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The issue in this paper is to select controlled variablesc as combinations of the measurementsy. The objective
is to obtain self-optimizing control, which is when we can achieve near-optimal steady-state operation with
constant setpoints for the controlled variables, without the need to reoptimize when new disturbances perturb
the plant. The null space method yields locally optimal controlled variablesc ) Hy that are linear combinations
of measurementsy. The requirement is that we at least have as many measurements as there are unconstrained
degrees of freedom, including disturbances, and that the implementation error is neglected. The method is
surprisingly simple. From a steady-state model of the plant, the first step is to obtain the optimal sensitivity
matrix F, with respect to the disturbances. The optimal matrixH satisfiesHF ) 0; therefore, the next step
is to obtainH in the left null space ofF. As an illustration, the method is used to obtain temperature
combinations for control of a Petlyuk distillation column.

1. Introduction

For cases with unconstrained control degrees of freedom
(inputs u), an important issue is to decide what to control.
Although not widely acknowledged by control theorists, con-
trolling the right variables is a key element in overcoming
uncertainty in operation.1,2 This applies also when using
advanced control (e.g., model predictive control (MPC)) or real-
time optimization (RTO). This paper focuses on the interaction
between the local optimization layer and the feedback control
layer (see Figure 1), and, more specifically, on the selection of
the controlled variablesc that link these layers. Two subprob-
lems are important here:

(1) Selection of the controlledVariables c. This is a struc-
tural decision that is made before the control strategy is
implemented.

(2) Selection of setpointscs. This is a parametric decision
that can be done both online and offline.

Here, we focus on the first structural problem of finding the
controlled variables and we will assume constant nominal
optimal setpoints. As Figure 1 shows, there are two sources of
uncertainty that will make a constant setpoint policy nonopti-
mal: (i) disturbances (d) (these are the external unmeasured
disturbances, including parameter variations), and (ii) imple-
mentation error (n) (this includes the sum of the effect of the
measurement error fory and the control error).

Single measurements or functions or combinations of the
measurements may be used as controlled variables (c). The
objective is to obtain self-optimizing control, which is when
we can achieve near-optimal steady-state operation with constant
setpoints for the controlled variables, without the need to
reoptimize when new disturbances perturb the plant. The use
of single measurements is simple and is the preferred choice if
the loss is sufficiently small. However, for some applications,
there may not exist any self-optimizing single measurements,
and one may consider measurement combinations. In this paper,

we consider linear combinations, that is,c ) Hy, whereH is a
constant matrix.

Ideas related to self-optimizing control have been presented
repeatedly in the process control history, but the first quantitative
treatment was that of Morari et al.1 Skogestad2 defined the
problem more carefully, linked it to previous work, and was
the first to include the implementation error as well. He mainly
considered the case where single measurements are used as
controlled variables; that is,H is a selection matrix where each
row has a single digit (one, 1) and the rest are zeros (0). The
loss with a constant setpoint policy for expected disturbances
and implementation errors was evaluated using a “brute-force’’
approach. An important advantage of a brute-force evaluation
is that one can also identify controlled variables that may yield
infeasability for certain disturbances or implementation errors.
This was also considered in more detail by Larsson et al.3 for
the Tennessee-Eastman challenge problem and Govatsmark and
Skogestad,4 who suggested adjustment of the setpoints to
achieve feasibility. However, the computational load of the
“brute-force’’ method can be very large, so local methods based
on linearizing the behavior around the steady-state are attractive.
Skogestad2 introduced the approximate maximum gain rule as
a simple method for selecting controlled variables. In the
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Figure 1. Block diagram of a feedback control structure including an
optimizer layer.
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multivariable case, the gain is the minimum singular value of
the scaled steady-state transfer matrix fromu to c. A similar
method was presented by Mahajanam et al.5 Halvorsen et al.6

considered the maximum gain method in more detail and also
proposed an exact local method that may be used to obtain the
optimal measurement combinationH. However, this method is
less attractive computationally and, in addition, is somewhat
difficult to use. Hori et al.7 illustrated the ideas introduced in
this paper on indirect control, which can be formulated as a
subproblem of the null space method that has been presented
in this paper.

Related work has been done by Srinivasan8-10 on measure-
ment-based optimization to enforce the necessary condition of
optimality under uncertainty. The ideas are illustrated on batch
processes. Francois et al.11 extended these ideas and focus on
steady-state optimal systems, where a clear distinction is made
between enforcing active constraints and requiring the sensitivity
of the objective to be zero. Guay and Zhang12 have presented
related ideas on measurement-based dynamic optimization.

In this paper, the objective is to derive a simple method for
selecting the optimal measurement combination matrixH for
the special case with no implementation error. In fact, the
method is so simple that the second author (Skogestad) thought
it had to be wrong when it was proposed by the first author
(Alstad). We have attempted to keep the mathematics as simple
as possible. A more-detailed comparison with previous results
and extensions are presented in a forthcoming publication (also
see ref 13).

2. Problem Formulation

We assume that the operational goal is to use the degrees of
freedoms (u) to minimize the cost (J), while satisfying equality
and inequality constraints. The (original) constrained steady-
state optimization problem can, for a given disturbanced, be
formulated as

subject to

wherex ∈ Rnx, u ∈ Rnu, andd ∈ Rnd are the states, inputs, and
disturbances, respectively;f is the set of equality constraints
corresponding to the model equation;g is the set of inequality
constraints that limits the operation (e.g., physical limits on
temperature measurements or flow constraints); andy represents
the measurements.

When solving this optimization problem, we generally find
that some constraints are active, corresponding togi(x, u, d) )
0. To achieve steady-state optimal operation, we assume here
that we control all the active constraints14,15and that the set of
active constraints does not change (see assumptionA3 presented
later in this work). Controlling the active constraints consumes
a corresponding number of the degrees of freedom (inputs), and
we consider, in the following, the remainingunconstrained
reduced-space optimization problem where the scalar cost
functionJ is to be minimized with respect to thenu remaining
degrees of freedom (inputs)u:

Here, the equality constraints, including the model equations
and active constraints, are implicitly included inJ, so J is
generally not a simple function ofu andd.

Remark.Although not strictly correct, for simplicity, we use
the same symbol for the costJ and degrees of freedomu in
expressions 1 and 3. Also note that it does not matter from a
steady-state point of view which of the original degrees of
freedom are used to satisfy the active constraints, and which
are then left in expression 3 as the unconstrained degrees of
freedom u, as long as the remaining optimization problem
remains well-posed.

We assume that online information about the system behavior
is available through measurementsy. The issue in this paper is
finding a set ofnu controlled variablesc ) h(y) associated with
the “unconstrained’’ degrees of freedomu. In the measurement
vectory, we generally include also the input vectoru, including
the inputsu′ that have been selected to the control active
constraints. However, the measurements of the active constraints
are not included iny, because they are constant and, thus,
provide no information about the operation.

To quantify the difference between alternative control poli-
cies, we consider the loss. For a given disturbanced, the loss is
defined as the difference between the actual cost and the optimal
cost.6

where the second-order approximation holds for small deviations
from the nominal optimum. The selected controlled variablesc
are assumed to be independent and the Hessian matrixJcc is
assumed to be nonsingular.6 With a constant setpoint policy,
we havec ) cs + n, wheren is the implementation error. In
this paper, we assumen ) 0 (see assumptionA4 presented later
in this work) and assume that the setpoint is nominally optimal,
cs ) copt(d*), whered* is the nominal value of the disturbance.
Then,c ) copt and the loss for small deviations from the nominal
optimum is

This gives the following insight (which is not very surprising
and could have been stated directly):With independent
controlledVariablesc and no implementation error, a constant
setpoint policy is optimal ifcopt(d) is independent ofd, i.e.
copt(d) - copt(d*) ) 0.

3. Null Space Method

We consider the unconstrained optimization problem as given
by eq 3; that is, we assume “active constraint control”, where
all optimally constrained variables are assumed to be kept
constant at their optimal values. The goal is to find a linear
measurement combinationc ) Hy to be kept at constant
setpointscs. Here,H is a constantnu × ny matrix andy is a
subset of the available measurements. We make the following
assumptions:

A1. Steady state: We consider only steady-state operation.
The justification for this is that the economics of operation is
primarily determined by the steady state. Of course, this assumes
that we have a control system in place that can quickly bring
the plant to its new steady state.

A2. Disturbances: Only disturbances that affect the steady-
state operation are included.

min
x,u

J(x, u, d) (1)

f(x, u, d) ) 0

g(x, u, d) e 0

y ) fy(x, u, d) (2)

min
u

J(u, d) (3)

L ) J(c, d) - J(copt(d),d) ≈ 1
2
(c - copt)TJcc(c - copt)

(4)

L ≈ 1
2
(copt(d*) - copt(d))TJcc(c

opt(d*) - copt(d)) (5)
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A3. ActiVe constraint control: We assume that the same active
constraints remain active for all values of the disturbances and
that we control these constraints.

A4. No implementation error: The implementation error is
the sum of the control error and the effect of the measurement
error. The assumption of no steady-state control error is satisfied
if we use a controller with integral action. It is a more serious
assumption to neglect the measurement error, so the method
implicitly assumes that the measurements have been carefully
selected.

We then have the following result.
Theorem 1: Null space method.Assume that we haVe nu

independent unconstrained freeVariables u, nd independent
disturbancesd, ny independent measurementsy, and we want
to obtain nc ) nu independent controlledVariablesc that are
linear combinations of the measurements

Let

be the optimal sensitiVity matrix eValuated with constant actiVe
constraints. If ny g nu + nd, it is possible to select the matrix
H in the left null space ofF, H ∈ N(FT), such that we get

With this choice forH, fixing c (at its nominal optimalValue)
is first-order optimal for disturbancesd; that is, the loss is zero
as long as the sensitiVity matrix F does not change.

Proof. We first prove that selectingH such thatHF ) 0 gives
zero disturbance loss. For small disturbances, the optimal change
in the measurements to a change in the disturbances can be
written as

where

is the optimal sensitivity matrix evaluated at the nominal point
*. In eq 7, we have only included the first-order term in the
Taylor expansion, so eq 7 is valid for small disturbances such
that second- and higher-order terms in (d - d*) can be
neglected, or, equivalently, as long asF does not change. From
eq 6, the corresponding optimal change in the controlled
variables iscopt(d) - copt(d*) ) H(yopt(d) - yopt(d*)) and by
inserting eq 7 we get

From the insight stated at the end of the previous section,
the constant setpoint policy is optimal if

which gives the requirement

This must be satisfied for any (d - d*), so we must require
that

Next, we must prove the conditions under which this is
possible. To satisfyHF(d - d*) ) 0, we must selectH such
thatH ∈ N(FT). The rank of thenc × ny matrixH is nu (because
ny g nc, nc ) nu, and the controlled variables are independent).
The rank of theny × nd matrix F is nd (becauseny g nd and the
disturbances are assumed to be independent). The fundamental
theorem of linear algebra says that the left null space ofF
(N(FT)) has a rank ofny - r, wherer ) nd is the rank ofF. To
be able to find anH of rank nu in the left null space ofF, we
must then requireny - nd g nu or, equivalently,ny g nu + nd.

0
The proposed null space method is optimal only locally. It is

globally optimal in cases where the sensitivity matrixF is not
dependent on the operating point (disturbances), for example,
for a system with a quadratic cost objective and linear model
equations (see eq 13, presented later in this work). Nevertheless,
based on several case studies, this does not seem to be an
important limitation in most practical cases.

Obtaining F. The optimal sensitivity matrixF may be
computed from the Hessian matrices (Juu andJud) and steady-
state gain matrices (Gy andGd

y), using6

However, in practice, it is usually easier to obtainF directly,
by optimizing for the selected disturbances using a nonlinear
steady-state model of the plant. Note that we do not necessarily
need an explicit representation of the model equations, because
we can findF numerically. For example, we may use one of
the commercial steady-state process simulators, such as Aspen
Plus or Hysys. In theory, one may even obtainF from
experiments on a real operating plant; however, it seems unlikely
that this methodology will be sufficiently accurate.

Numerically, theny × nd matrix F may be obtained by
perturbing the disturbancesd and re-solving the optimization
problem in eq 3 with the active constraints being constant:

(1) Under nominal conditions (d ) d*), use the steady-state
model to obtain the nominal optimumyopt(d*) and identify
the active constraints (finding the nominal optimum may be
difficult, because the optimization problem is generally non-
convex).

(2) For each of thend disturbances, make a small perturbation
(dk ) d*K + ∆dk) and resolve the optimization with the constant
active constraints to obtainyopt(d) (this is generally simple,
because it is only a small perturbation to the existing nominal
solution).

(3) Compute ∆yopt ) yopt(d) - yopt(d*) and obtain F
numerically using eq 8. A minimum ofnd + 1 optimization
runs are required; however, more runs may be needed to obtain
an accurate estimate forF.

Ganesh and Biegler17 have provided an efficient and rigorous
strategy for findingF, based on a reduced Hessian method. In
addition, some process simulators have built-in optimizers from
which the optimal sensitivityF may be available.

The next step is to obtainH. Numerically,H may be obtained
from a singular value decomposition ofFT. We haveHF ) 0
or, equivalently,FTHT ) 0. Thus, selectingHT as the input

HF(d - d*) ) 0 (11)

HF ) 0 (12)

F ) -(GyJuu
-1Jud - Gd

y) (13)

c ) Hy (6)

F ) ∂yopt

∂dT

HF ) 0

yopt(d) - yopt(d) ) F(d - d*) (7)

F ) [∂y1
opt

∂d1

‚‚‚
∂y1

opt

∂dnd

‚‚‚
∂yny

opt

∂d1

‚‚‚
∂yny

opt

∂dnd

] (8)

copt(d) - copt(d) ) HF(d - d*) (9)

copt(d) - copt(d*) ) 0 (10)
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singular vectors ofFT, corresponding to zero singular values in
FT, gives an orthogonal basis.

Example 1. Consider a simple example with one uncon-
strained degree of freedom u , nu ) 1, and one disturbance d,
nd ) 1. The cost function to be minimized during operation
(for Varying d) is

Nominally, d* ) 0. We haVe aVailable two measurements:

and

Because ny ) 2 ) nu + nd and the two measurements are
independent, it is possible to find a linear measurement
combination

for which a constant setpoint giVes zero disturbance loss, at
least locally. We first must obtain the optimal sensitiVity matrix
F. Optimality is ensured when(∂J/∂u) ) 2(u - d) ) 0, which
giVes uopt ) d and Jopt ) 0 ∀ d. The corresponding optimal
outputs are

and

and (8) giVes thatFT ) [1 -0.5]. AlternatiVely, use (13) with
GYT ) [0.9 0.5], Gd

YT ) [0.1 -1], Juu ) 2, and Jud ) -2.
From the null space method, the optimal matrixH must satisfy
HF ) 0, or

The solution is non-unique. For example, selecting h2 ) 1 giVes

Keeping the controlledVariable c at its nominally optimal
setpoint, cs ) copt(d*) ) 0, giVes zero disturbance loss, as is
easily Verified. Generally, the loss will be zero only locally,
i.e., for small changes in d, but, for this example, the cost
function is quadratic with linear model equations, and the loss
will be zero for any magnitude of the disturbance d.

4. Discussion

4.1. Measurement Selection.One weakness of the null space
method is that it does not consider the measurement error, or,
more generally, the implementation error. If we have extra
measurements, that is,ny > nu + nd, then we have extra degrees
of freedom in selectingH that should be used to reduce the
sensitivity to measurement error. A simple approach is to select
a subset of the “best’’ measurements such that we getny ) nu

+ nd, but which should these measurements be? This is outside
the scope of this paper, and it will be treated in more detail a
forthcoming publication on the extended null space method (also

see Alstad13), but let us provide some results. Let the linear
model be

wherey has been scaled, with respect to the expected measure-
ment error, andu andd have been scaled such that they have
similar effects on the cost. It can then be shown that a reasonable
approach is to maximize the minimum singular value of the
matrix G̃y ) [GyGd

y] from the combined inputs and distur-
bances to the selected measurements. To understand why this
is reasonable, we may imagine using the measurements to
backcalculate the inputs and disturbances. For the case withny

) nu + nd , G̃y is invertible and we get

To avoid sensitivity to measurement errors iny, we want the
norm of [G̃y]-1 to be small, which is equivalent to wanting a
large minimum singular value,σ(G̃y). From eq 15, we also see
why it is reasonable to requireny g nu + nd in the null space
method, because this is the requirement for being able to
uniquely determine all independent variables (inputs and
disturbances) from the measurements.

4.2. Freedom in Selecting H.Even for the caseny ) nu +
nd, there are an infinite number of matricesH that satisfyHF
) 0. This stems from the freedom of selecting basis vectors
for the null space. LetH0 be one such matrix, i.e.,H0F ) 0.
For example,H0 may consist of the one set of basis vectors
that span the null space ofFT. Then,H ) CH0 also satisfies
HF ) 0, provided thenc × nc matrix C is nonsingular.

Actually, the degrees of freedom in selectingC (andH) are
the same as the degrees of freedom that are used in steady-
state decoupling (or similar) in control. The linear model for
the selected controlled variables can be written as

and the degrees of freedom in the matrixC may be used to
affectG ) HGy andGd ) HGd

y. For example, it is possible to
selectH such thatG ) I , and we have a decoupled steady-
state response fromu to c.

4.3. Disturbances.The minimum number of measurements
required in the null space method (nu + nd) may be large if we
have many disturbances (a largend value). Therefore, in practical
applications, it is desirable to reduce the number of disturbances.
Unfortunately, there does not seem to be any simple rigorous
procedure for eliminating unimportant disturbances, although
some approaches are discussed in Chapter 5 of the work by
Alstad.13 It is obvious that we may eliminate disturbancesdi

that satisfy both of the following conditions: (1) no steady-
state effect on the measurements (y is independent ofdi, i.e.,
Gdi

y ) ), and (2) no steady-state effect on the optimal operation
(uopt is independent ofdi).

It could be argued that we may eliminate all “unobservable’’
disturbances that satisfy condition 1, because we have no way
of detecting them and, thus, correcting for them. However, such
disturbances may affect the optimal operation and result in large
losses; therefore, an analysis based on neglecting them may be
highly misleading. To achieve acceptable operation in such
cases, we must obtain additional measurements, for example,
of the disturbance itself. One example would be a price change,
as is discussed in more detail below. Also, we cannot eliminate

J(u, d) ) (u - d)2

y1 ) 0.9u + 0.1d

y2 ) 0.5u - d

c ) Hy ) [h1 h2 ][y1

y2] ) h1y1 + h2y2

y1
opt ) d

y2
opt ) -0.5d

h1f1 + h2f2 ) 0

h1 + h2(-0.5)) 0 w h1 ) 0.5h2

c ) 0.5y1 + y2

∆y ) Gy∆u + Gd
y∆d ) G̃y[∆u

∆d ] (14)

[∆u
∆d ] ) [G̃y]-1∆y (15)

∆c ) H∆y ) HGy∆u + HGd
y∆d ) G∆u + Gd∆d

(16)
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all disturbances that have no effect on optimal operation and
thus satisfy condition 2. This is because the disturbance may
effect a measurement, and controlling this measurement will
then result in a loss.

In practice, with too few measurements, one may eliminate
some disturbances and obtain the controlled variablesc ) Hy
using the null space method, but, afterward, one should analyze
the loss with all disturbances included. Alternatively, one may
be able to obtain the optimal combination numerically using
the exact local method of Halvorsen et al.6 or the extended
null space method that will be presented in a forthcoming
publication.

4.4. Physical Interpretation. The proposed null space
method yields controlled variables that are linear combinations
of the available measurements. A disadvantage is that the
physical interpretation of what we control is usually lost. This
is by no means a fundamental limitation, because, in principle,
we can control any signal from the process, as long as it is
independent. Thus, if all measurements are regarded as signals,
the concept of controlling a combination of signals may be easier
to grasp. If possible, one can choose to combine measurements
of one type, for instance, only temperatures (e.g., in a distillation
column) or only mass flows. In any case, we can scale variables
such that the resulting measurements are dimensionless, which
is common in practice.

4.4.1. Change in Active Constraints.It has been assumed
that the set of active constraints does not change. If they may
change, then one must, for each set of active constraints, obtain
new controlled variablesc ) Hy satisfyingHF ) 0, whereF
is evaluated with the given set of active constraints. This
involves offline calculations. In addition, one must have an
online strategy for identifying a change in active constraints
change and some logic for switching to a new set of controlled
variables. Thus, for cases where the active constraints shift
frequently with the disturbances, other online methods may be
better suited, for example, real-time optimization (RTO) com-
bined with model predictive control (MPC). Alternatively, we
could use the ideas of Arkun and Stephanopoulos15 in regard
to how to handle varying active constraints.

4.5. Nonobservable Disturbances and Price Changes.Self-
optimizing control is based on using feedback to detect
disturbances and optimally adjust the inputs to achieve near-
optimal operation. Thus, one must require that the disturbances
are observable (visible) in the measurementsy. One example
of a “disturbance’’ that is not visible in the measurements is
prices. However, prices (pi) do enter in the objective function,
because typicallyJ ) ∑ipixi, and price changes will change the
optimal point of operation.

To handle price changes (or, more generally, disturbances
that are not observable in the measurementsy), one must assume
that the price (disturbances) is known (measured). Price changes
can then be handled in two ways:

(1) Adjust the setpoints in a feedforward manner. Then, for
a price change∆p, we have that

whereFp ) (∂yopt/∂pT) is the optimal sensitivity from the prices
to the measurements.

(2) Include the prices as extra measurements iny and use
the regular procedure of selecting self-optimizing control
variables, as previously described.

The first approach is probably the simplest and most
transparent.18

4.6. Limitations. As already mentioned, the proposed null
space method is optimal only locally. It is globally optimal in
cases where the sensitivity matrixF is not dependent on the
operating point. Nevertheless, based on several case studies,
this does not seem to be an important limitation in most practical
cases. Other possibly more-serious limitations for practical use
are that (1) implementation errors are not explicitly handled
(except through the selection of which measurements to use),
(2) the active constraints are assumed not to change (as discussed
previously, in more detail), (3) the optimal setpoint forc must
be obtained (not really a limitation, but rather a fact), and (4)
the derivation of the optimal measurement combinationc )
Hy is based on steady-state models, and one must later check
that the resulting structure has acceptable dynamic controllability
(this may usually be achieved using a cascade control structure
where local controllers handle the dynamic response andc is
controlled at steady state using the setpoints for the local
controllers as manipulated variables).

5. Petlyuk Distillation Case Study

5.1. Introduction. The Petlyuk distillation column is an
appealing alternative for the separation of ternary mixtures.
Compared with the traditional configuration of two columns in
series, typical savings on the order of 30% are reported inboth
energy and capital costs.19 However, the savings in energy may
be difficult to achieve in practice, and the goal here is to suggest
simple control policies. We are looking for a “self-optimizing”
control structure that, despite external disturbances and mea-
surements errors, gives near-optimal operation with constant
setpoints.

The Petlyuk column has six sections and may be implemen-
ted as a “divided wall’’ column, as illustrated in Figure 2.
The boilup and reflux streams are split at the dividing wall
with split fractionsRV ) V2/V6 and RL ) L1/L3, respectively.
With a given feed and pressure, the Petlyuk column has five
steady-state degrees of freedom. For example, these may be
selected as

cs ) cs(p*) + HFp∆p (17)

Figure 2. Schematic of the Petlyuk distillation column implemented in a
single shell (“divided wall column”).

uall
T ) [L V S RL RV ] (18)
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corresponding to the reflux, boilup, side-stream flow, liquid split,
and vapor split, respectively.

Assume that the feed consists of three key components A,
B, and C, with mole fractionszT ) [zA zB zC], a molar flow
rateF, and a liquid fractionq. The light component A dominates
in the distillate stream (D) and component B dominates in the
side-stream (S), whereas the heavy component C dominates in
the bottom stream (B).

We consider a case study with a relative volatility of 3
between the key components and eight theoretical stages in each
of the six sections. Key data are given in Table 1, and further
details are found in Chapter 8 in the work by Alstad.13

We assume that the operational objective is to use the five
degrees of freedom to minimize the energy usage,J ) V, while
maintaining the following three product specifications (“active
constraints’’): (1) distillate purity (xA,D), (2) bottom purity (xC,B),
and (3) side-stream purity (xB,S), wherexi,j is the mole fraction
of componenti in streamj. Minimizing the energy (V), with
respect to the remaining two degrees of freedom, gives an
unconstrained nominal optimum, with

The minimum boilup (Vmin) with an infinite number of stages
is Vmin

∞ ) 0.5438; therefore, the nominal optimal boilup of
0.5811 is∼6% higher than the theoretical minimum.

Because the objective is to minimize the boilup, which also
is an input, one may mistakenly believe that one can use an
open-loop approach, where the optimal value for the boilup is
calculated and implemented in the column,V ) Vopt. However,
Halvorsen and Skogestad20 noted that such an approach is
impossible (or at least very difficult):

(1) The operation is infeasible forV < Vopt, so we must ensure
that V g Vopt.

(2) The optimal value ofV varies, with respect to the
disturbances, and may be difficult to find, requiring a detailed
model and a direct measurement of the disturbances (or a very
accurate estimate) to be viable. This is unrealistic in most cases.

(3) The measurement or estimation ofV may be difficult to
achieve (measuring vapor flow); thus, it may be sensitive to
measurement error when trying to implement the optimalV.

Thus, the approach here is to use self-optimizing control. As
candidate measurements (y), we include all flows (ratioed to
the feed), as well as the temperature at all stages. This gives
∼60 measurements. The component compositions in each
product stream are also measured; however, because of the fact
that they are active constraints (and, thus, are constant), they
are not useful for self-optimizing control and are not included
in y.

Alternative 1: Two Degrees of Freedom.We first consider
using the two available unconstrained degrees of freedom (nu

) 2) to control (and fix) two measurement combinations. The
two unconstrained degrees of freedom could, for example, be
u ) [RL RV] (but the specific choice does not actually matter
for the steady-state analysis). The assumed disturbance vector
is (these are determined to be the most important disturbances,
from those listed in Table 1)

where the subscript “tdf” denotes that the are two degrees of
freedom. The last entry represents the composition offset for
the side-stream product. The feed rateF is not included, because
we have chosen to use only intensive variables when forming

Table 1. Data for Petlyuk Case Study

parameter value

Column Data
number of stages in each section NT ) 8
relative volatilities RT ) [9 3 1]
boiling point A, B, and C [K] TB

T ) [299.3 342.15 399.3]

Feed
flow F* ) 1
composition z*T ) [1/3 1/3 1/3]
liquid fraction q* ) 0.477

Product Compositions
distillate xA,D

0 * ) 0.97
side-stream xB,S

0 * ) 0.97
bottom xC,B

0 * ) 0.97

Disturbances (d)
feed flow F ) F* ( 0.1
feed composition

zA zA ) zA
/ ( 0.1

zB zB ) zB
/ ( 0.1

liquid fraction q ) q* ( 0.1
product specification

xA,D
0 xA,D

0 ) xA,D
0 * ( 0.01

xC,B
0 xC,B

0 ) xC,B
0

/ ( 0.01
xB,S

0 xB,S
0 ) xB,S

0 * ( 0.01

Measurement/Implementation Errors (n)
temperatures 0.5 K (absolute)
flows 2.5% (relative)
RL, RV 0.025 absolute

uall
opt(d*)T ) [L* V* S* R*L R*V ] )

[0.7618 0.5811 0.3227 0.3792 0.5123 ]

Figure 3. Physical location of the best subset of measurements for
alternative 1.

Table 2. Alternative Control Structures

Alternative c1 c2 c3 c4 c5

1 xA,D xB,S xC,B ctdf
1 ctdf

2 null space method, use
RV andRL

2 xA,D xB,S xC,B RV codf null space method, fixRV

3 xA,D xB,S xC,B RV DTS fix DTS andRV

4 xA,D xB,S xC,B RV RL constant splitsRV andRL

dtdf ) [zA

zB

q
xB,S

] (19)
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the controlled variables (with a constant column efficiency, a
feed rate change is automatically compensated for at steady state
by fixing intensive variables).

To use the null space method, we need from Theorem 1 to
combinenu + nd ) 2 + 4 ) 6 measurements. To select the
best subset of 6 out of the∼60 candidate measurements, we
use the measurement selection approach mentioned in the
discussion section. This results in the following six temperature
measurements:

The location of the selected measurements is shown in Figure
3. Note that the majority of measurements are located in the
bottom portion of the column, whereas only two measurements
are located above the feed point. The sensitivity matrixF was
obtained numerically by perturbing each of the four disturbances
and reoptimizing. The null space method in Theorem 1 gives
the optimal matrixH, corresponding to the following measure-
ment combinations (controlled variables):

Alternative 2: One Degree of Freedom.Until now, we have
assumed that the vapor splitRV is a degree of freedom during
operation (available for manipulation); however, most likely,
this is not possible in practice. Therefore, it is interesting to
consider the case whereRV is fixed. In fixing RV , we add the
implementation error of controllingRV to the disturbance vector
and get

The corresponding minimum number of measurements needed
for the null space method isnu + nd ) 1 + 5 ) 6. The following
subset of measurements was obtained:

which is very similar to the two-degrees-of-freedom case. The
optimal measurement combination from the null space method
is

Loss Evaluation Using a Nonlinear Model. The two
previously mentioned control structures are compared with two
alternative control structures (see Table 2). Alternative 3 is a
control structure proposed by Halvorsen and Skogestad,20 where
cDTS ) (T4 - T28) + (T12 - T36) is a symmetry measure of the
temperature difference over the dividing wall, whereas alterna-
tive 4 is the “open loop” approach.

The nonlinear losses for the alternative control structures for
different realistic magnitude of the disturbances and measure-
ment errors are given in Table 3. In the table, we have also
included losses for changes (“disturbances’’) in the distillate
and bottom product compositions (active constraints), which
were not included in the original disturbances used to derive
ctdf andcodf.The conclusion is that the self-optimizing properties
are excellent for both alternatives 1 and 2. When fixing two
measurement combinations in alternative 1, the loss in energy
usage (V) is <0.02% for the disturbances considered andJ0.2%
for a disturbance in the bottom composition (which was not
considered when derivingctdf). The losses, with respect to
implementation errors, are also very small. When fixingRV and
codf (alternative 2), the loss is∼10 times higher for the
previously considered disturbances; however, it is still only
∼0.2% and, thus, is insignificant, from a practical point of view.
Because the loss is so small, the strategy of fixingRV andcodf

is clearly preferred for practical implementations. The losses
for the other two control structures are higher, with a maximum
disturbance loss of 11% for alternative 3 and 95% for alternative
4. Alstad13 also considered alternatives whereRV and a single

Table 3. Percentage Loss (inV) for All Disturbancesa

Loss [%]

Alternative F- F+ zA- zA+ zB- zB+ q- q+

1 0.0 0.0 0.0171 0.0207 0.0166 0.0111 0.0001 0.0000
2 0.0 0.0 0.0037 0.1340 0.2247 0.1666 0.1876 0.1084
3 0.0 0.0 5.0840 11.8810 0.3469 0.8295 1.0441 1.1740
4 0.0 0.0 46.7037 6.3019 95.1660 9.8256 32.4629 6.0578

Loss [%]

Alternative xA,D+

0 xA,D-

0 xC,B+

0 xC,B-

0 xB,S+

0 xB,S-

0 (Ln
max)b (Ln

avg)c

1 0.0025 0.0095 0.0639 0.2082 0.0002 0.0007 0.0213 0.0117
2 0.0040 0.0110 0.0060 0.0174 0.0004 0.0004 0.0847 0.0206
3 0.0074 0.0207 0.0033 0.0034 0.0025 0.0075 0.2108 0.0475
4 0.0262 0.0253 0.0245 0.0311 0.2579 1.0198 9.3142 3.6254

a The symbol “-’’ in the subscript denotes negative perturbation, whereas “+’’ in the subscript denotes positive perturbation from the nominal value.
b Maximum loss for the implementation errors.c Average loss for the implementation errors.

yodf ) [T37

T10

T43

T27

T5

T12

] (24)

codf ) -0.388T37 -0.658T10 + 0.192T43 - 0.0471T27 +
0.448T5 + 0.421T12 (25)

ytdf ) [T37

T11

T43

T25

T4

T9

] (20)

ctdf,1 ) -0.472T37 + 0.312T11 + 0.113T43 - 0.457T25 +
0.561T4 - 0.378T9 (21)

ctdf,2 ) 0.185T37 + 0.376T11 - 0.667T43 - 0.524T25 -
0.154T4 + 0.285T9 (22)

dodf ) [zA

zB

q
xB,S

RV

] (23)
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temperature was fixed. The best methodology was to fix a
temperature just below the side stream with a maximum
disturbance loss of∼1.4%.

In the work of Alstad,13 nonlinear closed-loop dynamic
simulations are shown, which confirm the practical implementa-
tion of alternative 2.

6. Conclusion

This paper has introduced the null space method for selecting
controlled variablesc. We consider a constant setpoint policy,
where the controlled variables are kept at constant setpointscs.
We propose to select self-optimizing controlled variables as
linear combinationsc ) Hy of a subset of the available
measurementsy. With no implementation error, it is locally
optimal to selectH such thatHF ) 0, whereF ) (∂yopt/∂dT) is
the optimal sensitivity, with respect to disturbanced. However,
ignoring the implementation error is a serious shortcoming for
some applications. To compensate for this partially, it is
important to use measurementsy that are independent and not
sensitive to measurement error. Another shortcoming is that a
new set of controlled variables (for the unconstrained degrees
of freedom) must be found for each possible set of active
constraints. The global properties of the proposed variable
combinationc ) Hy must be evaluated by computing the loss
for expected disturbances and implementation errors using the
nonlinear model, and a controllability analysis should also be
performed before implementation. The method has been il-
lustrated on a Petlyuk distillation example, where we find that
the null space method yields controlled variables with very small
losses.
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