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Abstract
The issue in this paper is to select controlled variablesc as combinations of the

measurementsy. The objective is to obtain self-optimizing control, which is when
we can achieve near-optimal steady-state operation with constant setpoints for the
controlled variables, without the need to re-optimize when new disturbances per-
turb the plant. The null space method yields locally optimal controlled variables
c = Hy that are linear combinations of measurementsy. The requirement is that
we at least have as many measurements as there are unconstrained degrees of free-
dom, including disturbances, and that the implementation error is neglected. The
method is surprisingly simple. From a steady-state model of the plant, the first step
is to obtain the optimal sensitivity matrixF with respect to the disturbances. The
optimal matrixH satisfiesHF = 0, so the next step is to obtainH in the left null
space ofF. The method is used to obtain temperature combinations for control of
a Petlyuk distillation column.

Keywords: Process control, Control structure selection, Optimizing control, Un-
certainty, Temperature control distillation

1 Introduction

For cases with unconstrained control degrees of freedom (inputsu), an important issue
is to decide what to control. Although not widely acknowledged by control theorists,
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controlling the right variables is a key element in overcoming uncertainty in opera-
tion1;2. This applies also when using advanced control (e.g. MPC) orreal-time opti-
mization (RTO). This paper focuses on the interaction between the local optimization
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Figure 1: Block diagram of a feedback control structure including an optimizer layer.

layer and the feedback control layer, see Figure 1, and more specifically on the selec-
tion of the controlled variablesc that link these layers. Two sub-problems are important
here:

1. Selection of the controlled variablesc: This is a structural decision which is
made before implementing the control strategy.

2. Selection of setpointscs: This is a parametric decision which can be done both
online and offline.

Here, we focus on the first, structural problem of finding the controlled variables and
we will assume constant nominal optimal setpoints. As seen from Figure 1, there are
two sources of uncertainty that will make a constant setpoint policy non-optimal:

1. Disturbances d: External unmeasured disturbances, including parameter varia-
tions.

2. Implementation error n: The sum of the effect of the measurement error fory
and the control error.

Single measurements or functions or combinations of the measurements may be used
as controlled variablesc. The objective is to obtain self-optimizing control2, which
is when we can achieve near-optimal steady-state operationwith constant setpoints for
the controlled variables, without the need to re-optimize when new disturbances perturb
the plant. Use of single measurements is simple and is the preferred choice if the loss
is sufficiently small. However, for some applications there may notexist any self-
optimizing single measurements, and one may consider measurement combinations.
In this paper, we consider linear combinations, that is,c = Hy whereH is a constant
matrix.
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Ideas related to self-optimizing control have been presented repeatedly in the pro-
cess control history, but the first quantitative treatment was that of Morari et al.1. Sko-
gestad2 defined the problem more carefully, linked it to previous work, and was the first
to include also the implementation error. He mainly considered the case where single
measurements are used as controlled variables, that is,H is a selection matrix where
each row has a single 1 and the rest 0’s. The loss with a constant setpoint policy for
expected disturbances and implementation errors was evaluated using a “brute-force”
approach. An important advantage of a brute-force evaluation is that one can also
identify controlled variables that may yield infeasability for certain disturbances or im-
plementation errors. This was also considered in more detail by Larsson et al.3 for
the Tennessee-Eastman challenge problem and Govatsmark and Skogestad4 who sug-
gested to adjust the setpoints to achieve feasibility. However, the computational load of
the “brute-force” method can be very large, so local methodsbased on linearizing the
behavior around the steady-state are attractive. Skogestad2 introduced the approximate
maximum gain rule as a simple method for selecting controlled variables. In the multi-
variable case, the gain is the minimum singular value of the scaled steady-state transfer
matrix fromu to c. A similar method was presented by Mahajanam et al.5. Halvorsen
et al.6 considered the maximum gain method in more detail and also proposed an exact
local method which may be used to obtain the optimal measurement combinationH.
However, this method is also less attractive computationally and in addition somewhat
difficult to use. Hori et al.7 illustrate the ideas introduces in this paper on indirect con-
trol which can be formulated as a subproblem of the null spacemethod presented in
this paper.

Related work has been done by Srinivasan8,9,10 on measurement-based optimiza-
tion to enforce the necessary condition of optimality underuncertainty. The ideas are
illustrated on batch processes. Francois et al.11 extend these ideas and focus on steady-
state optimal systems, where a clear distinction is made between enforcing active con-
straints and requiring the sensitivity of the objective to be zero. Guay and Zhang12

present related ideas on measurement-based dynamic optimization.
In this paper, the objective is to derive a simple method for selecting the optimal

measurement combination matrixH for the special case with no implementation error.
In fact, the method is so simple that the second author (Skogestad) thought it had to be
wrong when it was proposed by the first author (Alstad). We have attempted to keep the
mathematics as simple as possible. A more detailed comparison with previous results
and extensions are presented in a forthcoming publication (see also13).

2 Problem formulation

We assume that the operational goal is to use the degrees of freedomsu0 to minimize
the costJ0 while satisfying equality and inequality constraints. The(original) con-
strained steady state optimization problem can, for a givendisturbanced be formulated
as:

min
x,u

J(x,u,d) (1)
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subject to

f(x,u,d) = 0

g(x,u,d) ≤ 0 (2)

y = fy(x,u,d)

wherex ∈ Rnx, u ∈ Rnu andd ∈ Rnd are the states, inputs and disturbances, respectively.
f is the set of equality constraints corresponding to the model equation,g is the set of
inequality constraints which limits the operation, e.g. physical limits on temperature
measurements or flow constraints andy the measurements.

When solving this optimization problem, we generally find that some constraints
are active, corresponding togi(x,u,d) = 0. To achieve steady-state optimal opera-
tion, we assume here that we control all the active constraints14;15 and that the set
of active constraints does not change (assumptionA3 below). Controlling the active
constraints consumes a corresponding number of the degreesof freedom (inputs), and
we consider in the following the remainingunconstrainedreduced-space optimization
problem where the scalar cost functionJ is to be minimized with respect to thenu

remaining degrees of freedom (inputs)u:

min
u

J(u,d) (3)

Here the equality constraints, including the model equations and active constraints, are
implicitly included inJ, soJ is generally not a simple function ofu andd.

Remark. Although not strictly correct, we use for simplicity the same symbol for the costJ and
degrees of freedomu in (1) and (3). Also note that it does not matter from a steady-state point
of view which of the original degrees of freedom are used to satisfy the active constraints, and
which are then left in (3) as the unconstrained degrees of freedomu, as long as the remaining
optimization problem remains well posed.

We assume that online information about the system behavioris available through
measurementsy. The issue in this paper is find a set ofnu controlled variablesc =
h(y) associated with the “unconstrained” degrees of freedomu. In the measurement
vector y, we generally include also the input vectoru0, including the inputsu′ that
have been selected to the control active constraints. However, the measurements of the
active constraints are not included iny, since they are constant and thus provide no
information about the operation.

In order to quantify the difference between alternative control policies we consider
the loss. For a given disturbanced, the loss is defined as the difference between the
actual cost and the optimal cost6.

L = J(c,d) − J(copt(d),d) ≈
1
2

(c − copt)TJcc(c − copt) (4)

where the second-order approximation holds for small deviations from the nominal
optimum. The selected controlled variablesc are assumed to be independent and the
Hessian matrixJcc nonsingular6. With a constant setpoint policy, we havec = cs + n
wheren is the implementation error. In this paper, we assumen = 0 (assumptionA4
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below) and assume that the setpoint is nominally optimal,cs = copt(d∗) whered∗ is the
nominal value of the disturbance. Thenc = copt and the loss for small deviations from
the nominal optimum is

L ≈
1
2

(

copt(d∗) − copt(d)
)T

Jcc

(

copt(d∗) − copt(d)
)

(5)

This gives the following insight (which is not very surprising and could have been
stated directly):

With independent controlled variablesc and no implementation error, a constant set-
point policy is optimal ifcopt(d) is independent ofd, i.e. copt(d) − copt(d∗) = 0.

3 Null space method

We consider the unconstrained optimization problem as given by eq. (3), that is, we as-
sume “active constraint control” where all optimally constrained variables are assumed
to be kept constant at their optimal values. The goal is to finda linear measurement
combinationc = Hy to be kept at constant setpointscs. HereH is a constantnu × ny

matrix andy is a subset of the available measurements. We make the following as-
sumptions:

A1 Steady-state: We consider only steady-state operation. The justification for this
is that the economics of operation is primarily determined by the steady-state.
Of course, this assumes that we have a control system in placethat can quickly
bring the plant to its new steady-state.

A2 Disturbances: Only disturbances that affect the steady-state operation are in-
cluded.

A3 Active constraint control: We assume that the same active constraints remain
active for all values of the disturbances and that we controlthese constraints.

A4 No implementation error: The implementation error is the sum of the control
error and the effect of the measurement error. The assumption of no steady-state
control error is satisfied if we use a controller with integral action. It is a more
serious assumption to neglect the measurement error, so themethod implicitly
assumes that the measurements have been carefully selected.

We then have the following result:

Theorem 1 Null space method. Assume that we have nu independent unconstrained
free variablesu, nd independent disturbancesd, ny independent measurementsy, and
we want to obtain nc = nu independent controlled variablesc that are linear combina-
tions of the measurements

c = Hy (6)

Let

F =
∂yopt

∂dT
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be the optimal sensitivity matrix evaluated with constant active constraints. If ny ≥
nu+nd, it is possible to select the matrixH in the left null space ofF, H ∈ N(FT), such
that we get

HF = 0

With this choice forH, fixingc (at its nominal optimal value) is first-order optimal for
disturbancesd, that is, the loss is zero as long as the sensitivity matrix F does not
change.

Proof: We first prove that selectingH such thatHF = 0 gives zero disturbance loss. For small
disturbances, the optimal change in the measurements to a change in the disturbances can be
written

yopt(d) − yopt(d∗) = F(d − d∗) (7)

where
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(8)

is the optimal sensitivity matrix evaluated at the nominal point∗. In (7) we have only included
the first-order term in the Taylor expansion, so (7) holds for small disturbances such that second-
and higher-order terms in (d−d∗) can be neglected, or equivalently, as long asF does not change.
From eq. (6) the corresponding optimal change in the controlled variables iscopt(d) − copt(d∗) =
H(yopt(d) − yopt(d∗) and by inserting eq. (7) we get

copt(d) − copt(d∗) = HF(d − d∗) (9)

From the insight stated at the end of the previous section, the constant setpoint policy is optimal
if

copt(d) − copt(d∗) = 0 (10)

which gives the requirement
HF(d − d∗) = 0 (11)

This needs to be satisfied for any (d − d∗) so we must require that

HF = 0 (12)

We next need to prove under which conditions this is possible. To satisfyHF(d − d∗) = 0 we
need to selectH such thatH ∈ N(FT). The rank of thenc × ny matrix H is nu (becauseny ≥ nc,
nc = nu and the controlled variables are independent). The rank of theny × nd matrix F is nd

(becauseny ≥ nd and the disturbances are assumed independent). The fundamental theorem of
linear algebra16 says that the left null space ofF (N(FT)) has rankny − r wherer = nd is the
rank of F. To be able to find aH of rank nu in the left null space ofF we must then require,
ny − nd ≥ nu or equivalentlyny ≥ nu + nd. �

The proposed null space method is optimal only locally. It isglobally optimal in
cases where the sensitivity matrixF does not depend on the operating point (distur-
bances) , for example, for a system with a quadratic cost objective and linear model
equations, see eq. (13). Nevertheless, based on several case studies this does not seems
to be an important limitation in most practical cases
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Obtaining F. The optimal sensitivity matrixF may be computed from the Hessian
matrices (Juu andJud) and steady-state gain matrices (Gy andGy

d)) using6

F = −(GyJ-1
uuJud −Gy

d) (13)

However, in practice it is usually easier to obtainF directly, by optimizing for the
selected disturbances using a nonlinear steady-state model of the plant. Note that we
do not necessarily need an explicit representation of the model equations, as we can find
F numerically. For example, we may use one of the commercial steady-state process
simulators like Aspen PlusTM or HysysTM . In theory, one may even obtainF from
experiments on a real operating plant, but it seems unlikelythat will be sufficiently
accurate.

Numerically, theny × nd matrix F may be obtained by perturbing the disturbances
d and re-solving the optimization problem in eq. (3) with the active constraints are
constant:

1. At nominal conditions (d = d∗), use the steady-state model to obtain the nom-
inal optimumyopt(d∗) and identify the active constraints (finding the nominal
optimum maynot be be difficult, because the optimization problem is generally
non-convex).

2. For each of thend disturbances: Make a small perturbation (dk = d∗K + ∆dk) and
resolve the optimization with the constant active constraints to obtainyopt(d)
(this is generally simple, because it is only a small perturbation to the existing
nominal solution).

3. Let∆yopt
= yopt(d) − yopt(d∗) and obtainF numerically using (8). A minimum

of nd + 1 optimization runs are required, but more runs may be neededto obtain
an accurate estimate forF.

Ganesh and Biegler17 provide an efficient and rigorous strategy for findingF based
on a reduced Hessian method. In addition, some process simulators have built-in opti-
mizers from which the optimal sensitivityF may be available.

The next step is to obtainH. Numerically,H may be obtained from a singular value
decomposition ofFT . We haveHF = 0 or equivalentlyFTHT

= 0. Thus, selectingHT

as the input singular vectors ofFT corresponding to zero singular values inFT gives an
orthogonal basis.

Example 1 Consider a simple example with one unconstrained degree of freedom u,
nu = 1, and one disturbance d, nd = 1. The cost function to be minimized during
operation (for varying d) is

J(u,d) = (u− d)2

Nominally d∗ = 0. We have available two measurements

y1 = 0.9u+ 0.1d

y2 = 0.5u− d
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Since ny = 2 = nu + nd and the two measurements are independent it is possible to find
a linear measurement combination

c = Hy =
[

h1 h2

]

[

y1

y2

]

= h1y1 + h2y2

for which a constant setpoint gives zero disturbance loss, at least locally. We first need
to obtain the optimal sensitivity matrixF. Optimality is ensured when∂J

∂u = 2(u−d) = 0
which gives uopt

= d and Jopt
= 0 ∀d. The corresponding optimal outputs are

yopt
1 = d

yopt
2 = −0.5d

and we see thatFT
= [1 −0.5]. From the null space method the optimal matrixH must

satisfyHF = 0, or
h1 f1 + h2 f2 = 0

h1 + h2(−0.5) = 0⇒ h1 = 0.5h2

The solution is non-unique. For example, selecting h2 = 1 gives

c = 0.5y1 + y2

Keeping the controlled variablec at its nominally optimal setpoint cs = copt(d∗) = 0,
gives zero disturbance loss, as is easily verified. Generally, the loss will be zero only lo-
cally, i.e. for small changes in d, but for this example the cost function is quadratic with
linear model equations, and the loss will be zero for any magnitude of the disturbance
d.

4 Discussion

4.1 Measurement selection

One weakness of the null space method is that it does not consider the measurement
error, or more generally the implementation error. If we have extra measurements, that
is, ny > nu + nd, then we have extra degrees of freedom in selectingH that should be
used to reduce the sensitivity to measurement error. A simple approach is to select a
subset of the “best” measurements such that we getny = nu + nd, but which should
these measurements be? This is outside the scope of this paper, and is treated in more
detail a forthcoming publication on the extended null spacemethod (see also13), but let
us provide some results. Let the linear model be

∆y = Gy
∆u +Gy

d∆d = G̃y

[

∆u
∆d

]

(14)

wherey has been scaled with respect to the expected measurement error, andu andd
have been scaled such that they have similar effects on the cost. It can then be shown
that a reasonable approach is to maximize the minimum singular value of the matrix
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G̃y
=

[

Gy Gy
d

]

from the combined inputs and disturbances to the selected measure-
ments. To understand why this is reasonable, we may imagine using the measurements
to back-calculate the inputs and disturbances. For the casewith ny = nu + nd, G̃y is
invertible and we get

[

∆u
∆d

]

= [G̃y]-1
∆y (15)

In order to avoid sensitivity to measurement errors iny we want the norm of [̃Gy]-1

to be small which is equivalent to wanting a large minimum singular value,σ(G̃y).
From (15) we also see why it is reasonable to requireny ≥ nu + nd in the null space
method, because this is the requirement for being able to uniquely determine from the
measurements all independent variables (inputs and disturbances).

4.2 Freedom in selecting H

Even for the caseny = nu + nd, there are an infinite number of matricesH that satisfy
HF = 0. This stems from the freedom of selecting basis vectors forthe null space16.
Let H0 be one such matrix, i.e.H0F = 0. For example,H0 may consist of the one set
of basis vectors that span the null space ofFT . ThenH = CH0 also satisfiesHF = 0
provided thenc × nc matrix C is non-singular.

Actually, the degrees of freedom in selectingC (andH) are the same as the degrees
of freedom that are used in steady-state decoupling (or similar) in control. The linear
model for the selected controlled variables can be written

∆c = H∆y = HGy
∆u +HGy

d∆d = G∆u +Gd∆d (16)

and the degrees of freedom in the matrixC may be used to affect G = HGy and
Gd = HGy

d. For example, it is possible to selectH such thatG = I, and we have a
decoupled steady-state response fromu to c.

4.3 Disturbances

The minimum number of measurements required in the null space method (nu + nd)
may be large if we have many disturbances (nd large). In practical applications, it is
therefore desirable to reduce the number of disturbances. Unfortunately, there does not
seems to be any simple rigorous procedure for eliminating unimportant disturbances,
although some approaches are discussed in Chapter 5 in Alstad13. It is obvious that we
may eliminate disturbancesdi that satisfy both of the following conditions:

1. No steady-state effect on the measurements (y is independent ofdi , i.e.,Gy
di
= 0),

and
2. No steady-state effect on the optimal operation (uopt is independent ofdi).

It could be argued that we may eliminate all “unobservable” disturbances that satisfy
condition 1, because we have no way of detecting them and thuscorrecting for them.
However, such disturbances may affect the optimal operation and result in large losses,
so an analysis based on neglecting them may be highly misleading. To achieve accept-
able operation in such cases, we need to obtain additional measurements, for example,
of the disturbance itself. One example would be a price change as is discussed in more
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detail below. Also, we cannot eliminate all disturbance that have no effect on optimal
operation and thus satisfy condition 2. This is because the disturbance may effect a
measurement, and controlling this measurement will then result in a loss.

In practice, with too few measurements, one may eliminate some disturbances and
obtain the controlled variablesc = Hy using the null space method, but one should
afterwards analyze the loss with all disturbances included. Alternatively, one may
be able to obtain the optimal combination numerically usingthe exact local method
of Halvorsen et al.6 or the extended null space method presented in a forthcoming
publication.

4.4 Physical interpretation

The proposed null space method yields controlled variablesthat are linear combina-
tions of the available measurements. A disadvantage is thatthe physical interpretation
of what we control is usually lost. This is by no means a fundamental limitation, since
in principle we can control any signal from the process as long as they are indepen-
dent. Thus, if all measurements are regarded as signals, theconcept of controlling a
combination of signals may be easier to grasp. If possible, one can choose to combine
measurements of one type, for instance only temperatures (e.g. in a distillation col-
umn) or only mass flows. In any case, we can scale variables such that the resulting
measurements are dimensionless, which is common in practice.

4.4.1 Change in active constraints

It has been assumed that the set of active constraints does not change. If they may
change, then one must for each set of active constraints obtain new controlled variables
c = Hy satisfyingHF = 0, whereF is evaluated with the given set of active constraints.
This involves offline calculations. In addition, one must have an online strategy for
identifying a change in active constraints change and some logic for switching to a new
set of controlled variables. Thus, for cases where the active constraints shift frequently
with the disturbances, other online methods may be better suited, for example, real-time
optimization (RTO) combined with Model predictive control(MPC). Alternatively, we
could use the ideas of Arkun and Stephanopoulos15 on how to handle varying active
constraints.

4.5 Non-observable disturbances and price changes

Self-optimizing control is based on using feedback to detect disturbances and optimally
adjust the inputs so as to achieve near-optimal operation. Thus, one must require that
the disturbances are observable (visible) in the measurements y. One example of a
“disturbance” that is not visible in the measurements is prices. However, pricespi do
enter in the objective function, because typicallyJ =

∑

i pi xi , and price changes will
change the optimal point of operation.

To handle price changes (or more generally disturbances that are not observable in
the measurementsy), one must assume that the price (disturbances) is known (mea-
sured). Price changes can then be handled in two ways:
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1. Adjust the setpoints in a feedforward manner. Then, for a price change∆p we
have that

cs = cs(p
∗) +HFp∆p (17)

whereFp =
(

∂yopt

∂pT

)

is the optimal sensitivity from the prices to the measurements.
2. Include the prices as extra measurements iny and use the regular procedure of

selecting self-optimizing control variables as above.
The first approach is probably the simplest and most transparent18.

4.6 Limitations

As already mentioned, the proposed null space method is optimal only locally. It is
globally optimal in cases where the sensitivity matrixF does not depend on the oper-
ating point. Nevertheless, based on several case studies this does not seems to be an
important limitation in most practical cases. Other, possibly more serious limitations
for practical use, are that 1) implementation errors are notexplicitly handled (except
through the selection of which measurements to use), 2) the active constraints are as-
sumed not to change (as discussed in more detail above), 3) the optimal setpoint for
c needs to be obtained (not really a limitation but a fact), and4) the derivation of the
optimal measurement combinationc = Hy is based on steady-state models, and one
must later check that the resulting structure has acceptable dynamic controllability (this
may usually be achieved using a cascade control structure where local controllers take
care of the dynamic response andc is controlled at steady state using as manipulated
variables the setpoints for the local controllers).

5 Petlyuk distillation case study

5.1 Introduction

The Petlyuk distillation column is an appealing alternative for the separation of ternary
mixtures. Compared with the traditional configuration of two columns in series, typical
savings in the order of 30% are reported inbothenergy and capital costs19. However,
the savings in energy may be difficult to achieve in practice, and the goal here is to sug-
gest simple control policies. We are looking for a “self-optimizing” control structure
which, despite of external disturbances and measurements errors, gives near-optimal
operation with constant setpoints.

The Petlyuk column has six sections and may be implemented asa “divided wall”
column as illustrated in Figure 2. The boilup and reflux streams are split at the dividing
wall with split fractionsRV = V2/V6 and RL = L1/L3, respectively. With a given
feed and pressure, the Petlyuk column has five steady-state degrees of freedom. For
example, these may be selected as

uT
all =
[

L V S RL RV

]

(18)

corresponding to the reflux, boilup, side-stream flow, liquid split and vapor split, re-
spectively.
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Assume that the feed consists of three key componentsA, B andC with mole frac-
tionszT

= [zA zB zC] with mole flow rateF and liquid fractionq. The light component
A dominates in the distillate stream (D), componentB dominates in the side-stream
(S) while the heavy componentC dominates in the bottom stream (B). We consider a

V
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Feed

S, xS

product

Side-stream

L

D, xD

Top product

Reboiler

Bottom product

B, xB

Prefractionator

F , z, q

3

Vapor split (RV )

Condenser

Liquid split (RL)

Figure 2: The Petlyuk distillation column implemented in a single shell (“divided wall
column”).

case study with a relative volatility of 3 between the key components and 8 theoretical
stages in each of the six sections. Key data are given in Table1 and further details are
found in Chapter 8 in Alstad13.

We assume that the operational objective is to use the five degrees of freedom to
minimize the energy usage,J = V, while maintaining the following three product
specifications (“active constraints”):

1. Distillate purity (xA,D)
2. Bottom purity (xC,B)
3. Side-stream purity (xB,S)

wherexi, j is mole fraction of component “i” in stream “j”. Minimizing the energy (V)
with respect to the remaining two degrees of freedom gives anunconstrained nominal
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Table 1: Data for Petlyuk case study
Column data
# stages in each section NT = 8
Relative volatilities αT

= [9 3 1]
Boiling point A, B andC [K] TT

B = [299.3 342.15 399.3]

Feed
Flow F∗ = 1
Composition z∗T = [1/3 1/3 1/3]
Liquid fraction q∗ = 0.477

Product compositions
Distillate x0∗

A,D = 0.97
Side-stream x0∗

B,S = 0.97
Bottom x0∗

C,B = 0.97

Disturbances (d)
Feed flow F = F∗ ± 0.1
Feed composition zA = z∗A ± 0.1

zB = z∗B ± 0.1
Liquid fraction q = q∗ ± 0.1
Product specification x0

A,D = x0∗
A,D ± 0.01

x0
C,B = x0∗

C,B ± 0.01
x0

B,S = x0∗
B,S ± 0.01

Measurement/implementation errors (n)
Temperatures 0.5 K (absolute)
Flows 2.5% (relative)
RL, RV 0.025 absolute
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optimum with

uall
opt(d∗)T

= [L∗ V∗ S∗ R∗L R∗V] =
[

0.7618 0.5811 0.3227 0.3792 0.5123
]

The minimum boilup (Vmin) with an infinite number of stages isV∞min = 0.5438, so
the nominal optimal boilup of 0.5811 is approximately 6% higher than the theoretical
minimum.

Since the objective is to minimize the boilup, which also is an input, one may
mistakenly believe that one can use an open-loop approach, where the optimal value
for the boilup is calculated and implemented in the column,V = Vopt. However,
Halvorsen and Skogestad20 point out that such an approach is impossible (or at least
very difficult):

1. Operation is infeasible forV < Vopt, so we need to ensure thatV ≥ Vopt.
2. The optimal value ofV varies with respect to disturbances and may be hard to

find, requiring a detailed model and a direct measurement of the disturbances (or
a very accurate estimate) in order to be viable. This is unrealistic in most cases.

3. Measurement or estimation ofV may be difficult to achieve (measuring vapor
flow), thus it may be sensitive to measurement error when trying to implement
the optimalV.

Thus, the approach here is to use self-optimizing control. As candidate measurements
(y) we include all flows (ratioed to the feed) as well as the temperature on all stages.
This gives about 60 measurements. The main component compositions in each product
stream are also measured, but since they are active constraints (and thus are constant)
they are not useful for self-optimizing control and are not included iny.

Alternative 1: Two degrees of freedom. We first consider using the two available
unconstrained degrees of freedom (nu = 2) to control (and fix) two measurement com-
binations. The two unconstrained degrees of freedom could for example beu = [RL RV]
(but the specific choice does not actually matter for the steady-state analysis). The as-
sumed disturbance vector is (these are found to be the most important disturbances
from the one listed in Table 1).

dT
td f =

[

zA zB q xB,S

]

(19)

where the subscripttdf denotes that the are two degrees of freedom. The last entry
represents the composition offset for the sidestream product. The feed rateF is not
included because we have chosen to use only intensive variables when forming the
controlled variables (with a constant column efficiency, a feed rate change is automati-
cally compensated for at steady state by fixing intensive variables).

To use the null space method, we need from Theorem 1 to combinenu + nd =

2+ 4 = 6 measurements. To select the best sub-set of 6 out of the about 60 candidate
measurements, we use the measurement selection approach mentioned in the discus-
sion section. This results in the following six temperaturemeasurements

yT
td f =

[

T37 T11 T43 T25 T4 T9

]

(20)

The location of the selected measurements is shown in Figure3. Note that the ma-
jority of measurements are located in the bottom part of the column while only two
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Figure 3: Physical location of the best subset of measurements for alternative 1.

measurements are located above the feed point. The sensitivity matrix F was obtained
numerically by perturbing each of the four disturbances andre-optimizing. The null
space method in Theorem 1 gives the optimal matrixH corresponding to the following
measurement combinations (controlled variables):

ctd f,1 = −0.472T37 + 0.312T11 + 0.113T43 − 0.457T25 + 0.561T4 − 0.378T9 (21)

ctd f,2 = 0.185T37 + 0.376T11 − 0.667T43 − 0.524T25 − 0.154T4 + 0.285T9 (22)

Alternative 2: One degree of freedom. We have until now assumed that the vapor
split RV is a degree of freedom during operation (available for manipulation), but most
likely this is not possible in practice. It is therefore interesting to consider the case
whereRV is fixed. In fixingRV, we add the implementation error of controllingRV to
the disturbance vector and get

dT
od f =

[

zA zB q xB,S RV

]

(23)

The corresponding minimum number of measurements needed for the null space method
is nu + nd = 1+ 5 = 6. The following subset of measurements was obtained

yT
od f =

[

T37 T10 T43 T27 T5 T12

]

(24)

which is very similar to the tdf-case. The optimal measurement combination from the
null space method is

cod f = −0.388T37 − 0.658T10 + 0.192T43 − 0.0471T27 + 0.448T5 + 0.421T12 (25)
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Loss evaluation using non-linear model. The two above control structures are com-
pared with two alternative control structures, see Table 2.Alternative 3 in Table 2 is an
control structure proposed by Halvorsen and Skogestad20 wherecDTS = (T4 − T28) +
(T12 − T36) is a symmetric measure of the temperature difference over the dividing
wall), while alternative 4 is the “open loop” approach.

Table 2: Alternative control structures
Alt. c1 c2 c3 c4 c5

1 xA,D xB,S xC,B c1
td f c2

td f Null space method, useRV andRL

2 xA,D xB,S xC,B RV cod f Null space method, fixRV

3 xA,D xB,S xC,B RV DTS Fix DTS andRV

4 xA,D xB,S xC,B RV RL Constant splitsRV andRL

Table 3: Percentage loss (inV) for all disturbances. (“−” denotes negative perturbation,
“+” denotes positive perturbation from the nominal value). The last two columns (Ln)
give maximum loss and average loss for the implementation errors.

Loss [%]
Alt. F− F+ zA− zA+ zB− zB+ q− q+
1 0.0 0.0 0.0171 0.0207 0.0166 0.0111 0.0001 0.0000
2 0.0 0.0 0.0037 0.1340 0.2247 0.1666 0.1876 0.1084
3 0.0 0.0 5.0840 11.8810 0.3469 0.8295 1.0441 1.1740
4 0.0 0.0 46.7037 6.3019 95.1660 9.8256 32.4629 6.0578

Loss [%]
Alt. x0

A,D+
x0

A,D−
x0

C,B+
x0

C,B−
x0

B,S+
x0

B,S−
Lmax

n Lavg
n

1 0.0025 0.0095 0.0639 0.2082 0.0002 0.0007 0.0213 0.0117
2 0.0040 0.0110 0.0060 0.0174 0.0004 0.0004 0.0847 0.0206
3 0.0074 0.0207 0.0033 0.0034 0.0025 0.0075 0.2108 0.0475
4 0.0262 0.0253 0.0245 0.0311 0.2579 1.0198 9.3142 3.6254

The nonlinear losses for the alternative control structures for different realistic mag-
nitude of the disturbances and measurement errors are givenin Table 3. In the Table
we have also included losses for changes (“disturbances”) in the distillate and bot-
tom product compositions (active constraints), which werenot included in the original
disturbances used to derivectd f and cod f.The conclusion is that the self-optimizing
properties are excellent for both alternatives 1 and 2. When fixing two measurement
combinations in alternative 1, the loss in energy usage (V) is less than 0.02% for the
disturbances considered above and about 0.2% for a disturbance in bottom composition
(which was not considered when derivingctd f ). The losses with respect to implemen-
tation errors are also very small. When fixingRV andcod f (alternative 2), the loss is
about 10 times higher for the disturbances considered above, but it is still only about
0.2% and thus insignificant from a practical point of view. Since the loss is so small, the
strategy of fixingRV andcod f is clearly preferred for practical implementations. The
loss for the other two control structures are higher, with a maximum disturbance loss of
11 % for alternative 3 and 95 % for alternative 4. Alstad13 also considered alternatives
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whereRV and a single temperature was fixed. The best was to fix a temperature just
below the sidestream with a maximum disturbance loss of about 1.4 %.

In Alstad13 nonlinear closed-loop dynamic simulations are shown, which confirm
the practical implementation of alternative 2.

6 Conclusion

This paper has introduced the null space method for selecting controlled variablesc.
We consider a constant setpoint policy, where the controlled variables are kept at con-
stant setpointscs. We propose to select self-optimizing controlled variables as linear
combinationsc = Hy of a subset of the available measurementsy. With no implemen-
tation error, it is locally optimal to selectH such thatHF = 0, whereF = (∂yopt/∂dT)
is the optimal sensitivity with respect to disturbanced. However, ignoring the imple-
mentation error is a serious shortcoming for some applications. To partly compensate
for this, it is important to use measurementy that are independent and not sensitive to
measurement error. Another shortcoming is that a new set of controlled variables (for
the unconstrained degrees of freedom) needs to be found for each possible set of active
constraints. The global properties of the proposed variable combinationc = Hy needs
to evaluated by computing the loss for expected disturbances and implementation er-
rors using the nonlinear model, and a controllability analysis should also be performed
before implementation. The method has been illustrated on aPetlyuk distillation ex-
ample where we find that the null space method yields controlled variables with very
small losses.
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