue is solved using a stan-
ard MPC framework with a simple linear flow network model.
he overall solution is a coordinator MPC that manipulates on



2 hemi

p
d
o
c

R

A

A

B

C

C

C

F
G

H

K

K

L

M

N

P

Q

R

S

S

S

S

S

S

S

04 E.M.B. Aske et al. / Computers and C

lant feeds and crossovers to maximize throughput. The coor-
inator MPC has been tested on a dynamic simulator for parts
f the Kårstø gas plant, and it performs well for the simulated
hallenges.
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