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Abstract

In our previous work on ”self-optimizing control” we look for simple control policies to implement
optimal operation. In particular, we have looked at ”what should we control” (choice of controlled
variables (CV ’s)). For quadratic problems with linear constraints, optimal linear variable combinations
c = Hy may be obtained. In this work, we apply these results to model predictive control and rederive
the results by Bemporad et al. [2002] on explicit MPC. More importantly, we derive some new results
and insights. One is that tracking the value of c (deviation from optimal feedback law) for all regions,
may be used to identify changes between constraint regions. We also have new ideas on output feedback
and including measurement noise.

1 Executive summary

1.1 Our starting point

In our previous work on ”self-optimizing control” we look for simple control policies to implement optimal
operation. In particular, we have looked at ”what should we control” (choice of controlled variables
(CV ’s)). Using off-line optimization we determine regions where different sets of active constraints are
active, and implementation of optimal operation is then in each region to:

1. Control the active constraints.

2. For the remaining unconstrained degrees of freedom: Control ”self-optimizing” variables c which
have the property that keeping them constant (c = cs) indirectly achieves close-to optimal operation
(with a small loss), in spite of disturbances d. We here consider linear measurement combinations,
c = Hy. There are here two factors that should be considered:

(a) Disturbances d. Ideally, we want the optimal value of c (copt) to be independent of d.

(b) Measurements errors ny. The loss should be insensitive to these.
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1.2 Relationship to explicit MPC

Consider a simple static optimization problem minu J(u, d), where u are the unconstrained degrees of
freedom. Consider the quadratic case

J(u, d) = [u d]T S[u d]

where S =
[

Juu Jud

Jud
T Jdd

]
.

(1)

A key result, which is the basis for this report, is (see proof below):

For a quadratic optimization problem there exists (infinitely many) linear measurement combinations c =
Hy that are optimally invariant to disturbances d.

A key issue to identify a good set y that leads to a simple implementation.

One sees immediately that there may be some link to explicit MPC, because the discrete form MPC
problem can be written as a static quadratic problem. The link is: If we let y contain the inputs u and
the states x, then the variables c = Hy give the optimal feedback law, c = u − Kx.

Based on this, we provide in this report some new ideas on explicit MPC:

1. We propose that tracking the variables c (deviation from optimal feedback law) for all regions, may
be used as a local method to detect when to switch between regions.

2. We may use our results to include measurement error in y (e.g. in x and u) when deriving the
optimal explicit MPC.

3. We may extend the results to output feedback (c = u − Ky) by including in y present and past
outputs (and not present states x).

4. We can also extend the results to the case where only a subset of the states are measured (but in this
case there will be a loss, which we can quantify). This may be of interest even in the unconstrained
LQ case.

1.3 Some more details

First, a proof of the statement For a quadratic optimization problem there exists (infinitely many) linear
measurement combinations c=Hy that are optimally invariant to disturbances d

When there is a disturbance, the optimal system state will generally depend on disturbances, and we
may write yopt = Fd, where F is the optimal sensitivity matrix. For example, it is easy to show that
the optimal input is linear in d: uopt = −J−1

uu Judd. Then if we assume y depends linearly on u and d,
y = Gyu + Gy

dd, we get F = GyJ−
uu1Jdu − Gy

d, and we see that F is a constant matrix.

1.3.1 Nullspace method

We look for linear combinations, c = Hy, that are optimally invariant to d, that is, we want copt = Hyopt =
HFd = 0. This should be satisfied for any d, so the requirement becomes HF = 0, that is, H should



be in the left nullspace of F . It is always possible to find such an optimal H (in the left nullspace of
F ), provided the matrix G̃y = [Gy Gy

d] from [u d] to y has full row rank, which in particular requires
ny ≥ nu + nd.

This provides a proof of the statement and also gives the ”nullspace method” for finding H. Next, consider
a more general method that also includes measurement noise.

1.3.2 Exact local method

With measurement error, there are no optimal invariants, so let us instead look for variable combinations
c = Hy which have the property that when added as extra constraints to the original optimization problem,
they give a minimal extra loss, L = zTz. The ”loss” variables z may be written z = Mdd

′ +Mnyny′
, where

d′ and ny′
are the normalized disturbances and measurements errors. Minimizing the (extra) loss is then

equivalent to minimizing the norm of the matrix M = [Md Mny ], that is we want to solve the problem
minH ‖M(H)|‖. Some algebra gives that this may be reformulated as

min
H

‖HF̃‖ subject to HGy = J1/2
uu , (2)

where F̃ = [FWd Wny ].

Comments:

1. If we use the Frobenius norm, then this is a QP problem subject to linear constraint, and an analytic
solution is available.

2. For the special case with no measurement error (Wny = 0), the (extra) loss is zero, provided we have
sufficient number of measurements such that we can get HF = 0.

3. This general formulation applies also when we do not have sufficient number of measurements, and
we can find the corresponding loss and optimal H.

This ends the ”executive summary”. More details are found in the rest of the report. We are grateful for
any comments you may have!



2 Introduction

Consider the general static optimization problem:

min
u0,x

J0(x, u0, d)

s.t. fi(x, u0, d) = 0, i ∈ E
hi(x, u0, d) ≥ 0, i ∈ I,

(P1)

where x ∈ R
nx are the states, u0 ∈ R

nu0 are the inputs, and d ∈ D ⊂ R
nd are disturbances. Usually f is

a model of the physical system, whilst h is a set of inequality constraints that limits the operation (e.g.,
physical limits on temperature measurements or flow constraints) Alstad and Skogestad [2007a].

In addition to (P1) we have measurements on the form

y0 = fy(x, u0, d). (3)

Remark 2.1 (Note on notation). The ”original” degrees of freedom are denoted u0, and in regions where
some constraints are active the remaining subset of unconstrained degrees of freedom are denoted u. The
”original” measurements from the underlying process (which may include measured states and measured
disturbances) are denoted y0, but we often refer to an extended candidate set y of ”measurements” that
are used when selecting the controlled variables, c = Hy. The candidate ”measurements” c may include,
in addition to y0, also the (original) degrees of freedom u0.

In this work the emphasis is on implementation of the solution to (P1). This means that problem (P1) is
solved off-line to generate a “control policy” that is suitable for on-line implementation, especially with
emphasis on remaining close to optimal solution when there are unknown disturbances. That is, we search
for “control policies” such that we remain optimal or close to optimal when disturbances occur without
the need to reoptimize. In terms the optimization problem (P1), the “control policy” may be viewed as
an additional set of constraints that we impose, and the objective is that these extra constraints should be
(1) suitable for easy implementation and (2) such that the loss in terms of the cost J0 is acceptable. For a
quadratic problem with linear constraints we will prove that the loss imposed by introducing a linear set
of constraints (c = Hy = constant) may be zero if H is selected optimally.

Let us now return to the optimization problem itself (and not the implementation of the optimal solution).
At the solution of (P1) some of the inequalities may be active and we define the active set:

Definition 2.1 (Active set Nocedal and Wright [1999]). The active set A(x, u0, d) at any feasible (x, u0, d)
is the union of the set E with the indices of the active inequality constraints; that is,

A(x, u0, d) = E ∪ {i ∈ I|hi(x, u0, d) = 0} (4)

Notice that the disturbances d may be considered to be parameters in (P1). Assume d can vary freely in
the disturbance space D. Inspired by Bemporad et al. [2002] we define critical regions as:

Definition 2.2 (Critical region). A critical region CRi is the set of all vectors d ∈ Di ⊆ D such that the
optimal active set Ai remains unchanged.

An important property of the solution of (P1) is the optimal active set A. Assume that this is known a
priori to solving (P1). Then solving (P1) is the same as solving the reduced problem in definition 2.3.



Definition 2.3 (Reduced problem). Given (P1), a reduced problem is when the set of equations corre-
sponding to the (assumed known) active set A is substituted into the original objective function J0. This
yields an unconstrained optimization problem

min
u

J(u, d), (P2)

where we notice that the states x have been removed from the problem formulation. The degrees of freedom
for optimisation are the dimension of u, which is

dim(u) = dim(u0) − NA, (5)

where NA is the number of active inequality constraints.

Example 2.1 (Forming the reduced problem). Consider the optimization problem:

min
x,u0

J0 = x2
1 + u2

1 + u2
2 + u2d

s.t x1 = u1

x1 ≥ 5

If d is such that the constraint x1 ≥ 5 is active, the reduced problem will be

min
u=u2

J = 2 · 52 + u2
2 + u2d.

Observe that dim(u) = dim(u0) − NA = 2 − 1 = 1 = dim(u2).

Locally, around the optimum, the optimization problem in definition 2.3 may be approximated by a
quadratic problem (by using the first-order optimality condition Ju = 0 and assuming Jd = 0 since we
cannot in any case correct for a first-order change in d on the cost):

Definition 2.4 (Reduced quadratic problem). For the quadratic optimization problem with linear con-
straints,

min
u0,x

J(u0, x, d) =
[
x u0 d

]
S

⎡⎣ x
u0

d

⎤⎦
subject to Ax + Bu + Cd = 0

(6)

we can form the following unconstrained quadratic optimization problem:

min
u

J(u, d) =
[
u d

] [Juu Jud

JT
ud Jdd

] [
u
d

]
, (7)

when A is invertible.

Juu, Jud may be calculated from the matrices S,A,B,C. This is demonstrated in the following example.

Example 2.2. Consider a static quadratic optimization problem in non-reduced form,

min
u,x

(xT Qx + uT Pu)

s.t. Ax + Bu + Cd = 0.
(8)

It can be written in this form (7), with Juu = P + BTA−T QA−1B and Jud = BTA−T QA−1.



For a quadratic programming problem the parameter space can be partitioned into sets of critical regions
using parametric programming Bemporad et al. [2002]. In each critical region the active set will then be
known and the reduced problem (P2) can be formed.

Note that for general optimization problems (P2) may not be a simple function of u, d Alstad and Skogestad
[2007a].

From an implementation point-of-view knowledge of the active inequalities are important because it is
optimal to implement these as controlled variables Skogestad [2004].

The rest of this paper is organized as follows: In section 3 we will review earlier results from self-optimizing
control and apply these results to quadratic programming problems, leading to new insights. In section 4
the results from section 3 will be applied to the explicit MPC problem, where we propose a method for
tracking the current region. To the authors knowledge this method is new.

3 Results from self-optimizing control

The goal of self-optimizing control is to find a set of variables which, when kept at constant setpoints,
indirectly lead to near-optimal operation with acceptable loss Skogestad [2000]. In this section we will
present results from previous work on self-optimizing control and relate them to quadratic optimization
problems. We follow the notation from Halvorsen et al. [2003].

3.1 Steady state conditions

Assume we have partitioned the disturbance space into critical regions by solving a parametric program-
ming problem. For the i’th region we have N i

A active constraints. The linearized steady-state input-output
relationship is given by:

y = Gyu + Gy
dd, (9)

where Gy and Gy
d are formed on the basis of the reduced problem (P2) (See figure 1). The unconstrained

measurements y contains information about the present state and disturbances (y may include u0 and d,
but not the active constraints.) The (measured) value of ym available for implementation is

ym = y + ny, (10)

where ny represents uncertainty in the measurement of y including uncertainty of implementation in u.

Theorem 3.1 (Nullspace method Alstad and Skogestad [2007a], Alstad and Skogestad [2007b]). Assume
that we have nu independent unconstrained free variables u, nd independent disturbances d, ny indepen-
dent measurements y, and we want to obtain nc = nu independent controlled variables c that are linear
combinations of the measurements

c = Hy (11)

If ny ≥ nu + nd and there is no implementation error or measurement uncertainty, (nc = 0, ny = 0), there
exists an optimal combination matrix H such that when controlling c and constant setpoint cs, optimal
operation is achieved locally. More specifically, by “locally” is meant in the region close to the optimum
where the quadratic optimization problem (2.4) and the linear relationship (9) applies.
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Figure 1: Block diagram of a feedback control structure including an optimization layer Alstad and
Skogestad [2007b].

The optimal measurement combination matrix H is found by either:

1. Let

F =
∂yopt

∂dT
(12)

be the optimal sensitivity matrix evaluated with constant active constraints. Under the assumptions
stated above possible to select the matrix H in the left nullspace of F , H ∈ N (FT), such that we get

HF = 0 (13)

2. Choose

H = M−1
n J̃(G̃y)−1, (14)

where J̃ =
[
J

1/2
uu J

−1/2
uu Jud

]
and G̃y =

[
Gy Gy

d

]
is the augmented plant. M−1

n may be seen as a
free parameter. (Note that Mn = Jcc is the Hessian of the cost with respect to the c-variables; in
most cases we select Mn = I for convenience.)

Proof. See Alstad and Skogestad [2007a] and Alstad and Skogestad [2007b] and also the executive summary
for a simple derivation of (13).

Remark 3.1. With this choice for H, fixing c (at its nominal optimal value) is first-order optimal for
disturbances d; that is, the loss is zero as long as the sensitivity matrix F does not change.

Remark 3.2. The optimal F matrix is given by

F = − (GyJ−1
uu Jud − Gy

d

)
(15)

where J is the reduced space objective function. See the executive summary for a simple derivation of this
result.



The above statements are close to the ones Alstad and Skogestad [2007a], and they are now stated in a
different form more suitable for the present work. Specifically, we state two results where Theorem 3.1 is
applied to first an unconstrained quadratic optimization problem (theorem 3.2), and then to a constrained
optimization problem where in general the disturbance space can be partitioned into a set of critical regions
(theorem 3.3).

Theorem 3.2 (Nullspace method for unconstrained quadratic optimization methods Alstad and Skogestad
[2007a]). Consider an unconstrained quadratic optimization problem on the form

min
u

J(u, d) =
[
u d

] [Juu Jud

JT
ud Jdd

] [
u
d

]
, (16)

If there exists ny ≥ nu0 + nd independent measurements (where “independent” means that the matrix[
Gy Gy

d

]
, for the effect of [u d]T on y, has full rank ), then the optimal solution to (16) has the property

that there exists variable combinations c = Hy that are invariant to the disturbances d.

H may be obtained from the nullspace method using (13) or (14).

Remark 3.3. An equivalent formulation is: Assume that there exists a set of independent measurements
y and that the (operational) constraint c � Hy = cs (where cs is a constant) is added to the problem. Then
there exists an H that does not change the solution to (16). In terms of operation, this means that zero
loss (optimal operation) is obtained by controlling nc = nu0 variables c = Hy with a constant set-point
policy c = cs, where H is selected according to theorem 3.2.

For the case of more than one region, see theorem 3.3, this means that zero loss (optimal operation) is
achieved by in each region controlling ni

u variables ci = H iyi with a constant set-point policy c = cs, where
for each region H i can be found using theorem 3.2.

Remark 3.4. Note that the measurement set y is free to be chosen by the engineer.

Theorem 3.3 (Nullspace method for constrained quadratic optimization methods). Consider an opti-
mization problem on the form

min
u0,x

J0 =
[
x u0 d

]
S

⎡⎣ x
u0

d

⎤⎦
s.t. f(x, u0, d) = 0

h(x, u0, d) ≤ 0

(17)

where f, h are both linear maps, f : R
nx+nu0+nd → R

nx, and h : R
nx+nu0+nd → R

nm, where nm is the
number of inequality constraints. Further, let the matrices ∂f

∂xT and ∂h

∂xT have full rank.

Assume the disturbance space has been partitioned into na critical regions. In each region there is ni
u =

nu0−ni
A ≥ 0 unconstrained degrees of freedom, where ni

A ≤ nm is the number of optimally active constraints
in region i.

If there exists a set of independent unconstrained measurements yi in each region i, such that nyi ≥ nui+nd,
the optimal solution to (17) has the property that there exists variable combinations ci = H iyi that for
critical region i are invariant to the disturbances d. The corresponding optimal H i may be obtained from
theorem 3.2.

Within each region, optimality requires that ci − ci
s = 0 (where ci

s is a constant). From continuity of the
solution we have that ci is continous across the boundary of region i. This implies that the elements in the
variable vector ci − ci

s will change sign or remain zero when crossing into or from a neighboring region.



Proof. We write the linear map f as

Ax + Bu0 + Cd = 0, (18)

where A = ∂f

∂xT is invertible. Then,

x = −A−1 (Bu0 + Cd) , (19)

and the problem can be written on the form

min
u0

[
u0 d

] [Ju0u0 Ju0d

Ju0d
T Jdd

] [
u0

d

]
s.t h(x, u0, d) ≤ 0

(20)

In critical region i we can write the set of active constraints as:

Giu0 = Wi + Eid. (21)

Here we have substituted (19) into h, so x does no longer appear in the equations.

Assume that Gi ∈ R
NA×(nu0 ) has rank of NA, where NA = N i

A is the number of active constraints in
region i. (This is true if LICQ is fulfilled.) This implies that there are NA independent columns in Gi.
Without loss of generality we assume that these are the NA last columns in Gi:[

G1
i G2

i

] [(u0)1
(u0)2

]
= Wi + Eid (22)

⇓

u0 =
[
I(nu0−NA)×(nu0−NA)

(G2
i )

−1G1
i

]
︸ ︷︷ ︸

Z

(u0)1 +
[

0(nu0−NA)×1

(G2
i )

−1 (Wi + Eid)

]
︸ ︷︷ ︸

g

(23)

u0 = Zi(u0)1 + gi, (24)

where G2
i consists of the last NA columns of Gi.

We observe that for each region theorem 3.2 can be applied, as the equations for each region will be on
the same form as (16) subsitute u0 by u = (u0)1 in the objective function for each region i.

3.2 Including measurement noise

We will now state a theorem from Halvorsen et al. [2003], which gives a method for minimizing the loss
when measurement uncertainty ny is included. The derivations in this subsection is based on Halvorsen
et al. [2003] unless otherwise noticed.

The non-negative loss function is defined as

L(u, d) = J(u, d) − J(uopt(d), d). (25)

Halvorsen et al. [2003] shows that the loss can be written as

L =
1
2
‖z‖2

2 (26)



where

z = J1/2
uu

[
(J−1

uu Jud − G−1Gd)(d − d∗) + G−1n
]
. (27)

Here n = nc + Hny is the implementation error, and d − d∗ is the derivation of the disturbance from the
nominal operation point. ny is the measurement/implementation error associated with y. In the following
we assume zero control error, nc = 0, but it is easy to extend the method to nonzero nc.

Now, let the elements in the positive diagonal matrix Wd represent the expected magnitudes of the
individual disturbances. Next, let the elements in the positive diagonal matrix W y

n represent the magnitude
of the implementation error associated with each of the candidate measurements y. Recall that we seek a
measurement combination such that c = Hy. The expected magnitudes of the disturbances and the errors
are then

d − d∗ = Wdd
′ (28)

n = HW y
nny′

= Wnny′
(29)

where d′ and ny′
are normalized to have norm of less than 1,

‖
[

d′

ny′

]
‖ ≤ 1. (30)

(Or for the average case they have been scaled such that var([d′ y′]T) = γI.) Then the loss z can be
written as:

z = Mdd
′ + Mnn′ =

[
Md Mn

]︸ ︷︷ ︸
M

[
d′

ny′

]
︸ ︷︷ ︸

f ′

(31)

where

Md = J1/2
uu

(
J−1

uu Jud − (HGy)−1(HGy
d)
)
Wd (32)

Mn = J1/2
uu (HGy)−1HWn (33)

One observes that the matrix M may be understood as a gain-matrix from the normalized uncertain
variables f ′ to the loss variable z.

Now consider the optimization problem of minimizing the loss ‖z‖2
2 subject to the choice (constraint) that

we want to control a combination of measurements c = Hy. The loss by introducing this constraint for a
specific choice of H is given in theorem 3.4. The optimal H that minimizes the loss is given in theorem
3.5 and 3.6. Note that this will not in general give zero loss from optimality, as there is implementation
error present.

Theorem 3.4 (Loss by introducing constraint c = Hy for quadratic optimization problem Halvorsen et al.
[2003]). Consider the unconstrained quadratic optimization problem stated in theorem 3.2, (16):

min
u

J(u, d) =
[
u d

] [Juu Jud

JT
ud Jdd

] [
u
d

]
,

Consider a set of measurements y that are affected by noise, ym = y + ny. Assume that the operational
constraint c = Hy = cs is added to the problem, where H is a non-trivial matrix. Consider disturbance
and noise with magnitudes as given in (28), (29) and (30).

Then for a given H, the following results hold:



1. The worst case loss is Halvorsen et al. [2003]:

Lworst case = σ̄(M)2/2, (34)

2. The average loss is Kariwala et al. [2007]:

Laverage = α‖ [M] ‖2
F , (35)

where MT =
[
Md Mn

]
is given in (32) and (33) and α is a scaling factor depending on the

probability distribution assumptions on f .

Proof. The equality in (34) follows from the identity z = Mf ′ and the fact that the induced (worst case)
2-norm of a matrix is equal to its maximum singular value.

The average loss can be written as:

Laverage =
1
2

∫
(zTz)p(z)dz (36)

=
∫

(z2
1 + z2

2 + · · · + z2
n)p(z)dz (37)

= tr(var(z)), (38)

where the last equality follows from the definition of variance:

var(z) =
∫

(zzT)p(z)dz. (39)

Further,

var(z) = Mvar(f)MT = γMMT (40)

where we have assumed that the variance of f is γI. One sees now that the average loss can be written
as:

Laverage = αtr(MMT) = α‖M‖F , (41)

where α = γ/2 is a scaling factor depending on the distribution assumptions for f .

If a uniform distribution on f is assumed, it can be shown that α = 1/(6nu), where nu is the number of
unconstrained degrees of freedom (Based on Kariwala et al. [2007] and discussions with the author).

The objective is nor to find the optimal H that minimizes the norm of M (σ̄(M) or ‖M‖F ). This is
sometimes referred to as “exact local method”. However, from equations (32), (33), one sees that M
depend on H in a non-linear manner. Fortunately, as shown in the following theorem, the problem can be
reformulated to a constrained optimization where H enters linearly.

Theorem 3.5 (Optimal H by exact local method Alstad and Skogestad [2007b]). The problem

min
H

‖M‖, (42)



where M =
[
Md Mn

]
is given in (32) and (33) ‖ · ‖ is any matrix norm, can be formulated as

min
H

‖HF̃‖
s.t. (Gy) THT = J1/2

uu ,
(43)

where

F̃ �
[
FWd Wny

]
(44)

Proof. See Alstad and Skogestad [2007b]

Theorem 3.6 (Analytical solution for the case ‖ · ‖F Alstad and Skogestad [2007b]). It can be shown that
when the Frobenius norm is used, and appropriate rank conditions are met, an analytical solution to the
problem stated in theorem 3.5 is:

HT = (F̃ F̃T)−1Gy

(
GyT

(
F̃ F̃T

)−1
Gy

)−1

J1/2
uu (45)

Proof. See Alstad and Skogestad [2007b]

Remark 3.5. For the case of no implementation error, Wny = 0, we have:

‖HF̃‖ = ‖H [
FWd Wny

] ‖∣∣
Wny =0

= ‖HFWd‖ ≤ ‖HF‖‖Wd‖, (46)

and we observe that selecting H such that HF = 0 yields zero loss (optimal operation). This is expected
from theorem 3.1.

Remark 3.6. The author of Kariwala et al. [2007] shows that the matrix H minimizing the average loss
Laverage also minimizes the worst case loss Lworst case. (The converse is not true, a matrix Ĥ minimizing
the worst-case loss does not necessarily minimize the average loss.) This means that (45) is also optimal
in terms of σ̄(M).

3.3 Application to implementation

For the case of no measurement error, ny = 0, theorems 3.2 and 3.3 show that for the solution to quadratic
optimization problems variable combinations c = Hy that are invariant to the disturbances can be found.
In section 4 this insight will be used as a new approach to the explicit MPC problem.

4 Application to explicit MPC

We will now look at the model predictive control problem (MPC) with constraints on inputs and outputs.
For a discussion on MPC in a unified theoretical framework see Muske and Rawlings [1993].

The following discrete MPC formulation is based on Pistikopoulos et al. [2002]. Consider the state-space
representation of a given process model:

x(t + 1) = Ax(t) + Bu(t) (47)
y0(t) = Cx(t), (48)



subject to the following constraints:

ymin ≤ y0(t) ≤ ymax (49)
umin ≤ u(t) ≤ umax, (50)

where x(t) ∈ R
n, u(t) ∈ R

m, and y(t) ∈ R
p are the state, input and output vectors, respectively, subscripts

min and max denote the lower and upper bounds, respectively, and (A,B) is stabilizable. MPC problems
for regulating to the origin can then be posed as the following optimization problem:

min
U

J(U, x(t)) = xt+Ny |y
TPxt+Ny|t +

Ny−1∑
k=0

[
xt+k|tTQxt+k|t + ut+k

TRut+k

]
s.t. ymin ≤ yt+k|t ≤ ymax, k = 1, . . . , Nc

umin ≤ ut+k ≤ umax, k = 0, 1, . . . , Nc

xt|t = x(t)

xt+k+1|t = Axt+k|t + But+k, k ≥ 0

yt+k|t = Cxt+k|t, k ≥ 0

ut+k = Kxt+k|t, Nu ≤ k ≤ Ny

(51)

where U � {ut, . . . , ut+Nu−1}, Q = QT ≥ 0, R = RT > 0, P ≥ 0, Ny ≥ Nu, and K is some feedback gain.
The authors of Pistikopoulos et al. [2002] show that by substitution of the model equations, the problem
can be rewritten to the form

min
U

1
2
UTHU + x(t)TFU +

1
2
x(t)TY x(t)

s.t. GU ≤ W + Ex(t)
(52)

The MPC control law is based on the following idea: At time t, compute the optimal solution U∗(t) =
{u∗

t , . . . , u
∗
t+Nu−1} and apply u(t) = u∗

t Bemporad et al. [2002].

If we let the initial state x(t) be treated as a disturbance, (52) can be written as:

min
U

1
2
[
UT dT

] [H F
F Y

] [
U
d

]
s.t. GU ≤ W + Ed,

(53)

and we observe that (53) is on the same form as (17), where the model equations f(x, u0, d) = 0 have
already been substituted into the objective function.

A property of the solution to (53) is that the disturbance space (initial state space) will be divided into
critical regions. In the i’th critical region there will be ni

u = nU − ni
A unconstrained degrees of freedom,

where ni
A is the number of active constraints in region i. From theorem 3.3 we know that if there exists a

set of independent measurements yi (for region i), such that nyi ≥ ni
u + nd, the optimal solution to (53)

has the property that there exists variable combinations ci = H iyi, where H i is a non-trivial combination
matrix, that are invariant to the parameters d (= x(t)).

As we will show in section 4.1, a possible set of measurements y is the current state and the inputs,
yT =

[
xT uT

]
. We further note that causality is not an issue here, as we have the information at the

current time. If however not all states are measured we can still find variable combinations that are
invariant to the initial states, but these will be functions of future measurements.



4.1 Exact measurements of all states (state feedback)

The following theorem is well known, but we will there prove the theorem using the nullspace method.
The reason for why we can do this is that the MPC problem at the present time t = k can be seen as a
static quadratic optimization problem with linear constraints.

Theorem 4.1 (Optimal state feedback Bemporad et al. [2002]). The control law u(t) = f(x(t)), f : R
n �→

R
m, defined by the MPC problem, is continuous and piecewise affine

f(x) = Kix + gi if H ix ≤ ki, i = 1, . . . , Nmpc (54)

where the polyhedral sets
{
H ix ≤ ki

}
, i = 1, . . . , Nmpc ≤ Nr are a partition of the given set of states X.

Proof. We will use theorem 3.3 to prove that the optimal control is on the form u = Kx + g. We consider
the MPC problem written on the from

min
U

1
2
[
UT dT

] [Ĥ F̂

F̂ Y

] [
U
d

]
s.t. GU ≤ W + Ed,

(55)

which is on the form of (17) (see theorem 3.3), but the states have here already been substituted into the
objective function.

First we assume that no constraints are active, i.e. there are no equations that need to be substituted back.
From theorem 3.2 we known that to achieve zero loss from optimality we need as many measurements
as there are disturbances and inputs. We now the inputs in the “measurements” y. We assume that the
disturbances enter additively on the states, which themselves are also measured. This means the vector of
measurements y is

yT =
[
xT UT

]
With this choice of measurements and disturbances on the present state, we form the process model:

Δy = GyΔU + Gy
dΔd (56)

Gy =
[

0nx×(nuNu)

I(nuNu)×(nuNu)

]
∈ R

(nx+nuNu)×(nuNu) (57)

Gy
d =

[
Inx×nx

0(nuNu)×nx

]
∈ R

(nx+nuNu)×nx (58)

Here In×n is a square identity matrix and 0n×m is a matrix of zeros. nx is the number of states, nu is the
number of inputs and Nu is the input horizon. From the objective function and the assumption that no
constraints are active, we have that Juu = Ĥ and Jud = F̂ . Hence the optimal sensitivity matrix is

F =
∂yopt

∂dT
= − (GyJ−1

uu Jud − Gy
d

)
= −

([
0nx×(nuNu)

(J−1
uu Jud)(nuNu)×nx

]
−
[

Inx×nx

0(nuNu)×nx

])
(59)

=
[

Inx×nx

−J−1
uu Jud

]
(60)



We now search for a matrix H that gives a non-trivial solution to HF = 0:[
(H1)(nuNu)×nx

(H2)(nuNu)×(nuNu)

] [Inx×nx

J−1
uu Jud

]
= (61)

= H1 − H2

(
J−1

uu Jud

)
= 0 (62)

To ensure a non-trivial solution we can for example choose H2 = I(nuNu)×nuNu
. Then we must have

H1 = J−1
uu Jud, and hence the optimal combination c of x and U becomes

c = Hy = J−1
uu Judx + U = 0 ∈ R

(nuNu) (63)

This implies that the input at present and future times can be written on the form:

(uk = Kkxk), (uk+1 = Kk+1xk), . . . , (uk+Nu−1 = Kk+Nu−1xk)

We will now cover the case when some constraints are optimally active. Assume that these can be expressed
as

G1U = W1 + E1x(t), (64)

where G1 ∈ R
NA×(nuNu) has rank of NA, where NA is the number of active constraints. This implies that

there are NA independent columns in G1. Without loss of generality we assume that these are the NA last
columns in G1: [

G1
1 G2

1

] [u1

u2

]
= W1 + E1x(t) (65)

⇓

u =
[
I(nuNu−NA)×(nuNu−NA)

(G2
1)

−1G1
1

]
u1 +

[
0(nuNu−NA)×1

(G2
1)

−1 (W1 + E1x(t))

]
(66)

u = Zu1 + g, (67)

where G2
1 consits of the last NA columns of G1. After removing constant terms the reduced space objective

function can now be written as:

J =
1
2
u1

TZTHZu1 − gTHZu1 + x(t)TFZu1 (68)

and we observe that Juu = ZTHZ, and Jud = HZ. The measurement model is now:

Δy = GyZΔu1 + Gy
dΔd, (69)

but due to the active constraints there is NA dependent measurements. We can therefore use the reduced
measurement model

Δŷ = Ĝyu1 + Ĝy
dΔd, (70)

with

Ĝy =
[

0nx×(nuNu−Na)

I(nuNu−Na)×(nuNu−Na)

]
∈ R

(nx+nuNu−Na)×(nuNu−Na) (71)

Ĝy
d =

[
Inx×nx

0(nuNu−Na)×nx

]
∈ R

(nx+nuNu−Na)×nx (72)

We observe that the reduced problem is on the same form as the full problem and hence we will get
feedback laws on the same form as before in the unconstrained degrees of freedom u. We also observe that
in u0 we get affine terms, see equation (67).



Remark 4.1 (Comparison with previous results on unconstrained MPC). In (63) the state feedback gain
matrix is given as J−1

uu Jud. In the appendix we prove that this is gives the same result as conventional
MPC, see equation (3) in Rawlings and Muske [1993].

Remark 4.2. As set up above, we consider a disturbance to the present (initial) state and find the optimal
present and future inputs (within the defined input horizon) using the derived state feedback law. However,
we only implement the present input, and then obtain a new measurement (state) and find the next optimal
input using the new state (but with the same state feedback law). This implies that optimal state feedback
solution will be optimal to any change (disturbances) on the states, and not only on the initial state.

Remark 4.3. These are not new results but the alternative proof leads to some new insights. The most
important is probably that the “self-optimizing” variables ci = u − (Kix + gi) which are optimally zero
in region i, may be used for identifying when to switch between regions (theorem 4.2) rather than using a
“centralized” approach, for example based on a state tree structure search. This seems to be new. Another
insight is to understand why a simple feedback solution must exist in the first place. A third is to allow for
new extensions.

4.2 Region detection using feedback law

Theorem 4.2 (Optimal region for explicit MPC detection using feedback law). The variables c = uk −
(Kxk + g) can be used to identify region changes.

Proof. Assume there is a partition of the state space consisting of regions CRl with different optimal
feedback controllers uk = K lxk +gl, i.e. we have merged regions where the first optimal input is the same.
From theorem 4.1, the feedback laws are continuous and affine. Let cI be the set of feedback laws for the
neighboring regions to the current region. For i ∈ I, ci = uk − (Kixk + gi). Assume further that in the
current region the optimal controller is already implemented. Due to the continuity of ci in region i, and
since region i is a neighboring region to the current region, we know that if optimal control is implemented
ci is zero at the boundary between the current region and region i.

From this we realise that is it optimal to switch controller when one of the elements in the neighboring
controlled variables vector cI changes sign.

Remark 4.4. We have in the above derivation assumed that the disturbances enter such that the process
can only move to the current region to a neighboring region between to sample times, i.e. it is assumed
impossible to “jump across” regions.

Remark 4.5. Neighboring regions with the same feedback law (including regions where the feedback law is
to keep the input saturated) can be merged (without needing to worry about the convexity properties of the
regions). This may greatly reduce the number of regions compared to presently used enumeration schemes.
Note that the number of c-variables that need to be tracked to detect region changes is only equal to the
number of inputs nu0 times the number of distinct merged regions. Because of the merging of regions, this
may be a small number even with a large input or control horizon and with output (state) constraints.

Algorithm 1 shows how the current region CRk and the input uk can be calculated by tracking the
feedback laws of the neighbors to the current region. The parameter αi takes the value of −1 or 1, in order
to normalize the identification scheme. This comes from the fact that for each critical region we need to
gather the following information:



Algorithm 1 Detect current region and calculate uk

Require: CRk−1, i.e. the region of the last sample time, and xk

1: uk = K(CRk−1) + g(CRk−1)
2: [Regions, α] = Neighbors(CRk−1)
3: for i = 1 to length(Regions) do
4: ck(i) = αi (uk − (K(Regions(i)) + g(Regions(i))))
5: end for
6: if sign(ck(i) 
= −1 ) then
7: CRk = Regions(i)
8: else
9: CRk = CRk−1

10: end if
11: return uk = K(CRk)xk + g(CRk), CRk

• The neighboring regions.

• The sign of the gradient of the feedback laws of the neighboring regions in the current region.

The call [Regions, α] = Neighbors(CRk−1) calls the lookup table “Neighbors”, which is an off-line gen-
erated table giving, for each region i, its neighboring regions i1, . . . , il and the sign of the gradient of
the neighboring regions feedback laws into the current region (αi1 , . . . , αil), where l is the number of
neighboring regions i.

In line 1 we calculate a trial input uk. Then calculate the value of the ck’s using this input. If it was found
that this input (not implemented yet) changed the current region, the current region is updated. Finally,
the actual input is calculated, based on the possibly updated current region CRk.

We next present a simple example from Bemporad et al. [2002] that confirms that our switching policy
based on tracking the sign of the c-variables works in practice. Additional examples are presented in
Section 4.7

Example 4.1 (Optimal switching). This example is taken from Bemporad et al. [2002] (with correction),
and is included here to demonstrate optimal switching using c = u − Kx as criterion. The system is:

y(t) =
2

s2 + 3s + 2
u(t).

With a sampling time T = 0.1 seconds the following state-space representation is obtained:

x(t + 1) =
[
0.7326 −0.0861
0.1722 0.9909

]
x(t) +

[
0.0609
0.0064

]
u(t)

y(t) =
[
0 1.4142

]
x(t)

One observes that only the last state is measured, but it will be assumed that both states are known (mea-
sured) in the remainder of this example.

The task is to regulate the system to the origin while fulfilling the input constraint

−2 ≤ u(t) ≤ 2. (73)
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Figure 2: Partition of state space for first input. (Example 4.1.)

The objective function to be minimized is

min xt+2|tTPxt+2|t +
1∑

k=0

[
xt+k|tTxt+k|t + 0.01u2

t+k

]
(74)

subject to the constraints and xt|t = x(t).

P solves the Lyapunov equation P = ATPA + Q, where Q = I in this case. The optimal control problem
can be solved for example using the MPT toolbox Kvasnica et al. [2004]. The P -matrix is numerically:

P =
[
5.5461 4.9873
4.9873 10.4940

]

To illustrate ideas a simulation from x0 = (1, 1) was done. State space trajectories and inputs are shown
in figures 2 and 3. As long as the state is in the input-constrained region where uopt = −2, the linear
combination c = uk − Kxk remains positive. One chooses to leave the input-constrained region when c
becomes zero. The state trajectory is the same as in Bemporad et al. [2002].

The reason for why c never becomes negative is because both states are assumed measured at the present
time and hence optimal switching is achieved. This can be understood from the algorithm 1, where we
show how the current critical region (CRk) is tracked and how the current input uk is calculated.

So far we have not made any new contributions to explicit MPC except for proposing a new method for
detecting region changes.

We now want to consider four new extensions to explicit MPC:

1. Include measurement noise (which includes implementation error for the input u).

2. Output feedback (with and without measurement noise).

3. Output feedback with fewer or additional measurements.

4. Other assumptions for the disturbance (rather than changes in the initial state).
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Figure 3: Closed loop MPC with region detection using uk − (Kxk). (Example 4.1.)

4.3 State feedback with input noise

For the case with unconstrained optimal control (quadratic objective with a linear dynamic model), the
separation principle applies, and with measurement noise we may for the use a Kalman filter to optimally
reconstruct the states x, and otherwise use the same feedback law u = −Kx as in the noise-free case.
However, the separation principle does not apply when we add constraints to the inputs and outputs, at
least as far as we know, and more importantly the estimation problem is not solved for this case.

In any case, we here propose an alternative approach, which avoids the need to explicitly reconstruct
the states. We use the diagonal entries in the matrix W y

n to quantify the magnitude of the noise in
measurements of the states and the implementation error for the inputs u. Zero loss (in terms of obtaining
the truly optimal u) is then not possible, but by imposing the constraint c = Hy (which can be realized as
a feedback law u = −Kx by implementing only the first input) we get from theorem 3.6 (Optimal H for
exact local method) the H that provides an optimal trade-off in terms of putting less emphasis on noisy
measurements.

4.4 Output feedback with no noise

Consider now the case where all the states x are not measured. The objective is to find linear combinations
c = Hy that are optimally constant in each optimal region. From the nullspace method (Theorem 3.1)
this requires that we have as many independent measurements y as there are inputs and disturbances.



We choose to do as above, and include the inputs U in y. This also ensures that we can easily implement
the resulting c = Hy (by setting c = cs and solving for U). With U included, we need as many additional
measurements as we have disturbances.

If we assume that the disturbances are changes on the initial states (as we did above), then we need
nx additional measurements. For the case when all states are measured, these additional measurements
are simply the present value of the states. However, here we consider the case when all states are not
measured. Assume that we only have one measurement y, then to find an optimal linear combination
(which is optimally invariant to d) we need to use (at least) nx measurements, for example, the present
and (at least) the previous (nx − 1) back in time, [yk−nx+1, ...., yk].

With no measurement error, the optimal combination c = Hy can be obtained from the nullspace method
using (14). This requires that G̃y has full rank, which again implies that all d’s can be observed from the
outputs y. Because of causality G̃y will not be full rank initially (just after the disturbance occurs), but the
rank condition will be satisfied if we consider a disturbance entering sufficiently long (nx−1 steps) back in
time. From this time and on the solution is the same as the state feedback solution. This argument may
be used as an alternative approach (to the nullspace method) of generating the optimal output feedback
solution. This is illustrated in the following example.

Also note that because we only implement the present input u, the solution will remain optimal with
respect to new disturbances on the states, of course, with the restriction that it will not be optimal just
after the change because of the causality issue mentioned above (see also remark 4.2). However, given
that we only have output (and not state) measurements, the solution is presumably close to optimal.

In terms detecting region changes, we suggested for the state feedback case to use the deviation c from
the optimal feedback laws as tracking variables. This simple strategy may not work as well with output
feedback, partly because output feedback is not truly optimal, and partly because the outputs do not
contain accurate information about the present state.

Example 4.2 (Output feedback). Consider the discrete time state space model (see also example 4.1):

x(t + 1) =
[
0.7326 −0.0861
0.1722 0.9909

]
x(t) +

[
0.0609
0.0064

]
u(t)

y(t) =
[
0 1.4142

]
x(t),

with associated constrained optimal control problem shown in equations (73) and (74):

min
u,x

xt+2|tTPxt+2|t +
1∑

k=0

[
xt+k|tTxt+k|t + 0.01u2

t+k

]
s.t. − 2 ≤ u(t) ≤ 2 and proces model

Even though the states are not measured, it is known that the optimal solution is on the form uk = Kixk+gi.
Figure 2 shows how the state space is, by solving a parametric program, partitioned into 3 regions with 3
different state feedback laws. As before, let d = xk. Since the optimal solution is known, the sensitivity
matrix F for the measurements y = (uk, yk, yk+1) can be established:(

∂
[
uk yk yk+1

]
T

∂dT

)opt

=

⎡⎣ K
C

C(A + BK)

⎤⎦ , (75)

where A,B,C correspond to the discrete process model. An invariant combination of (uk, yk, yk+1) can
now be found by solving the equation H ′F = 0 for H ′, yielding h′

1uk + h′
2yk + h′

3yk+1 = c1 = c1
s = 0.



This can not be implemented due to causality. Since there are an infinite number of possible invariants to
the disturbances for the solution of quadratic optimization problems (see theorem 3.2), a combination of
(yk, yk+1, yk+2) can also be found, for which the optimal sensitivity matrix is:(

∂
[
yk yk+1 yk+2

]
T

∂dT

)opt

=

⎡⎣C(A + BK)1

C(A + BK)2

C(A + BK)3

⎤⎦ . (76)

Also for this variable combination a matrix H can be found such that HF = 0, i.e. h1yk + h2yk+1 +
h3yk+2 = c2 = c2

s = 0. This combination can be shifted one time step back by multiplying by z−1, giving
h1yk−1 + h2yk + h3yk+1 = c2

s = 0. Now, by eliminating yk+1, we get

uk =
1
h′

1

(
h2

h′
3

h3
− h′

2

)
︸ ︷︷ ︸

k1

yk +
h1

h′
1︸︷︷︸

k2

yk−1, (77)

which gives the input-output relationship. (Both set-points were zero because the process is normalised to
x = (0, 0).)

Another way to get the same controller gain is to assume that the disturbance enters at t = k − 1 rather
than at t = k. Again, assuming that the state feedback u = Kx is optional, the sensitivity matrix is:⎡⎣ uk

yk

yk−1

⎤⎦ =

⎡⎣K(A + BK)
C(A + BK)

C

⎤⎦
︸ ︷︷ ︸

F

xk−1. (78)

After finding the invariant variable combination, it is confirmed numerically that this approach yields the
same controller gains as (77). The controller gains for the central region are (k1, k2) = (−16.7, 13.7).

Figure 4 shows the result of a simulation of the output feedback control from x0 = (1, 1). Note that we use
the output feedback control law for the unconstrained region to decide when to leave the constrained region.
The optimal control with both states assumed measured is shown in the dotted line. One observers that the
optimal control scheme leaves the constrained region one time instant before the output feedback scheme.
This is expected as we need to wait another time instant to “estimate” the states in the new scheme. The
“discontinuity” in the (uk − (k1yk + k2yk−1)) curve is due to initialisation issues.

4.5 Output feedback with noise

We have so far assumed that we have as many measurements as there are disturbances, which is the basis
for the original nullspace method. However, more generally, we may easily extend the method to the
case with fewer measurements (to get a lower-order controller) or with extra measurements (no provide
additional noise filtering). This may involve using the pseudo inverse in the optimal H in Theorem 3.6
(exact local method), or if some rank condition fails, solving the problem in Theorem 3.5 numerically.

4.6 Other disturbance models

We have so far only considered disturbances on the (initial) states. This may be extended to include any
realistic disturbance by including a disturbance model and assuming some states have no disturbances (or
more generally making use of the disturbance weight Wd).
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Figure 5: Simulation of state feedback, and illustration of how feedback laws can be used to identify
optimal switching. Right figure shows the state trajectory in the state space. Simulation stated from
x = (1, 1). (Example 4.3.)

4.7 Additional examples

Example 4.3 (SISO system with state constraint). Consider the same process as in example 4.1, but with
the additional state constraint xt+k|t ≥ xmin,

xmin �
[−0.5
−0.5

]
. (79)

This problem is solved in Bemporad et al. [2002], we include it there to illustrate the switching using
feedback laws and how the regions can be merged. In order to compare with the results from Bemporad
et al. [2002], we start the simulation at x = (1, 1) and study how the controller brings the process back to
origin.

The right-hand-side of figure 5 shows the evaluation of the states in the state space, as well as the regions
generated by solving the parametric program. The space was divided into 10 regions, and the regions that
are relevant to this example have been numbered. (See corrigendum to Bemporad et al. [2002]).

Using the feedback law for optimal switching we here only need to consider 3 regions. First, in regions



1 and 2 the optimal input is u = −2 and these can be merged. Further, regions 3 and 4 has the same
feedback law, uk = [−12.0296 1.4128]xk + (−8.2102), and can thus be merged. The last region, region 5,
has the same feedback gain as the unconstrained region in example 4.1, K5 = [−6.8355 − 6.8585]. The
“physical” reason for why we can do this merging is that the merged regions have different future feedback
laws (the difference in the optimal active set is in the form of future constraints entering or leaving). For
example, in region 2, uopt

k+1 
= uopt
k = −2, but since we only consider states and input at the present time

this information need not to be stored.

For control and tracking, we see that we leave the input-constrained region when the variable c3,4
k = uk −

(K3,4xk + g3,4) becomes zero, and we then control this variable to zero. Further, when the feedback law for
the central region, c5

k = uk − K5xk, becomes zero we switch to this region.

Example 4.4 (2 × 2 plant). We study the 2 × 2 plant [Skogestad and Postlethwaite, 2005, p. 90]:

G(s) =
1

5s + 1

[
s + 1 s + 4

1 2

]
. (80)

The plant has a RHP zero at s = 2. We sample with 5/3 time-units (one third of the dominant time
constant) and get the discrete-time model:

xk+1 = 0.7165
[
1 0
0 1

]
+
[−0.0567 −0.0567

0.2835 0.5669

]
u, (81)

yk = Ixk +
[
0.2 0.2
0 0

]
u. (82)

We here assume that measurements of both states are available. Again we set up an optimal control problem
on the form

min
U�ut,...,ut+Nu−1

J(U, x(t)) = xt+Ny |t
TPxt+Ny |t +

Ny−1∑
k=0

[xt+k|tTQxt+k|t + ut+k
TRut+k] (83)

subject to the input constraint −1 ≤ u ≤ 1 and the process mode. This this example we set

Nc = 1, Ny = 2, Nu = 2, Q = I,R = 0.01I,

and P = 2.0551I is a solution of the Lyapunov equation P = ATPA + Q.

Figure 6 shows how the state-space is partitioned into regions when we allow the initial state to be inside
(−2,−2) ≤ x0 ≤ (2, 2). We observe that there is a large number of regions, even for this small example.
Fortunately a lot of this regions can be merged because they have the same feedback law at the present time,
see table 1. Indeed, by using the current approach the 23 original regions can be merged into 9 new ones.
Note that when merging regions we don’t need to worry about the convexity of the merged regions.

Figure 7 shows the results of a simulation from x0 = (−1.5, 1.5). In region 14 both inputs were optimally
constrained at −1, while in reigons 7 and 2 the second input was optimally unconstrained, and finally in
region 1 both inputs are unconstrained. Of the total number of 9 regions we here traversed 3. In the lower
plot in figure 7 we see clearly how we change regions when one of the neighboring ci

k’s changes sign.

5 Conclusions

This paper has discussed properties of solutions to quadratic optimization problems using previous re-
sults from self-optimizing control. For the noise-free case it was shown that for quadratic optimization
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Figure 6: All regions for example 4.4, as well as state trajectory for simulation.

Region u1 u2

14,6,15,22,16 −1 −1
23,19,21,11,20 1 1

17,8 −1 1
18,9 1 −1
13,5 unc. 1
10,3 unc. −1
7,2 −1 unc.
12,4 1 unc.
1 unc. unc.

Table 1: Regions and optimal inputs. “unc.” means that the input is not at an active constraint.
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Figure 7: Simulation of MIMO system from x0 = (−1.5, 1.5) (Example 4.4).



problems there exists an infinite number of invariants to the parameters in the solution space. When the
measurements are noisy (rather than perfect) methods were shown for minimizing the loss from optimality
subject to a constant set-point policy of the controlled variables. These are related to the invariants for
the noise-free case, but zero loss can no longer be guaranteed.

The insight of invariants were applied to the explicit MPC problem were we proposed an alternative proof
of the fact that the optimal control law is on a state feedback form. The alternative proof led to a new
way of calculating the feedback gain than was is used in standard solutions to optimal control problems.

By the insight of invariants a novel method for detecting when the set of active constraints shift were
presented, and it was shown by an example how this can be applied to explicit MPC.

When not all states are assumed known at the present time methods were proposed for finding optimal
output feedback gains. That this, given a chosen measurement combination the operational loss is min-
imised by choosing the correct gains. By the “exact local method” for noisy measurements (theorem 3.4),
we showed that the order of the controller is actually free of choice, though optimality is not guaranteed.
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A Equivalence between uk = −(J−1
uu Jud)xk and open loop problem by

Rawlings and Muske [1993]

Based on the following references: Rawlings and Muske [1993], Muske and Rawlings [1993]

Process model:

xk+1 = Axk + Buk, k = 0, 1, 2, . . . (84)
x0 : assumed given
A : assumed stable

Optimization vector is uN , the N first input (from u0 to uN−1). Thereafter control is switched off:
uk = 0, k ≥ N . Open-loop problem:

min
uN

J =
∞∑

k=0

(
xk

TQxk + uk
TRuk

)
(85)

= min
uN

N−1∑
k=0

(
xk

TQxk + uk
TRuk

)
+

∞∑
k=N

xkQxk (86)

= min
uN

N−1∑
k=0

(
xk

TQxk + uk
TRuk

)
+ xNQNxN (87)

= min
uN

x0
TQx0 +

N−1∑
k=1

(
xk

TQxk

)
+

N−1∑
k=0

(
uk

TRuk

)
+ xNQNxN (88)

where QN is the solution of QN =
∑∞

j=N

(
(Aj)TQAj

)
= ATQNA + Q.

From Bemporad et al. [2002] we have that:

xk = Akx0 +
k−1∑
j=0

AjBuk−1−j (89)

⇓
x1 = Ax0 + A0Bu0 (90)

x2 = A2x0 + ABu0 + Bu1 (91)

x3 = A3x0 + A2Bu0 + ABu1 + Bu2 (92)

xN−1 = AN−1x0 + AN−2Bu0 + · · · + BuN−2 (93)



We let x = (x1, x2, . . . , xN−1). Then,

x =

⎡⎢⎢⎢⎢⎢⎣
A
A2

A3

...
AN−1

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

a

x0 +

⎡⎢⎢⎢⎢⎢⎣
B 0 0 . . . 0 0

AB B 0 . . . 0 0
A2B AB B . . . 0 0

...
...

. . . . . .
...

...
AN−2B AN−3B . . . AB B 0

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Â

uN (94)

Now,

N−1∑
k=1

xk
TQxk = xTQ̂x, (95)

Q̂ = diag(Q,Q, . . . , Q) (96)

Further,

xTQ̂x = (ax0 + ÂuN )TQ̂(ax0 + ÂuN ) (97)

= (ax0)TQ̂(ax0) + 2uN
TÂTQ̂ax0 + uN

TÂTQ̂ÂuN (98)

We further rewrite
N−1∑
k=0

uk
TRuk = uTR̂u, (99)

R̂ = diag(R,R, . . . , R) (100)

The final state xN can be written as

xN = ANx0 + AN−1Bu0 + · · · + BuN−1 (101)

= ANx0 +
[
AN−1B AN−2B . . . AB B

]
⎡⎢⎢⎢⎢⎢⎣

u0

u1
...

uN−2

uN−1

⎤⎥⎥⎥⎥⎥⎦ (102)

= ANx0 +
[
AN−1B AN−2B . . . AB B

]︸ ︷︷ ︸
Λ

uN , (103)

so, the term xN
TQNxN can be written as

xN
TQxN = (ANx0 + Λu)TQ(ANx0 + Λu) (104)

= x0
T(AN )TQANx0 + 2x0

T(AN )TQNΛu + uTΛTQNΛu (105)

We observe that

Juu = 2
(
ÂTQ̂Â + ΛTQNΛ + R̂

)
(106)

Jud = 2
(
ÂTQ̂a + (AN )TQNΛ

)
(107)



First we calculate the Juu matrix. We observe that B can be “left out” for intermediate calculations, and
we focus on adding ÃTQ̂Ã + Λ̃TQN Λ̃, where Â = ÃB and Λ = Λ̃B.

We get that

(ÃTQ̂)Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q ATQ (A2)TQ . . . (AN−2)TQ

0 Q ATQ . . .
...

0 0
. . . . . .

...
0 0 0 Q ATQ
0 0 0 0 Q
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
I 0 0 . . . 0 0
A I 0 . . . 0 0
A2 A I . . . 0 0
...

...
. . . . . .

...
...

AN−2 AN−3 . . . A I 0

⎤⎥⎥⎥⎥⎥⎦ (108)

and

Λ̃TQN Λ̃ =

⎡⎢⎢⎢⎢⎢⎣
(AN−1)TQN

(AN−2)TQN
...

ATQN

QN

⎤⎥⎥⎥⎥⎥⎦
[
AN−1 AN−2 . . . A I

]
, (109)

and by using the equation QN = ATQNA + Q, we see that “our” Juu is equal to EN in Rawlings and
Muske [1993], that is

Juu = 2

⎡⎢⎢⎢⎣
BTQNB + R BTATKB · · · BT(AN−1)TQNB
BTQNAB BTQNB + R · · · BT(AN−2)TQNB

...
...

. . .
...

BTQNAN−1B BTQNAN−2B · · · BTQNB + R

⎤⎥⎥⎥⎦ (110)

Jud = 2
(
ÂQ̂a + (AN TQNΛ)

)
=
(
ÂQ̂a + ΛTQNAN

)

(
ÂQ̂

)
a = BT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q ATQ (A2)TQ . . . (AN−2)TQ

0 Q ATQ . . .
...

0 0
. . . . . .

...
0 0 0 Q ATQ
0 0 0 0 Q
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
A
A2

...
AN−1

⎤⎥⎥⎥⎦ (111)

=

⎡⎢⎢⎢⎢⎢⎣
QA + ATQA2 + · · · + (AN−2)TQAN−1

QA2 + ATQA3 + · · · + (AN−3)QAN−1

...
QAN−1

0

⎤⎥⎥⎥⎥⎥⎦ (112)

and

ΛTQNAN = BT

⎡⎢⎢⎢⎢⎢⎣
AN−1TQNAN

AN−2TQNAN
...

ATQNAN

QNAN

⎤⎥⎥⎥⎥⎥⎦ (113)



By yet again using the equation QN = ATQNA+Q, we get that Jud = 2BN
TGNA in Rawlings and Muske

[1993]:

Jud = 2BN
TGNA = 2

⎡⎢⎢⎢⎣
BT

BT

. . .
BT

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

QN

QNA
...

QNAN−1

⎤⎥⎥⎥⎦A (114)

Note that the factor 2 disappears as we form the product J−1
uu Jud.


