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Optimal operation

• Two paradigms for implementation

i. on-line optimization using measurements 
for model or state estimate updates 
(RTO, MPC)

ii. inherent optimal operation by exploiting 
off-line information in control structure 
design



Off-line optimization

• Lower computational load

- Still a significant problem for dynamic 
real-time optimization

• Less sensitive to modeling errors



Dynamic optimization

 

λi = − ∂H
∂xi

H (t) = λT f (x,u)+ µT c(x,u)

y = h(x)

 

min
u(t ),t f

J(x(t f ))

x = f (x,u)
c(x,u) ≤ 0
u(t)∈U[0,T ]
x(t f )∈X



Hamiltonian

• takes minimum along optimal path

• has a constant value along the optimal path 
for problems not depending explicitly on 
time

• can be used to define a loss in sub-optimal 
operation:

L(t) = H (t)− Hopt (t)



Loss related to outputs

 

L(t) = Huδu
0


+ 1
2
δuTHuuδu

Need to relate variations in inputs 
to variations in outputs

δy = ∂h
∂xT

∂x
∂uT

δu = Gδu

L(t) = 1
2
δyTG−T HuuG

−1δy



Maximum gain rule for dynamic 
optimization

• Assume the model is scaled 
such that δymax≈1

min G−T HuuG
−1

2

2

t0

t f∫ dt( )1/2
Select y’s to minimize the 

following expression along the 
nominal trajectory



How to obtain G

• How does variations in inputs map to the 
states?

• Neighboring optimal control gives u=Kx

• We estimate G by

G ≈ ∂h
∂xT

K +



Example

• Maximize production of product P in a fed-
batch bioreactor with fixed final time of 
150 hours

• Reaction is driven by the presence of a 
substrate S, which is consumed in the 
biomass generation

• The biomass concentration is constrained

Bioreactor
 
X O2

S
   αX+βP

Srinivasan, B., D. Bonvin, et al. (2002). "Dynamic optimization of batch processes II. Role of measurements 
in handling uncertainty." Comp. chem. eng. 27: 27-44.





Example

X < 3.7 Biomass 
concentration

S Substrate 
concentration

P Product 
concentration

V Volume

u < 1 Substrate 
feedrate

Bioreactor
 
X O2

S
   αX+βP

u [L/h]
Sin=200 g/L
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X = µ(S)X − u
V
X

S = − µ(S)X
YX

− νX
YP

+ u
V

Sin − S( )

P = νX − u
V
P

V = u

Bioreactor
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S
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Biomass growth rate
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S
   αX+βP

µ(S) = µMS
KM + S + S2 / Ki



Consider gain magnitude

• Transformation of input: ξ=√u

• Hξξ is constant

• Minimizing of 1/K2 corresponds to 
maximizing K2

Bioreactor
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S
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Comparison of gains
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Simulation results

Control of S
X-step
Open loop
Control of P



Summary

• The maximum gain rule can be extended to 
unsteady-state problems

• Using the solution of the time-varying LQR 
problem, it is possible to get a good 
estimate of the time-varying gain needed to 
use the maximum gain rule


