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Abstract

This paper presents practical methods for computation of disturbance rejection measures, which are useful for assessing the dynamic
operability of the process. Using .#; optimal control theory, we consider the cases of steady-state, frequency-wise and dynamic systems.
In comparison to the available methods, the proposed approach ensures that a linear, causal, feedback-based controller exists that
achieves the computed bounds and the method also scales well with problem dimensions.
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1. Introduction

The achievable control quality (“controllability’) is lim-
ited by the plant itself, independent of the controller design
algorithm. A key issue in the controllability analysis is to
decide upfront if there exists a controller that can reduce
the effect of disturbances to an acceptable level with the
available manipulated variables. When such a controller
exists, the process is said to have “operability”’ [6]. A clo-
sely related problem is that of ‘‘flexibility”” [7]. Skogestad
and Wolff [1] also introduced some measures for judging
upon the disturbance rejection capabilities of the process,
which is similar to the dynamic operability. All these
papers considered the following issue: Is it possible to keep
the outputs within their allowable bounds for the worst possi-
ble combination of disturbances, while still keeping the
manipulated variables within their physical bounds?

* A preliminary version of this work was presented at the annual
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OH, USA, 2005 [5].
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In this paper, we consider the disturbance rejection mea-
sures for linear time-invariant systems. For this case, Sko-
gestad and Wolff [1] introduced the following problems:

(1) What is the minimum output error achievable with
the bounded manipulated variables for the worst pos-
sible combination of disturbances?

(2) What is the minimum control effort or magnitude of
the manipulated variables required to obtain an
acceptable output error for the worst possible combi-
nation of disturbances?

(3) What is the largest possible magnitude of distur-
bances such that for the worst possible combination
of disturbances upto that magnitude, an acceptable
output error is achievable with the bounded manipu-
lated variables?

These problems have been solved on a frequency-by-fre-
quency basis for SISO systems and also approximately for
MIMO systems [8,9]. Hovd et al. [2] provide an exact solu-
tion for the steady-state version of this problem, but
require solving a non-convex bilinear program. Kookos
and Perkins [3] present an integer programming based for-
mulation of the steady-state version of this problem. As
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pointed by Hovd and Kookos [4], the latter formulation
scales better with problem dimensions. Recently, Hovd
and Kookos [4] also presented a method for calculating
the upper and lower bounds on the minimum output error
on a frequency-by-frequency basis. This approach, how-
ever, is computationally very demanding. In summary,
the available solutions for disturbance rejection problem
hold only for restrictive versions of the problem (steady-
state or frequency-by-frequency) and are computationally
expensive.

In this paper, we consider the same problems under the
assumption that the manipulated variables are generated
using a linear, causal, feedback-based controller. Note that
in the original problem formulation [8,9], no such assump-
tions are made. An objective of controllability analysis is to
judge upon the existence of controllers that can satisfy the
desired performance requirements. In this sense, the restric-
tion on the controller is necessary for practical controllabil-
ity analysis. Under these assumptions, the calculation of
disturbance rejection measures can be treated using %-
optimal control theory, which results in solving convex
programs [10]. This approach yields the optimal controller
and also scales well with problem dimensions. In this
paper, we consider the steady-state, frequency-wise and
dynamic cases in turn.

Notation. We let the linear, causal plant and disturbance
models be G(s) and Gs), respectively such that

¥(s) = G(s)u(s) + Ga(s)d(s),

where y(s) is the output, u(s) is the input and d(s) is the dis-
turbance. For simplicity, we use the same symbols for the
signals and their Laplace transforms. We deal with peak
norm of signals defined as

I9(2) .. = max max |y(r)

and induced .#;-norm (peak to peak) of transfer matrices
given as [10]

Gu(t
(0]

1G(s)|| o, =
D oo @l =

1Gu(t)|] -

When dealing with constant real or complex valued matri-
ces, the #;-norm reduces to the matrix 1-norm, which is
defined as maximum absolute row sum. In the following
discussion, we drop the frequency argument s and time
argument ¢, where no confusion can arise. For the given
matrix, 4 € R™", a, denotes vectorized A4 as

a, = [All o 'Aln o 'Amn}T-

2. Problem formulation

In this section, we present the mathematical formulation
of the problem for calculation of disturbance rejection
measures. We first consider the exact problems posed by
Skogestad and Wolff [1], which are usually of theoretical
interest only. Next, we formulate the same problems under

the practical assumption that the controller is rational, cau-
sal and feedback-based.

2.1. Original problem: Minimax approach

We consider that the model has been scaled such that
the allowable magnitudes of the peak values of output
error, manipulated variables and disturbances are y,, y,
and 1, respectively. A procedure for such scaling has been
outlined by Skogestad and Postlethwaite [9]. Then, the
three problems introduced by Skogestad and Wolff [1]
require solving the following minimax optimization prob-
lems [1-3]

(1) Minimum output error:

= max min ||Gu+ G| . (1)

')) .
y,min
. ldlloo <t Mlutlloo <74

(2) Required input magnitude:

o = max - min .. @

ST ||GutGyd|| o <y

(3) Largest allowable disturbance:
Vd,max = max o

st. max min [|Gu+ G|, <7, (3)

oo <o Nt oo <72

Remark 1. The formulation in (3) is equivalent to finding
the largest scaling for disturbances such that the achievable
output error becomes 7,. It may seem that the largest
allowable disturbance can be found as

max _||d|[. 4)

/
’\/ =
d,max G+ Ggdlog <7y

lulloo <7u

[T L]

The formulation in (4), however, only finds “a” distur-
bance having magnitude 7). such that the bounds on
outputs and inputs can be maintained, but does not ensure
that the outputs and inputs can be kept bounded for ““all”
disturbances having magnitude smaller than or equal to
7 max- Lhe subtle difference between the two different for-
mulations in (3) and (4) is illustrated by Hovd et al. [2]
using an insightful example.

Each of these problems may be formulated for the fol-
lowing three cases:

(a) Steady-state
(b) Frequency-wise
(¢) Dynamic systems

While the case of dynamic systems is general, the steady-
state and frequency-wise formulations are useful for
analyzing the capability of the system in asymptotically
rejecting constant and sinusoidal disturbances, respec-
tively. Nevertheless, these problems are difficult to solve
due to their minimax nature and different approaches for
solving the steady-state [2,3] and frequency-by-frequency
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[4] versions have been proposed. In general, these
approaches, however, can be computationally very
demanding. The reader should also note that these prob-
lems pose no restrictions on the controller. Thus achieving
these bounds may require non-causal controllers with the
knowledge of future disturbances. In this paper, we provide
a method for computing the solution to all the problems
mentioned above. The proposed methods provide a bound
(upper bound on yy min and y, min and lower bound for
Yamax) for the “original” problem with no restrictions on
the controller and exact solution for the case of a linear
feedback-based causal controller.

Remark 2. The steady-state and frequency-wise cases only
consider the asymptotic behavior of the closed-loop system
and the issue of non-causality does not arise. For these
cases, the solution obtained using the minimax approach
can be practically implemented, but this may require use of
online optimization-based controller.

2.2. %;/0 approach

For regulatory control, we consider that u = —Ky (neg-
ative feedback). Though the setpoints r are considered to
be zero, the results can be extended to include the case of
non-zero setpoints by replacing y by e =y — r in the fol-
lowing discussion. Now, the following relationships hold,

y=258G.d,
u= —KSGdd,

where S = (I+ GK)~' is the sensitivity function. Next, we
use the Youla parametrization of all stabilizing controllers,
where G is considered to be stable for simplicity. When the
process is unstable, similar coprime factorization based
parametrization can be used; see e.g. [9]. Parameterizing
Kas K= Q- GQ) !,

= (I - GO)G.d,
u=-0G,d,

where Q is a stable rational transfer function. Now, the
three problems introduced above require solving

(1) Minimum output error:

min (- GO)Gall,

5)
st 10G,I,, <.
(2) Required input magnitude:
min G,
in 110G, "
st. (I = GO)Gall 4, <,
(3) Largest allowable disturbance:
min ¢
0
st. |1 - GO)Gyll,, <0 (7)
190Gl ¢, <00

For 6" solving the optimization problem in (7), the magni-
tude of the largest allowable disturbance is given as 1/¢".

The formulation of these optimization problems using
Z1-optimal control theory is along the same lines as
done by Dahleh and Diaz-Bobillo [10]. The problem of
computing achievable ||y||, for specified disturbances (e.g.
step-type) using the Youla parameterization was also con-
sidered by Swartz [11,12]. The approach taken here consid-
ers the time-domain bounds characterized by ||y||, directly
and also allows for the worst possible combination of dis-
turbances, as is relevant for computing disturbance rejec-
tion measures.

Remark 3. Sometimes, it is of interest to find the minimum
input magnitude that provides perfect control of outputs;
especially at steady-state or a non-zero frequency. When G
is non-singular, an explicit solution to this problem is
available in [9]. Ma et al. [13] have extended these results to
rank deficient G by requiring perfect control only for
disturbances lying in the controllable subspace. Ma et al.
[13] define the controllable subspace W as the subspace
spanned by the sign-adjusted left singular vectors corre-
sponding to non-zero singular values of G. While no
restrictions are imposed on the controller in [13], the
minimum input magnitude required to achieve perfect
control in the controllable subspace using a linear feed-
back-based controller can be computed by replacing G and
G, by WG and WG, in the optimization problem in (6).

In the following discussion, we only consider the mini-
mum output error problem (problem 1) in detail and the
formulations for the remaining two problems can be
obtained similarly. Before dealing with the dynamic sys-
tems, we first deal with the steady-state and frequency-
dependent versions of disturbance rejection problems.
The reason for detailed discussion of the steady-state ver-
sion of the problem is that its formulation is similar to
the corresponding formulation for discrete-time dynamic
systems, which facilitates the introduction of more involved
expressions later in this paper.

2.2.1. Steady-state
We recall that for constant matrices, the %;-norm
reduces to the matrix 1-norm. Now, let Q be vectorized as

9, = [Qll e an}, e Qn,Ln},]T'

Then, ||QG4||; < 7, is equivalent to

— Oy < (]n“ ® G;)qv < O‘l/‘? (8)
([ﬂu ® l'lfi)oct‘ < Yu 1"u7 (9)
where ® is the Kronecker tensor product and 1,, is an
n, dimensional column vector of 1’s. Similarly,
|Gs — GOG,||y <y, is equivalent to

— B, < (Ga), — (G& Gy)g, < B, (10)
(Lo, @ 1,)B, < 9y Loy (11)
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In (8) and (10), o, € R™™ and f, € R™" bound the abso-
lute values of the elements of QG; and (G, — GQG,),
respectively. Similarly, in (9) and (11), the sum of the abso-
lute values of the elements of each row (arising due to
matrix 1-norm) of @G, and (G, — GQG,) are bounded by
7. and 7,, respectively. Define x = [¢F o BT yy]T. Then,
in the standard linear program form the minimum output
error is determined by solving

min [0 0 0 1]x

X

[ 1, ®G) -1 0 0 ro0
-1, ® G} -1 0 0 0
0 In ® ln 0 0 Yu* 1,1
.t. u d < u u
® Ged 0 10 |TS | @),
G®G, 0 ~1 0 (Ga),
L 0 0 Iny ® lnd _111y L O n

[0 0 0 0]<x< o0

The above linear program is sparse with (n,n, +nn,;+
nyhg+ 1) variables and (2(nn,;+ nyng) +n,+n,) con-
straints. In this paper, we use Tomlab/CPlex [14] for solv-
ing this program. Note that for finding the required input
magnitude, one only needs to change the roles of y, and
7, in the above formulation.

2.2.2. Frequency-wise

We next consider the calculation of minimum output
error on a frequency-by-frequency basis. As compared to
the steady-state case, the additional complication is that
the matrix 1-norm requires calculation of absolute values,
which is non-linear for complex scalars in terms of its real
and imaginary parts. To overcome this difficulty, Hovd and
Kookos [4] suggest under and overestimating the peak
norms of various signals using polyhedral approximations.
Such an approximation, however, increases the computa-
tional requirements considerably, especially when the
approximation error is required to be small. In the follow-
ing discussion, we show that under the %, /Q approach, the
calculation of minimum output error can be posed as a
convex program. The formulation is based on the observa-
tion that though non-linear, the absolute value of a com-
plex scalar can be bounded using a linear matrix
inequality (LMI) [15].

We recall that the vectorized format of QG is given as
(I, ® G))gq,. Let [(I,,®G))], denote the ith row of
(I,,® G;). Then the magnitude of the elements of QG,
can be bounded as

|[(1nu ® G;)]l*qL| g [O(U]i
= la; + jb;| < [o)];

1

= la blla b]" <[] (12)
[O‘v]j a; bi

| a [, 0 |=0
b, 0 [o);

1

where the last equivalence is obtained using Schur comple-
ment lemma [15]. Here

4, = Re[(7,, @ G1)], Re g, — Im[(1,, & G1)],Im g,
bi = Re[(]”u & Gg)]i*lm q, + Im[(]nu & G;)]i*Re q,-

Similarly, the magnitude of the elements of (G, — GQG,)
can be bounded using the following LMI

[ﬁv]j cj df
¢ B), 0 | =0, (13)
di 0 [B)]
where

¢;=Re[(G,),], ~ Re[(G® G})] Re g, + Im[(G® G})] . Im g,
d,=1m((Gy),}, - Re[(G® G}, Im ¢, ~ Im[(G® G}, Re g,.

Now, by defining z = [Req! Img! of g} 7,]", the prob-
lem requires solving

min [0 0 0 0 1]z

. 0 0 7, ®1, 0 0 < Yu Ln,
S.1. 0 0 0 Iny®1”d _lny AN 0
(12) fori=1,2,...,nny

(13) for j=1,2,...,nny

[0 —00 0 0 0]<z< 0.

In this paper, we use the software package Tomlab/
PenSDP [14] using the interface Yalmip [16] for solving this
semi-definite program.

2.2.3. Dynamic systems

For continuous-time systems, the computation of .%-
norm is difficult and the problems involving this norm
are almost exclusively solved using discretized models.
For the discrete-time univariable system g(z~'), the %;-
norm is given as

lgE g, =D leil,

i=1

where g; is the ith impulse response coefficient and z ! is
the backshift operator. In practice, finite impulse response
(FIR) models are used and a method for selecting the order
of the FIR model is given by Dahleh and Diaz-Bobillo [10].
For the multivariable system G(z~') with n, outputs and ,
inputs, the .#|-norm is

1Gu (Yl 1G1, (=)l ,

16zl o, = :
1Gu1 (=)l o, G, (2, 1],

With this minor detour, we next formulate the linear pro-
gramming problem that can be used for calculating the
minimum output error. We consider that for G(z~') and
GAz™ "), FIR models of order N are used, whereas the order
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of FIR model of Q(z™') is Ng with Ny < N. Note that the
order of the decision variable Q(z™") is difficult to deter-
mine a priori and in practice, Ny can be increased sequen-
tially, until convergence.

For posing this problem as a standard linear program,
we need to vectorize the impulse response coefficients of
0z "Gz and Gz ") — G(zH)O(z"")GAz ). For this
purpose, it is useful to represent these impulse response
coefficients using matrix notation. The impulse response
coefficients of Q(z"')G(z"") are given as

r (QGd)1 0, 0 B | Gai
(QGd)z Qz Ql e 0 Gd,z
- . . . . O

L (0G,)y 0o - QNQ 0

which can be vectorized as

G |

_Inu ®G0T1A1 0 0 (Ql)v
I, ® G;,z I, ® GdT,l e 0 (Qz)u
: 0 :
_I”u ® G}‘,N ]”u & G;,(N—NQ-FI) L (QNQ)D
(14)
where
(Qi)v = [Qzﬁ,ll T Qi.lny T Qi,nuny]T-
Similarly, impulse response coefficients of
Gz — Gz )O(z""H)GAz") can be vectorized as
T
(Ga), G, ®G{,_]l 0 0
(Gan), Gl@G}.zJFGZ@G}.] Gl@GL 0
- 0
N N-No+1
(Gan), ; G®G) v i) ; Gi®G) iy vy i1
(@),
(02),
X e (15)
(Ov,)s

Using the vectorized impulse response coefficients in (14)
and (15), and manipulations similar to (8)—(11), the prob-
lem of calculating the minimum output error for dynamic
systems is same as the steady-state case with N(n,n,+
nyng) + Non,n,+1  variables and (2N(nn,+ nyng) +
n, + n,) constraints. The steady-state case was handled in
Section 2.2.1 and the details are not repeated.

Remark 4. When the process has unstable zeros, these
zeros give rise to interpolation constraints. The interpola-
tion constraints ensure that there are no unstable pole-zero
cancelations and thus internal stability is maintained.
When the closed-loop system is internally unstable, some
of the signals become unbounded (e.g. u), while others may

remain within bounds (e.g. y). In this paper, we do not
explicitly include the interpolation constraints, as the
signals are bounded by finite y, and 7,. In some limiting
cases of theoretical interest (e.g. cheap control), there is no
finite upper bound on the magnitudes of some signals and
interpolation constraints need to be taken into account.
This problem can also be approximately handled by using
large but finite values for y, or y, in the proposed approach.

3. Examples

In this section, we consider a number of process exam-
ples taken from the literature to illustrate the concepts dis-
cussed in this paper. Some of these examples were earlier
considered using the minimax formulation in [2-4].

Example 5. We first discuss the calculation of minimum
output error for blown film extruder earlier considered by
Hovd et al. [2]. This process has 15 inputs, 15 outputs and
15 disturbances, where the steady-state gain matrices of G
and G, are circulant matrices with G being rank deficient.
The disturbance model G, is parameterized by k, r, which
defines the spatial correlation among different variables.

The minimum output error calculated using the bilinear
formulation by Hovd et al. [2] and the .#;/Q approach are
shown in Table 1, where y,=1. Hovd et al. [2] do not
impose any restrictions on the controller structure and the
controller that achieves the bounds presented by them can
be a nonlinear or online optimization-based controller. In
comparison, the #;/Q approach provides the optimal
linear controller that achieves the practical bounds. The
results in Table 1 show that there is no significant
performance loss in using a linear feedback-based control-
ler as compared to an online-optimization based or
nonlinear controller for this process, at least for asymptotic
rejection of constant disturbances. We also point out that
the /0 approach requires at most 3 s for solving the
different cases on a Pentium IV 3.2 GHz PC, showing
computational efficiency.

For this process, it is not possible to achieve perfect
control due to non-invertibility of G, even when arbitrarily
large input variations are allowed. For example, for
k=1,r=0.7, the minimum output error calculated using
#1/0 approach is 0.241, when y, = 3.429 and increasing 7,
does not reduce 7, further indicating a fundamental
limitation. Though not possible for all disturbance
directions, perfect control can be achieved for disturbances

Table 1
Comparison for minimum output error for blown film extruder (steady-
state)

Case Bilinear [2] (online %, /Q approach (this work)
optimization) (linear feedback)

k=1,r=0.7 0.783 0.783

k=1,r=03 0.894 0.935

k=0.5r=03 0.382 0.409
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confined to their controllable subspace with inputs having
magnitude equal to or larger than 15.303 [13]. Ma et al. [13]
do not impose any restrictions on the controller. For this
problem, however, a linear feedback-based controller
provides same level of performance as the unrestricted
controller showing that linear feedback-based controller is
optimal; see also Remark 3.

Example 6. Next, we consider the calculation of largest
allowable disturbance for the Tennessee Eastman process
[17]. This example was earlier considered by Kookos and
Perkins [3], where the original process was stabilized using
a subset of variables. The stabilized process has 5 outputs,
S inputs and 7 disturbances. The steady-state gain matrices
for the stabilized process are available in [3].

The magnitude of the largest allowable disturbances
computed using the integer programming formulation [3]
are compared with the corresponding values calculated
using the /0 approach for different combinations of
disturbances in Table 2. Note that due to the practical
assumption of a linear feedback-based controller, the
allowable disturbance magnitude calculated using the
Z1/0 approach is lower than the minimax formulation,
which allows for non-linear and online optimization-based
controllers. In all cases, the disturbance magnitude calcu-
lated using the two alternate approaches is reasonably
close. The integer programming formulation requires
about 0.5s for solving this problem for the different
disturbance scenarios [3]. In comparison, the %;/0
approach requires at most 0.03 s for the different cases on
a Pentium IV 3.2 GHz PC, showing computational effi-
ciency and better scalability. We also note that the largest
difference between the two approaches is seen, when only
disturbance dg is considered. It can be shown easily that for
a single disturbance, the minimax and . /Q formulations
are identical for the steady-state case. Then, the apparent
difference is due to the typographical errors in [3].

Example 7. The previous two examples dealt with steady-
state case only. Here, the usefulness of formulations for
frequency-wise computation and dynamic systems is illus-
trated using fluid catalytic cracker (FCC) process earlier
considered by Hovd and Kookos [4]. The unscaled
dynamic model for this process is given by Wolff [8]. In this
paper, we use the following scaling matrices such that the
allowed disturbance magnitude is 1.

Table 2
Comparison for largest allowable disturbances for Tennessee Eastman
process (steady-state)

Case Integer programming [3] #1/0 approach (this
(online optimization) work) (linear feedback)
d\—d; 0.392 0.385
d 0.601 0.601
d> 1.273 1.273
de 1.302 1.231
d; 3.368 3.368
dy, da, dr 0.393 0.386

D, =diag(3 2 3);

D, = diag(3 30 4.75x107%); D, =diag(5 5 4).

For this process, perfect control is possible at steady-state
using a linear rational controller. Hovd and Kookos [4]
made a similar observation using an integer programming
formulation. Thus, there is no limitation in using a linear
controller, at least at steady-state.

Next, we consider the frequency-wise computation of
minimum output error. Hovd and Kookos [4] presented
lower and upper bounds on minimum output error using
polyhedral approximations. The minimum output error
calculated using the #;/Q approach, and the lower and
upper bounds computed by Hovd and Kookos [4] are
shown in Fig. 1, where the close proximity of the solution
obtained using .#/Q approach and Hovd and Kookos’s
lower bound should be noted. Note that the %;/Q
approach gives an exact value if we require the controller
to be linear, causal and feedback-based, but it provides an
upper bound on the minimum output error in comparison
to the minimax formulation. This happens as in %;/Q
approach, the controller and hence the manipulated
variables are restricted, but the disturbances are still
allowed to take all possible values (as the minimax
formulation). This shows that for the FCC process, the
lower bound computed by Hovd and Kookos [4] is tighter
in comparison to the upper bound.

Finally, we consider the dynamic case. The continuous-
time model is discretized using a sampling time of 2 min,
for which FIR models having order N = 150 suffice. The
order of the Youla parameter Q is increased sequentially
and no further improvements are seen for Ny > 18. This
results into a sparse linear program with 2863 variables and
5406 constraints. The variation of minimum output error
for different values of y, is shown in Fig. 2. It is interesting
to note that the minimum output error reduces sharply for

0.5

0.4r

03F

021

Minimum output error

0.1

-5 —4 -3 2 —1

10 10 10 10 10
Frequency (rad/s)

Fig. 1. Comparison of %,/Q approach (solid) with upper (dots) and
lower (dashed) bounds calculated by Hovd and Kookos [4] for FCC
process (frequency-wise).
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15¢

10}

Minimum output error

0 5 10 15 20
Allowed input usage

Fig. 2. Trade-off between ||y||o, and ||u|| for the FCC process (dynamic
case).

small increments in 7y, initially, but requires much larger
increments in 7y, for similar reductions, as we get closer to
the perfect control case. For example, when y, is increased
from 0.5 to 1, minimum output error decreases from 7.4 to
0.55. However, decreasing the minimum output error from
0.1 to 0.05 requires increasing 7, from 112.61 to 138.34 (not
shown in Fig. 2).

Example 8. To demonstrate the effect of non-minimum
phase zeros on the minimum output error, we consider

0.05 1 +az!
G(z'") = ;
) = T e Tr 05T 10257
0.5z7!
71 o
Gale) =T g5
where G(z~') has a zero at z = —a (non-minimum phase for

a = 1). The process gain has been scaled by the factor
(1 4+ a) such that it remains constant for all values of a.
For this process, we use N = 300 and Ny = 25. The varia-
tion of minimum output error with the location of the zero
for y, =1 is shown in Fig. 3. For this case, the minimum
output error only shows minor variations with zero loca-
tion indicating that the non-minimum phase zero puts no
serious limitations and the performance is primarily limited
by the bound on the manipulated variable.

When v, is increased to 100, the minimum output error
remains close to 0.5 for minimum phase G(z™'). In this
case, the performance is limited by the unit time delay. By
canceling the controller-dependent terms, as is usually done
in minimum variance control literature [18], it can be
analytically shown that 0.5 is the optimal value for
minimum output error for the cheap control case. For
non-minimum phase G(z~'), the minimum output error is
much larger as compared to the minimum phase G(z™')
indicating that the limitation is due to unstable zero. It
shall also be noted that when the zero recedes away from
the unit disc, the limitation due to unstable zero decreases,
as is usually the case [9].
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Fig. 3. Minimum output error as a function of zero location for non-
minimum phase process with |||, < 1 (solid) and ||u||., < 100 (dash).

4. Conclusions

We used a Youla parametrization and ¥ optimal con-
trol based (%,/Q) approach for practical and efficient
computation of the disturbance rejection measures pro-
posed by Skogestad and Wolff [1]. The approach taken in
this paper is numerical and explicit (and possibly approxi-
mate) characterization of the limitations on the achievable
output performance with bounded inputs is an issue for
future research. To this end, the reader is referred to [13],
where explicit conditions for judging the feasibility of per-
fect control are derived.

For the various numerical examples considered in this
paper, it is found that a linear feedback-based controller
can provide nearly the same level of performance as an
online-optimization-based controller for asymptotic rejec-
tion of constant and sinusoidal disturbances. In general,
however, the use of a linear feedback-based controller
can be conservative. Future research will focus upon
extending the results of this paper to online-optimization-
based controllers, e.g. model predictive controllers.
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