O N'INU Innovation and Creativity

Near-Optimal Output Feedback Control of Dynamic Processes

Håkon Dahl-Olsen, Sridharakumar Narasimhan and Sigurd Skogestad

Optimal operation

- Two paradigms for implementation
	- i. on-line optimization using measurements for model or state estimate updates (RTO, MPC)
	- ii. inherent optimal operation by exploiting off-line information in control structure design

Off-line optimization

- Lower computational load
	- Still a significant problem for dynamic real-time optimization
- Less sensitive to modeling errors

Dynamic optimization $\dot{\lambda}$ $\lambda_{\scriptscriptstyle i}$ $=-\frac{\partial H}{\partial \theta}$ ∂x_i^+ $H(t) = \lambda^{T} f(x, u) + \mu^{T} c(x, u)$ $\dot{x} = f(x, u)$ $y = h(x)$ min $u(t)$, t_f $J(x(t_f))$ $c(x, u) \leq 0$ $u(t) \in U[0,T]$ $x(t_f) \in X$

Hamiltonian

- takes minimum along optimal path
- has a constant value along the optimal path for problems not depending explicitly on time
- can be used to define a loss in sub-optimal operation:

$$
L(t) = H(t) - H_{\text{opt}}(t)
$$

Loss related to outputs

$$
L(t) = H_u \delta u + \frac{1}{2} \delta u^T H_{uu} \delta u
$$

Need to relate variations in inputs to variations in outputs

1

2

 $L(t) =$

$$
\delta y = \frac{\partial h}{\partial x^T} \frac{\partial x}{\partial u^T} \delta u = G \delta u
$$

δ *y T G*[−]*^T HuuG*[−]¹ δ *y*

Maximum gain rule for dynamic optimization

• Assume the model is scaled such that $\delta y_{\text{max}} \approx 1$

> Select y's to minimize the following expression along the nominal trajectory

$$
\min \left(\int_{t_0}^{t_f} \left\| G^{-T} H_{uu} G^{-1} \right\|_2^2 dt \right)^{1/2}
$$

How to obtain G

- How does variations in inputs map to the states?
- Neighboring optimal control gives u=Kx
- We estimate G by

$$
G \approx \frac{\partial h}{\partial x^T} K^+
$$

Example

- Maximize production of product P in a fedbatch bioreactor with fixed final time of 150 hours
- Reaction is driven by the presence of a substrate S, which is consumed in the biomass generation
- The biomass concentration is constrained

Srinivasan, B., D. Bonvin, et al. (2002). "Dynamic optimization of batch processes II. Role of measurements in handling uncertainty." Comp. chem. eng. **27**: 27-44.

Bioreactor

 $X \frac{O_2}{S} \alpha X + \beta P$

Example

Example

$$
\dot{X} = \mu(S)X - \frac{u}{V}X
$$

Bioreactor

$$
\dot{S} = -\frac{\mu(S)X}{Y_X} - \frac{vX}{Y_P} + \frac{u}{V}(S_{in} - S)
$$

$$
\dot{P} = vX - \frac{u}{V}P
$$

$$
\dot{V} = u
$$

Consider gain magnitude

- Transformation of input: $\xi = \sqrt{u}$
- H_{ξξ} is constant
- Minimizing of I/K² corresponds to maximizing K²

Bioreactor

Simulation results

Summary

- The maximum gain rule can be extended to unsteady-state problems
- Using the solution of the time-varying LQR problem, it is possible to get a good estimate of the time-varying gain needed to use the maximum gain rule

