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Optimal operation

® Two paradigms for implementation

i. on-line optimization using measurements
for model or state estimate updates

(RTO, MPC)

ii. inherent optimal operation by exploiting
off-line information in control structure

design
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Off-line optimization

® | ower computational load

- Still a significant problem for dynamic
real-time optimization

® |ess sensitive to modeling errors

& NTNU

Innovation and Creativity

\
\

www.ntnu.no



Dynamic optimization

min J (it ) -\l\/
X= f(x,u) y=h(x)
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Hamiltonian

® takes minimum along optimal path

® has a constant value along the optimal path

for problems not depending explicitly on
time

® can be used to define a loss in sub-optimal
operation:

L(t)=H(t)~ H, (1)
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Loss related to outputs
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Need to relate variations in inputs
to variations in outputs
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Maximum gain rule for dynamic

optimization
® Assume the model is scaled
such that Oymax=|

Select y’s to minimize the
following expression along the
nominal trajectory
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How to obtain G

® How does variations in inputs map to the
states!

® Neighboring optimal control gives u=Kx

® We estimate G by
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Example

® Maximize production of product P in a fed-
batch bioreactor with fixed final time of
150 hours

® Reaction is driven by the presence of a
substrate S, which is consumed in the
biomass generation

® [he biomass concentration is constrained

Srinivasan, B., D. Bonvin, et al. (2002). "Dynamic optimization of batch processes Il. Role of measurements E N T N U
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Example

Biomass u [L/h]
X<37 concentration Sin=200 g/L

Substrate
concentration

Product
concentration

Volume

Substrate
feedrate
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Example

Biomass

concentration X — US)X — u X
Substrate |4

concentration , .U(S)X vX U
Product 5= Y Yy V(
X P

concentration

. u
Volume P=vX——P
>

X<3.7

S, —S)

1mn

Substrate V=u
feedrate
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Biomass growth rate

0.02
0.015

2 0.01

Uy, S
K,+S+S*/K,

0.005 U(S) =

0.5
Substrate (g/L)
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Consider gain magnitude

® Transformation of input: £=\u
® Hr: is constant

® Minimizing of 1/K? corresponds to
maximizing K2
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Comparison of gains

¥ 1.0E+02
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Simulation results
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YX= 0!5

YX=0.25 YX=0.75

™ Control of S

B X-step
Open loop

™ Control of P
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Summary

® The maximum gain rule can be extended to
unsteady-state problems

® Using the solution of the time-varying LOR
problem, it is possible to get a good
estimate of the time-varying gain needed to
use the maximum gain rule
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