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Abstract

The issue in this paper is to select controlled variablas combinations of the
measurementg The objective is to obtain self-optimizing control, which is when
we can achieve near-optimal steady-state operation with constant $gfiooithe
controlled variables, without the need to re-optimize when new disturbgrere
turb the plant. The null space method yields locally optimal controlled vagable
¢ = Hy that are linear combinations of measuremgnt3he requirement is that
we at least have as many measurements as there are unconstraimees dé free-
dom, including disturbances, and that the implementation error is negletied
method is surprisingly simple. From a steady-state model of the plant,$hstép
is to obtain the optimal sensitivity matri with respect to the disturbances. The
optimal matrixH satisfiesHF = 0, so the next step is to obtalih in the left null
space of. The method is used to obtain temperature combinations for control of
a Petlyuk distillation column.

Keywords. Process control, Control structure selection, Optimizing control, Un-
certainty, Temperature control distillation

1 Introduction

For cases with unconstrained control degrees of freedgnuin), an important issue
is to decide what to control. Although not widely acknowleddoy control theorists,
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controlling the right variables is a key element in overcagnuncertainty in opera-
tion%2, This applies also when using advanced control (e.g. MP@2alrtime opti-
mization (RTO). This paper focuses on the interaction betw&e local optimization
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Figure 1: Block diagram of a feedback control structureudaig an optimizer layer.

layer and the feedback control layer, see Figure 1, and nparafgcally on the selec-
tion of the controlled variablesthat link these layers. Two sub-problems are important
here:

1. Selection of the controlled variables This is a structural decision which is
made before implementing the control strategy.

2. Selection of setpoints;: This is a parametric decision which can be done both
online and dline.

Here, we focus on the first, structural problem of finding thatmlled variables and
we will assume constant nominal optimal setpoints. As seamn fFigure 1, there are
two sources of uncertainty that will make a constant setpgmticy non-optimal:

1. Disturbances d: External unmeasured disturbances, including paramaté&-v
tions.

2. Implementation error n: The sum of the #ect of the measurement error fpr
and the control error.

Single measurements or functions or combinations of thesaremnents may be used
as controlled variables. The objective is to obtain self-optimizing contfplwhich

is when we can achieve near-optimal steady-state openatibrconstant setpoints for
the controlled variables, without the need to re-optimibemwnew disturbances perturb
the plant. Use of single measurements is simple and is therped choice if the loss
is suficiently small. However, for some applications there may e&ast any self-
optimizing single measurements, and one may consider merasat combinations.
In this paper, we consider linear combinations, thatis, Hy whereH is a constant
matrix.



Ideas related to self-optimizing control have been preskrgpeatedly in the pro-
cess control history, but the first quantitative treatmeas #hat of Morari et at. Sko-
gestad defined the problem more carefully, linked it to previous ky@and was the first
to include also the implementation error. He mainly congidehe case where single
measurements are used as controlled variables, thdtisa selection matrix where
each row has a single 1 and the rest 0’s. The loss with a cdrsggroint policy for
expected disturbances and implementation errors wasatedlwsing a “brute-force”
approach. An important advantage of a brute-force evalnds that one can also
identify controlled variables that may yield infeasalifior certain disturbances or im-
plementation errors. This was also considered in more Ideaiarsson et af for
the Tennessee-Eastman challenge problem and GovatsnhBkagestatiwho sug-
gested to adjust the setpoints to achieve feasibility. Hewdhe computational load of
the “brute-force” method can be very large, so local methmaised on linearizing the
behavior around the steady-state are attractive. Skatrestaoduced the approximate
maximum gain rule as a simple method for selecting contloligiables. In the multi-
variable case, the gain is the minimum singular value of tiaéesl steady-state transfer
matrix fromu to c. A similar method was presented by Mahajanam &t &alvorsen
et al® considered the maximum gain method in more detail and atgoosed an exact
local method which may be used to obtain the optimal measemegombinatiorH.
However, this method is also less attractive computatip@ald in addition somewhat
difficult to use. Hori et al.illustrate the ideas introduces in this paper on indirectco
trol which can be formulated as a subproblem of the null spaethod presented in
this paper.

Related work has been done by Sriniva&dnt® on measurement-based optimiza-
tion to enforce the necessary condition of optimality unalecertainty. The ideas are
illustrated on batch processes. Francois ét aixtend these ideas and focus on steady-
state optimal systems, where a clear distinction is madedsst enforcing active con-
straints and requiring the sensitivity of the objective ®Aero. Guay and Zhaf§
present related ideas on measurement-based dynamic zguiioni.

In this paper, the objective is to derive a simple method &eding the optimal
measurement combination matkikfor the special case with no implementation error.
In fact, the method is so simple that the second author (Sitadgthought it had to be
wrong when it was proposed by the first author (Alstad). Westetempted to keep the
mathematics as simple as possible. A more detailed congpanigh previous results
and extensions are presented in a forthcoming publicasiea &lsé?).

2 Problem formulation

We assume that the operational goal is to use the degreeseofdimaig to minimize
the costJp while satisfying equality and inequality constraints. Tloeiginal) con-
strained steady state optimization problem can, for a giNsturbancel be formulated
as:

nxwiun J(x, u,d) 1)



subject to

f(x,u,d)=0
g(x,u,d) <0 (2)
y =fy(x,u,d)

wherex € R™, u € R™ andd € R™ are the states, inputs and disturbances, respectively.
f is the set of equality constraints corresponding to the rhegieation,g is the set of
inequality constraints which limits the operation, e.gysibal limits on temperature
measurements or flow constraints gnithe measurements.

When solving this optimization problem, we generally findttseme constraints
are active, corresponding ®(x,u,d) = 0. To achieve steady-state optimal opera-
tion, we assume here that we control all the active consg™it® and that the set
of active constraints does not change (assumpAi8rbelow). Controlling the active
constraints consumes a corresponding number of the degfréegdom (inputs), and
we consider in the following the remaininopconstrainededuced-space optimization
problem where the scalar cost functidris to be minimized with respect to theg,
remaining degrees of freedom (inputs)

muin J(u,d) (3

Here the equality constraints, including the model equatend active constraints, are
implicitly included inJ, soJ is generally not a simple function ofandd.

Remark. Although not strictly correct, we use for simplicity the same symbol for et &and
degrees of freedom in (1) and (3). Also note that it does not matter from a steady-state point
of view which of the original degrees of freedom are used to satisfydtigeaconstraints, and
which are then left in (3) as the unconstrained degrees of freadan long as the remaining
optimization problem remains well posed.

We assume that online information about the system beh@vaailable through
measurementg. The issue in this paper is find a setmf controlled variables =
h(y) associated with the “unconstrained” degrees of freedonn the measurement
vectory, we generally include also the input veciay, including the inputas’ that
have been selected to the control active constraints. Hemvive measurements of the
active constraints are not includedyn since they are constant and thus provide no
information about the operation.

In order to quantify the dierence between alternative control policies we consider
the loss. For a given disturbandethe loss is defined as thefidirence between the
actual cost and the optimal c8st

L = J(c, d) — J(c®'(d), d) ~ %(c — "Y1 (c — c°PY (4)

where the second-order approximation holds for small dievia from the nominal
optimum. The selected controlled variabteare assumed to be independent and the
Hessian matrixJec nonsingulaf. With a constant setpoint policy, we have= cs + n
wheren is the implementation error. In this paper, we assume 0 (assumptiorA4



below) and assume that the setpoint is nominally optimak, c°Pi(d*) whered* is the
nominal value of the disturbance. Ther: c°P and the loss for small deviations from
the nominal optimum is

This gives the following insight (which is not very surprigiand could have been
stated directly):

With independent controlled variablesand no implementation error, a constant set-
point policy is optimal it°P(d) is independent od, i.e. c°P'(d) — c°P{(d*) = 0.

3 Null space method

We consider the unconstrained optimization problem asgiyeeq. (3), that is, we as-
sume “active constraint control” where all optimally caagted variables are assumed
to be kept constant at their optimal values. The goal is to ditidear measurement
combinationc = Hy to be kept at constant setpoirds HereH is a constanh, x ny
matrix andy is a subset of the available measurements. We make the fofoxs-
sumptions:

Al Steady-state: We consider only steady-state operation. The justificatiw this
is that the economics of operation is primarily determingdhe steady-state.
Of course, this assumes that we have a control system in filatean quickly
bring the plant to its new steady-state.

A2 Disturbances: Only disturbances thatffect the steady-state operation are in-
cluded.

A3 Active constraint control: We assume that the same active constraints remain
active for all values of the disturbances and that we cotitkede constraints.

A4 No implementation error: The implementation error is the sum of the control
error and the #ect of the measurement error. The assumption of no steatly-st
control error is satisfied if we use a controller with intdgretion. It is a more
serious assumption to neglect the measurement error, sodtied implicitly
assumes that the measurements have been carefully selected

We then have the following result:

Theorem 1 Null space method. Assume that we have imdependent unconstrained
free variablesu, ng independent disturbances n, independent measuremegtsand
we want to obtain i= n, independent controlled variableghat are linear combina-
tions of the measurements

c=Hy (6)
Let

ayopt
—oadT
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be the optimal sensitivity matrix evaluated with constactive constraints. If p >
Ny + Ng, it is possible to select the matrik in the left null space of, H € N(FT), such
that we get

HF=0

With this choice foH, fixing c (at its nominal optimal value) is first-order optimal for
disturbanced, that is, the loss is zero as long as the sensitivity matrixoesdnot
change.

Proof: We first prove that selectinig such thatHF = 0 gives zero disturbance loss. For small
disturbances, the optimal change in the measurements to a change inttineadises can be
written

y°P(d) - y°Pi(d") = F(d - d") (7)
where
ﬁygpt ﬁygpt
ady (9dnd
F= (8)
ayg;)l ﬂygyl
E cee 3dnd

is the optimal sensitivity matrix evaluated at the nominal pbinn (7) we have only included
the first-order term in the Taylor expansion, so (7) holds for small distures such that second-
and higher-order terms il ¢ d*) can be neglected, or equivalently, as longraoes not change.
From eq. (6) the corresponding optimal change in the controlled vasi##e*(d) — c,p(d*) =
H(y°PY(d) - y°PY(d*) and by inserting eq. (7) we get

C°PY(d) — c°P(d") = HF(d - d*) )

From the insight stated at the end of the previous section, the constasinseigicy is optimal
if
c°P(d) — c°P(d*) = 0 (10)
which gives the requirement
HF(d-d") =0 (11)
This needs to be satisfied for any/{ d*) so we must require that

HF =0 (12)

We next need to prove under which conditions this is possible. To s&isfd — d*) = 0 we
need to seledtl such thaH € N(FT). The rank of then, x n, matrixH is n, (becausey > ng,
n. = n, and the controlled variables are independent). The rank ofitheny matrix F is ng
(becausen, > ny and the disturbances are assumed independent). The fundameotairife
linear algebrd® says that the left null space &f (N(FT)) has rankn, — r wherer = nq is the
rank of F. To be able to find & of rankn, in the left null space of we must then require,
ny —ng > N, or equivalentlyn, > ny+ng. O

The proposed null space method is optimal only locally. @lbally optimal in
cases where the sensitivity matfixdoes not depend on the operating point (distur-
bances) , for example, for a system with a quadratic costctbgeand linear model
equations, see eq. (13). Nevertheless, based on sevezatodges this does not seems
to be an important limitation in most practical cases



Obtaining F. The optimal sensitivity matrif may be computed from the Hessian
matrices {,, andJ,q) and steady-state gain matric€®’ (andGﬁ)) using?

F=—(G"Jdua - GY) (13)

However, in practice it is usually easier to obt&ndirectly, by optimizing for the
selected disturbances using a nonlinear steady-statel mbtte plant. Note that we
do not necessarily need an explicit representation of traefreguations, as we can find
F numerically. For example, we may use one of the commercaaldst-state process
simulators like Aspen PIJ¥ or HysysM. In theory, one may even obtaf from
experiments on a real operating plant, but it seems unlitey will be suficiently
accurate.

Numerically, then, x ng matrix F may be obtained by perturbing the disturbances
d and re-solving the optimization problem in eq. (3) with thetivee constraints are
constant;

1. At nominal conditionsd = d*), use the steady-state model to obtain the nom-
inal optimumy°PY{(d*) and identify the active constraints (finding the nominal
optimum maynot be be dificult, because the optimization problem is generally
non-convex).

2. For each of they disturbances: Make a small perturbatiol € di + Ady) and
resolve the optimization with the constant active constsato obtainy°P{(d)
(this is generally simple, because it is only a small pegtidn to the existing
nominal solution).

3. Let Ay°P! = yoPYd) — yoP{(d*) and obtainF numerically using (8). A minimum
of ng + 1 optimization runs are required, but more runs may be netxdebitain
an accurate estimate fbt

Ganesh and Biegléf provide an @icient and rigorous strategy for findifigbased
on a reduced Hessian method. In addition, some processatoraihave built-in opti-
mizers from which the optimal sensitivity may be available.

The next step is to obtaid. Numerically,H may be obtained from a singular value
decomposition oFT. We haveHF = 0 or equivalenthyFTHT = 0. Thus, selectingl™
as the input singular vectors Bf corresponding to zero singular valuesihgives an
orthogonal basis.

Example 1 Consider a simple example with one unconstrained degreeefddm u,
n, = 1, and one disturbance d,yn= 1. The cost function to be minimized during
operation (for varying d) is

J(u,d) = (u—d)?

Nominally d = 0. We have available two measurements

y1 =09u+0.1d
y»=05u-d



Since p = 2 = n, + nyg and the two measurements are independent it is possibledto fin
a linear measurement combination

C= Hy = [hl h2] |:yl:| = h1y1 + h2y2
Y2
for which a constant setpoint gives zero disturbance losigast locally. We first need
to obtain the optimal sensitivity matrix Optimality is ensured Whegﬁ =2(u-d)=0
which gives 8P = d and PP = 0 Vd. The corresponding optimal outputs are

y;" =d
yoP' = ~0.5d

and we see thd" = [1 —0.5]. From the null space method the optimal matfixnust
satisfyHF = 0O, or
h]_ fj_ + h2 f2 =0

hy + hp(~0.5) = 0 = hy = 0.5h,

The solution is non-unique. For example, selectipgH gives
c=05y; +Vy»

Keeping the controlled variable at its nominally optimal setpointsc= c°P'(d*) = 0,
gives zero disturbance loss, as is easily verified. Gengithkk loss will be zero only lo-
cally, i.e. for small changes in d, but for this example thstéonction is quadratic with
linear model equations, and the loss will be zero for any nitage of the disturbance
d.

4 Discussion

4.1 Measurement selection

One weakness of the null space method is that it does notdemtsie measurement
error, or more generally the implementation error. If weénaxtra measurements, that
is, ny > ny + ng, then we have extra degrees of freedom in seledtingat should be
used to reduce the sensitivity to measurement error. A sirapproach is to select a
subset of the “best” measurements such that wenget n, + ng, but which should
these measurements be? This is outside the scope of this pagdes treated in more
detail a forthcoming publication on the extended null spaethod (see alsg), but let
us provide some results. Let the linear model be

~y|AuU
-y YAd = GY
Ay—GAu+GdAd—G[Ad] (14)
wherey has been scaled with respect to the expected measuremamigictu andd
have been scaled such that they have simif@ces on the cost. It can then be shown

that a reasonable approach is to maximize the minimum singalue of the matrix



&Y = [Gy Gﬁ from the combined inputs and disturbances to the selectedbune-
ments. To understand why this is reasonable, we may imaging the measurements
to back-calculate the inputs and disturbances. For thew#bey = n, + ng, G¥ is
invertible and we get

[Aa| -1y (15)
In order to avoid sensitivity to measurement errory iwe want the norm of(I;‘Y]'l
to be small which is equivalent to wanting a large minimunygsiar value,g(éy).
From (15) we also see why it is reasonable to reqojre- n, + ng in the null space
method, because this is the requirement for being able tuehi determine from the
measurements all independent variables (inputs and distaes).

4.2 Freedom in selecting H

Even for the casey = n, + ngy, there are an infinite number of matriddsthat satisfy
HF = 0. This stems from the freedom of selecting basis vectorghnull spacé®.
Let Ho be one such matrix, i.ddoF = 0. For exampleH may consist of the one set
of basis vectors that span the null spacé&bf ThenH = CHj also satisfie$iF = 0
provided then. x n; matrix C is non-singular.

Actually, the degrees of freedom in selecti@dandH) are the same as the degrees
of freedom that are used in steady-state decoupling (otainin control. The linear
model for the selected controlled variables can be written

Ac = HAy = HGYAu + HGJAd = GAU + GyAd (16)

and the degrees of freedom in the mat@ixmay be used tofeect G = HGY and
Gy = HGﬁ. For example, it is possible to selddtsuch thatG = I, and we have a
decoupled steady-state response frota c.

4.3 Disturbances

The minimum number of measurements required in the nullespaethod , + ng)
may be large if we have many disturbanceg l@rge). In practical applications, it is
therefore desirable to reduce the number of disturbancefartunately, there does not
seems to be any simple rigorous procedure for eliminatingpartant disturbances,
although some approaches are discussed in Chapter 5 imAlstais obvious that we
may eliminate disturbancek that satisfy both of the following conditions:

1. No steady-statefiect on the measurementsi¢ independent aodi, i.e.,Gé =0),

and

2. No steady-statefiect on the optimal operation{*' is independent of;).
It could be argued that we may eliminate all “unobservabistuitbances that satisfy
condition 1, because we have no way of detecting them andctiuscting for them.
However, such disturbances mdjegt the optimal operation and result in large losses,
so an analysis based on neglecting them may be highly mislpatb achieve accept-
able operation in such cases, we need to obtain additioredunements, for example,
of the disturbance itself. One example would be a price chasgs discussed in more



detail below. Also, we cannot eliminate all disturbance theve no &ect on optimal
operation and thus satisfy condition 2. This is because igterbance may féect a
measurement, and controlling this measurement will thealré a loss.

In practice, with too few measurements, one may eliminateesdisturbances and
obtain the controlled variables = Hy using the null space method, but one should
afterwards analyze the loss with all disturbances includétternatively, one may
be able to obtain the optimal combination numerically ugimg exact local method
of Halvorsen et af or the extended null space method presented in a forthcoming
publication.

4.4 Physical interpretation

The proposed null space method yields controlled variathlasare linear combina-
tions of the available measurements. A disadvantage isttbathysical interpretation
of what we control is usually lost. This is by no means a funéatal limitation, since
in principle we can control any signal from the process ag las they are indepen-
dent. Thus, if all measurements are regarded as signalsptieept of controlling a
combination of signals may be easier to grasp. If possille,aan choose to combine
measurements of one type, for instance only temperaturgs ife a distillation col-
umn) or only mass flows. In any case, we can scale variablésthat the resulting
measurements are dimensionless, which is common in peactic

4.4.1 Changein active constraints

It has been assumed that the set of active constraints doehange. If they may
change, then one must for each set of active constraintaiser controlled variables

¢ = Hy satisfyingHF = 0, whereF is evaluated with the given set of active constraints.
This involves dfline calculations. In addition, one must have an online etrafor
identifying a change in active constraints change and sogie for switching to a new
set of controlled variables. Thus, for cases where theactnstraints shift frequently
with the disturbances, other online methods may be betiteidsflior example, real-time
optimization (RTO) combined with Model predictive cont(®MPC). Alternatively, we
could use the ideas of Arkun and Stephanopotile®m how to handle varying active
constraints.

4.5 Non-observable disturbances and price changes

Self-optimizing control is based on using feedback to detisturbances and optimally
adjust the inputs so as to achieve near-optimal operatibns,Tone must require that
the disturbances are observable (visible) in the measursie One example of a
“disturbance” that is not visible in the measurements isqwi However, pricep; do
enter in the objective function, because typicallg 3; pi%, and price changes will
change the optimal point of operation.

To handle price changes (or more generally disturbancésitbanot observable in
the measurementg, one must assume that the price (disturbances) is knowa-(me
sured). Price changes can then be handled in two ways:

10



1. Adjust the setpoints in a feedforward manner. Then, forigeghangeAp we
have that
Cs = Cs(P") + HFpAp 17)

whereF, = (%V—Tm) is the optimal sensitivity from the prices to the measuresen
2. Include the prices as extra measurementsand use the regular procedure of
selecting self-optimizing control variables as above.
The first approach is probably the simplest and most trapsp&r

4.6 Limitations

As already mentioned, the proposed null space method ismaptinly locally. It is
globally optimal in cases where the sensitivity maffixioes not depend on the oper-
ating point. Nevertheless, based on several case studeddfs not seems to be an
important limitation in most practical cases. Other, polysinore serious limitations
for practical use, are that 1) implementation errors areempticitly handled (except
through the selection of which measurements to use), 2)dtiaeaconstraints are as-
sumed not to change (as discussed in more detail above)e Yptimal setpoint for

¢ needs to be obtained (not really a limitation but a fact), 4nthe derivation of the
optimal measurement combination= Hy is based on steady-state models, and one
must later check that the resulting structure has acceptigtolamic controllability (this
may usually be achieved using a cascade control structueeanbcal controllers take
care of the dynamic response and controlled at steady state using as manipulated
variables the setpoints for the local controllers).

5 Petlyuk distillation case study

5.1 Introduction

The Petlyuk distillation column is an appealing alternafior the separation of ternary
mixtures. Compared with the traditional configuration obtwolumns in series, typical
savings in the order of 30% are reportecbmthenergy and capital costs However,
the savings in energy may bdiitult to achieve in practice, and the goal here is to sug-
gest simple control policies. We are looking for a “selfiopting” control structure
which, despite of external disturbances and measuremeois, egives near-optimal
operation with constant setpoints.

The Petlyuk column has six sections and may be implementaddisided wall”
column as illustrated in Figure 2. The boilup and reflux streare split at the dividing
wall with split fractionsRy = V,/Vs andR_ = L;/Lz, respectively. With a given
feed and pressure, the Petlyuk column has five steady-stgteas of freedom. For
example, these may be selected as

uy=[L V S R R (18)
corresponding to the reflux, boilup, side-stream flow, ligsplit and vapor split, re-

spectively.
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Assume that the feed consists of three key compongriBsandC with mole frac-
tionsz" = [za zs zc] with mole flow rateF and liquid fractiong. The light component
A dominates in the distillate strear®), componentB dominates in the side-stream
(S) while the heavy compone@ dominates in the bottom strea8)( We consider a

Condenser

L Top product
-
.D7 D

Liquid split (Rr)
Prefractionat hy ’
refractionator
\ 2
\
4 1 4 Side-stream
Feed product
— EE—
F
) 25 4 517 Tg
2 5
A3
6  Vapor $plit (Ry)

N 4
Reboiler

o

B7 B
Bottom product

Figure 2: The Petlyuk distillation column implemented iniregée shell (“divided wall
column”).

case study with a relative volatility of 3 between the key poments and 8 theoretical
stages in each of the six sections. Key data are given in Tahbifel further details are
found in Chapter 8 in Alstat?.

We assume that the operational objective is to use the fiveede@f freedom to
minimize the energy usagéd, = V, while maintaining the following three product
specifications (“active constraints”):

1. Distillate purity kap)

2. Bottom purity &cg)

3. Side-stream purityxg s)
wherex; ; is mole fraction of component “i” in stream “j". Minimizinghe energy V)
with respect to the remaining two degrees of freedom givasnaonstrained nominal
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Table 1: Data for Petlyuk case study

Column data

# stages in each section
Relative volatilities
Boiling point A, B andC [K]

Nt =8
o' =[931]

T = [299.3 34215 3993]

Feed
Flow F* =1
Composition 7T =[1/31/31/3]
Liquid fraction g =0477
Product compositions
Distillate X%:D =097
Side-stream xgg =097
Bottom X g = 0.97
Disturbances (d)
Feed flow F=F+01
Feed composition zp=2,+01
z5=275+01
Liquid fraction g=0"+0.1
Product specification Xop =X p + 001
0 =, +001
Xgs =X+ 001

M easurement/implementation errors(n)

Temperatures
Flows
RL, Ry

13

.8 K (absolute)
2.5% (relative)
0.025 absolute



optimum with
U ®P(d?)" = [L* V* S* R R/ = [0.7618 05811 03227 03792 05123%

The minimum boilup ¥min) with an infinite number of stages ¥y, = 0.5438, so
the nominal optimal boilup of 0.5811 is approximately 6%t@gthan the theoretical
minimum.

Since the objective is to minimize the boilup, which also fsiaput, one may
mistakenly believe that one can use an open-loop approdutrevthe optimal value
for the boilup is calculated and implemented in the coluMnz= V°P. However,
Halvorsen and Skogestad point out that such an approach is impossible (or at least
very difficult):

1. Operation is infeasible for < VP!, so we need to ensure that> VOP.,

2. The optimal value o¥/ varies with respect to disturbances and may be hard to

find, requiring a detailed model and a direct measuremeeodlisturbances (or
a very accurate estimate) in order to be viable. This is uist&ain most cases.
3. Measurement or estimation ¥f may be dfficult to achieve (measuring vapor
flow), thus it may be sensitive to measurement error whengryo implement
the optimalV.
Thus, the approach here is to use self-optimizing contrelcandidate measurements
(y) we include all flows (ratioed to the feed) as well as the temmpee on all stages.
This gives about 60 measurements. The main component citiops$n each product
stream are also measured, but since they are active cantstfand thus are constant)
they are not useful for self-optimizing control and are mafuded iny.

Alternative 1: Two degrees of freedom. We first consider using the two available
unconstrained degrees of freedam £ 2) to control (and fix) two measurement com-
binations. The two unconstrained degrees of freedom coulkellample b& = [R. Ry]
(but the specific choice does not actually matter for thedstestiate analysis). The as-
sumed disturbance vector is (these are found to be the mastrtamt disturbances
from the one listed in Table 1).

diyi=[za = 9 s (19)

where the subscrigtdf denotes that the are two degrees of freedom. The last entry
represents the compositioritget for the sidestream product. The feed fatss not
included because we have chosen to use only intensive legiathen forming the
controlled variables (with a constant columfigency, a feed rate change is automati-
cally compensated for at steady state by fixing intensiviakbes).

To use the null space method, we need from Theorem 1 to conmireny =
2+ 4 = 6 measurements. To select the best sub-set of 6 out of the¢ @b@andidate
measurements, we use the measurement selection approatibrmad in the discus-
sion section. This results in the following six temperatoeasurements

Vit = [T37 Tir Taz Tas Ta Tg] (20)

The location of the selected measurements is shown in Figjufdote that the ma-
jority of measurements are located in the bottom part of tlanon while only two
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Figure 3: Physical location of the best subset of measurenfienalternative 1.

measurements are located above the feed point. The sépsitatrix F was obtained

numerically by perturbing each of the four disturbances r@adptimizing. The null

space method in Theorem 1 gives the optimal madricorresponding to the following
measurement combinations (controlled variables):

Cidf1 = —0.472T37 + O312T11 + 0113T43 - 0457T25 + 0561T4 - 0378T9 (21)
Cidf2 = 0.185I'37 + 0.376T11 - O.667T43 - 0.524|—25 - 0.154|—4 + 0.285rg (22)

Alternative 2: One degree of freedom. We have until now assumed that the vapor
split Ry is a degree of freedom during operation (available for maaippon), but most
likely this is not possible in practice. It is therefore irgsting to consider the case
whereRy, is fixed. In fixingRy, we add the implementation error of controlliRg to
the disturbance vector and get

dgdfz[ZA s 0 X8s Rv] (23)

The corresponding minimum number of measurements needtfoull space method
isn, +ng = 1+ 5= 6. The following subset of measurements was obtained

Yodf = [T37 Tio Taz Tz Ts T12] (24)

which is very similar to the tdf-case. The optimal measunmetneembination from the
null space method is

Codf = —0.388T37 — 0.658T 19 + 0.192T 43 — 0.0471T; + 0.448T5 + 0.421T1,  (25)
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L oss evaluation using non-linear model. The two above control structures are com-
pared with two alternative control structures, see Tabksl@rnative 3 in Table 2 is an
control structure proposed by Halvorsen and Skoge&tadherecpr, = (T4 — Tag) +
(T12 — T36) is @ symmetric measure of the temperatur@edence over the dividing
wall), while alternative 4 is the “open loop” approach.

Table 2: Alternative control structures

Alt. | ¢ c2 c3 Cs c |
1 [ xap Xes XcB | Cy; Cy; | Null'space method, usR, andRL
2 XaD XBs XcB | Rv Codf | Null space method, fiRy
3 XAD XB,S XcB Ry DTS Fix DTS andRV
4 XAD XBS XCB Ry RL Constant splitRy andR_

Table 3: Percentage loss {if) for all disturbances. ¢” denotes negative perturbation,
“+" denotes positive perturbation from the nominal value)e Tast two columnslL(,)
give maximum loss and average loss for the implementati@rser

Loss [%)]
Alt. | F- Fy Zn- Za4 Z5_ 23, 9- g+
1 0.0 00 0.0171 00207 0.0166 00111 0.0001 Q0000
2 00 00 0.0037 01340 | 0.2247 01666 | 0.1876 01084
3 00 00 50840 118810 | 0.3469 08295 | 1.0441 11740
4 0.0 00 | 467037 63019 | 951660 98256 | 324629 60578
Loss [%]
At | o, Xo_ | Xe.  Xs | Xs.  XBs. Ly L
1 0.0025 Q0095 | 0.0639 02082 | 0.0002 Q0007 | 0.0213 00117
2 0.0040 00110 | 0.0060 00174 | 0.0004 Q0004 | 0.0847 00206
3 0.0074 00207 | 0.0033 00034 | 0.0025 Q0075 | 0.2108 Q0475
4 0.0262 00253 | 0.0245 00311 | 0.2579 10198 | 93142 36254

The nonlinear losses for the alternative control structfwedifferent realistic mag-
nitude of the disturbances and measurement errors are igiviable 3. In the Table
we have also included losses for changes (“disturbancasthe distillate and bot-
tom product compositions (active constraints), which wereincluded in the original
disturbances used to deriwg; and coqs.The conclusion is that the self-optimizing
properties are excellent for both alternatives 1 and 2. Whengfitwo measurement
combinations in alternative 1, the loss in energy usafedq less than 0.02% for the
disturbances considered above and about 0.2% for a disitelabottom composition
(which was not considered when deriviog;). The losses with respect to implemen-
tation errors are also very small. When fixiRg andc.q¢ (alternative 2), the loss is
about 10 times higher for the disturbances considered alboweét is still only about
0.2% and thus insignificant from a practical point of viewn& the loss is so small, the
strategy of fixingRy andcyq+ is clearly preferred for practical implementations. The
loss for the other two control structures are higher, witheiimum disturbance loss of
11 % for alternative 3 and 95 % for alternative 4. Alstidlso considered alternatives
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whereRy and a single temperature was fixed. The best was to fix a tetnpejast
below the sidestream with a maximum disturbance loss oftahdipb.

In Alstad!® nonlinear closed-loop dynamic simulations are shown, Wis@nfirm
the practical implementation of alternative 2.

6 Conclusion

This paper has introduced the null space method for setectintrolled variables.
We consider a constant setpoint policy, where the contialigiables are kept at con-
stant setpointss. We propose to select self-optimizing controlled variatds linear
combination = Hy of a subset of the available measuremgntd/ith no implemen-
tation error, it is locally optimal to seleét such thaHF = 0, whereF = (dy°P/od")

is the optimal sensitivity with respect to disturbartteHowever, ignoring the imple-
mentation error is a serious shortcoming for some apptinati To partly compensate
for this, it is important to use measuremgrthat are independent and not sensitive to
measurement error. Another shortcoming is that a new sairafaled variables (for
the unconstrained degrees of freedom) needs to be founddébrpossible set of active
constraints. The global properties of the proposed vagiabimbinatiorc = Hy needs
to evaluated by computing the loss for expected disturtsaaod implementation er-
rors using the nonlinear model, and a controllability aselghould also be performed
before implementation. The method has been illustrated Batlyuk distillation ex-
ample where we find that the null space method yields coettolariables with very
small losses.
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