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Optimal operation ®

@ A typical dynamic optimization problem

muin J(x,u,d)

s.t. x = f(x,u,d),
h(x,u,d) =0,
g(x,u,d) <0.

@ “Open-loop" solutions not robust to disturbances or model
uncertainty.

@ Introduce feedback.
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Introducing feedback: Paradigm 1
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@ Paradigm 1: Online optimizing control where
measurements are primarily used to update the model.

@ With the arrival of new measurements, the optimization
problem is resolved online for the inputs.

@ Also referred to as explicit schemes (Srinivasan and
Bonvin, 2007)
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Introducing feedback: Paradigm 2
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@ Paradigm 2 : Use self-optimizing policy based on off-line

analysis.

@ Measurements are used to (indirectly) update the inputs
using feedback control schemes.

@ No online optimization.

@ Also referred to as implicit schemes (Srinivasan and

Bonvin, 2007
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Paradigm 1: Marathon runner
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Clearly impractical!
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Paradigm 2: Marathon runner

Off-line optimization

Choice of measurement, c,
Skogestad, 2004
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Optimal operation of a typical chemical process ®

@ Hierarchial decomposition Management —_—
based on time scale -
separation. l
@ Economics largely decided Scheduling s
by slow time scale.
Rerllrl\me hours
optimization
MRCIARC mintees
Low level controller -

Disturbances
> Plant
Measurements
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Optimal operation of a typical chemical process ®

@ Hierarchial decomposition Management —_—
based on time scale -
separation. l

@ Economics largely decided Scheduling s
by slow time scale.

is when acceptable operation o
(=acceptable loss) can be - rinutes
achieved using constant set
points (cs) for the controlled
variables ¢ (without the need for Lowlevel controller |
re-optimizing when disturbances i
occur) at the faster time scale. A

’ — Plant Measurements
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Goal of current research @

@ Extend the idea of self-optimizing control to more general
systems.

@ Find analytical or pre-computed solutions suitable for
on-line implementation.

@ Determine the structure of the optimal solution. Typically,
this involves identifying regions where different sets of
constraints are active.

@ Determine optimal values (or trajectories) for the
unconstrained variables.

@ Find good self-optimizing controlled variables, ¢ associated
with the unconstrained degrees of freedom.

@ Determine a switching policy between different regions.
@ Ensure simplicity in implementation.

Sridharakumar Narasimhan, Sigurd Skogestad Optimal operation



Pre-computed solutions: LQ regulator

Consider the system:

X = Ax+Bu
y = Cx,

and the cost (to be minimized)
J= / (X'Qx + U'Ru)dt,
0

the optimal solution is the of the form: (Bryson, 1999)

u(t) = —Kx(t)
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MPC: Paradigm 1 ®

Consider the system:

Xtp1 = Axt + Bu
i = CXt,
find U = [Uts1, Utya, - - -, Upen,—1]'» that minimizes:
Ny —1
!/ / /
J= X1+Ny|fPXf+Ny\f + Z Xt+k|tQXl‘+k|t + Upyk AUtk
k=0

subject to:
xt € Xe, yt € Yo, ur € Ue.

Implement u; at time t and re-solve the problem at time t + 1.
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Explicit MPC: Paradigm 2

The optimal solution U*(x) is a Piece-Wise Affine function of
the current state x;: (Bemporad et al., 2002)

Kix+ gy, If, x € Xq
K2X—|-g2, if x € X5

KnX + gn, if x € Xj
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Controlling the necessary conditions of optimality

@ Static optimization: KKT conditions (Arkun and

Stephanopolous, 1980)

@ Active constraints can be controlled.

e Gradient of the Lagrangian is zero. However, it is usually

not measured.

e Self-optimizing control (Skogestad, 2000) or indirect
gradient control using measurements (Cao, 2006).

@ Dynamic optimization:

Constraints in the future.

Sensitivities are zero, however, unmeasured.

]
e Some constraints implicitly defined.
("]

Use measurements. (Bonvin and coworkers)
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Exploiting the structure of optimal solution ®

Exploit known structure of the optimal solution to avoid online
optimization. J

@ |dentifying the active constraints
@ Controlling the active constraints

@ Selecting “self-optimizing variables" corresponding to the
unconstrained degrees of freedom
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Linear Program ®

@ Optimal solution is at constraint vertex.
@ Control the active constraints.
@ No further degrees of freedom.

Ci Cy

X2 //

X4
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Linear Program ®

@ Optimal solution is at constraint vertex.
@ Control the active constraints.
@ No further degrees of freedom.

max Xz
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Linear Program ®

@ Optimal solution is at constraint vertex.
@ Control the active constraints.
@ No further degrees of freedom.

max Xz
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Switching policy ®

@ Three manipulations uq, U», uz and 2 outputs y1, y».

Region uy W us
1 S U Uu
2 u S U
S: Saturated
U: Unsaturated

@ Suggested pairing: Use us to control y», and combine uy
and u» in a split range pair to control y;.
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Heat Exchanger Network ®

@ Optimal operation (minimal utility consumption) of certain
HENSs can be reformulated as a L.P. Problem’.

40°C
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UA=20 KWI°C
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& N 0°C
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Figure: HEN example: Linear problem

@ Control outlet temperatures at targets
@ Inlet temperatures are unmeasured disturbances

1Aguilera and Marcheti, 1998, Lersbamrungsuk et al., 2006, 2007
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Heat Exchanger Network: control structure
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Figure: HEN example: Control structure for optimal operation
(Lersbamrungsuk et al., 2007)

SRTC: Split Range Temp Controller
TC:Temp Controller
5C:Selective Controller
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HEN: Using structure of the optimal solution.

Table: List of saturated manipulations?

Setofactive Q1 Qoo Qn Upy Up Ups
constraints

ar~rowND-=
cccwuwm
cCCcCwwC
numcCccCcom
cCumowmwmCCc
ccccc
mwCcccc

@ In general, pairings determined by solving an ILP?, if
feasible.

2Lersbamrungsuk et al., 2007
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HEN: Quadratic program ®
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Figure: Simple HEN

@ Minimize Q; + Qp + aQ?
@ Can be formulated as a QP. 8

3Manum et al., 2007, in preparation



Optimal operation:Implementation ®
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Manum et al., 2007, in preparation

akumar Narasimhan, Sigurd Skogestad Optimal operation



Optimal operation:Implementation ®
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Optimal operation:Implementation ®
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Conclusions @

@ Paradigm 2: Using off-line analysis to replace online
optimization.

@ Search for self-optimizing policies.

@ Use structure of the optimal solution for efficient
implementation.

@ Extensions to other classes of systems including dynamic
systems.

@ Acknowledgments:

e V. Lersbamrungsuk
e Henrik Manum
e Hakon Dahl-Olsen

Sridharakumar Narasimhan, Sigurd Skogestad Optimal operation



