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Null Space Method for Selecting Optimal Measurement Combinations as
Controlled Variables
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The issue in this paper is to select controlled variables combinations of the measuremeant$he objective

is to obtain self-optimizing control, which is when we can achieve near-optimal steady-state operation with
constant setpoints for the controlled variables, without the need to reoptimize when new disturbances perturb
the plant. The null space method yields locally optimal controlled variabtesly that are linear combinations

of measurementg. The requirement is that we at least have as many measurements as there are unconstrained
degrees of freedom, including disturbances, and that the implementation error is neglected. The method is
surprisingly simple. From a steady-state model of the plant, the first step is to obtain the optimal sensitivity
matrix F, with respect to the disturbances. The optimal maitisatisfiesHF = 0; therefore, the next step

is to obtainH in the left null space of. As an illustration, the method is used to obtain temperature
combinations for control of a Petlyuk distillation column.

1. Introduction
Optimizer
For cases with unconstrained control degrees of freedom

(inputs u), an important issue is to decide what to control. .
Although not widely acknowledged by control theorists, con- Y )
trolling the right variables is a key element in overcoming

. . . . . . Feedback c+n n
uncertainty in operatioh? This applies also when using Controller |~ -
advanced control (e.g., model predictive control (MPC)) or real- A
time optimization (RTO). This paper focuses on the interaction ;
between the local optimization layer and the feedback control ' ¢
layer (see Figure 1), and, more specifically, on the selection of y
the controlled variables that link these layers. Two subprob- d .| Measurement
lems are important here: Process y | combination

(1) Selection of the controlledariablesc. This is a struc-
tural decision that is made before the control strategy is
implemented.

(2) Selection of setpointss. This is a parametric decision

that can be done both online and offline. we consider linear combinations, thatés= Hy, whereH is a
Here, we focus on the first structural problem of finding the constant matrix.

controlled variables and we will assume constant nominal
optimal setpoints. As Figure 1 shows, there are two sources of
uncertainty that will make a constant setpoint policy nonopti-
mal: (i) disturbancesd) (these are the external unmeasured
disturbances, including parameter variations), and (ii) imple-
mentation errorrf) (this includes the sum of the effect of the
measurement error for and the control error).

Single measurements or functions or combinations of the
measurements may be used as controlled varialelesThe
objective is to obtain self-optimizing control, which is when

we can achieve near-optimal steady-state operation with constan ; i
setpoints for the controlled variables, without the need to @PProach. Animportant advantage of a brute-force evaluation

reoptimize when new disturbances perturb the plant. The useis that one can also identify controlled variables that may yield
of single measurements is simple and is the preferred choice ifinfeasability for certain disturbances or implementation errors.
the loss is sufficiently small. However, for some applications, 1his was also considered in more detail by Larsson étai.
there may not exist any self-optimizing single measurements, the Tennesseecastman challenge problem and Govatsmark and
and one may consider measurement combinations. In this paperSkogestad, who suggested adjustment of the setpoints to
achieve feasibility. However, the computational load of the
- “brute-force” method can be very large, so local methods based
a1 5-2? E"gg:;? r;%sggrfoe g((:f éﬂ?]l;liﬁ bsekgg ggzaz%;? thﬁ.i%. on linearizing the behavior around the steady-state are attractive.

t Current affiliation: Norsk Hydro ASA, Oil & Energy Research ~ Skogestaglintroduced the approximate maximum gain rule as
Center, N-3908 Porsgrunn, Norway. a simple method for selecting controlled variables. In the

Figure 1. Block diagram of a feedback control structure including an
optimizer layer.

Ideas related to self-optimizing control have been presented
repeatedly in the process control history, but the first quantitative
treatment was that of Morari et &lSkogestatl defined the
problem more carefully, linked it to previous work, and was
the first to include the implementation error as well. He mainly
considered the case where single measurements are used as
controlled variables; that i$] is a selection matrix where each
row has a single digit (one, 1) and the rest are zeros (0). The
loss with a constant setpoint policy for expected disturbances
famd implementation errors was evaluated using a “brute-force”
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multivariable case, the gain is the minimum singular value of Here, the equality constraints, including the model equations

the scaled steady-state transfer matrix frarto c. A similar
method was presented by Mahajanam étldalvorsen et af.

considered the maximum gain method in more detail and also

and active constraints, are implicitly included ¥ so J is
generally not a simple function af andd.
Remark Although not strictly correct, for simplicity, we use

proposed an exact local method that may be used to obtain thehe same symbol for the codtand degrees of freedom in

optimal measurement combinatiéh However, this method is

expressions 1 and 3. Also note that it does not matter from a

less attractive computationally and, in addition, is somewhat steady-state point of view which of the original degrees of

difficult to use. Hori et al illustrated the ideas introduced in

freedom are used to satisfy the active constraints, and which

this paper on indirect control, which can be formulated as a are then left in expression 3 as the unconstrained degrees of
subproblem of the null space method that has been presentedreedomu, as long as the remaining optimization problem

in this paper.
Related work has been done by Srinivéisahon measure-

remains well-posed.
We assume that online information about the system behavior

ment-based optimization to enforce the necessary condition ofis available through measurememtsThe issue in this paper is
optimality under uncertainty. The ideas are illustrated on batch finding a set o, controlled variables = h(y) associated with
processes. Francois etlalextended these ideas and focus on the “unconstrained” degrees of freedamin the measurement
steady-state optimal systems, where a clear distinction is madevectory, we generally include also the input vectgrincluding
between enforcing active constraints and requiring the sensitivity the inputsu’ that have been selected to the control active

of the objective to be zero. Guay and Zh&higave presented

related ideas on measurement-based dynamic optimization.

constraints. However, the measurements of the active constraints
are not included iny, because they are constant and, thus,

In this paper, the objective is to derive a simple method for provide no information about the operation.

selecting the optimal measurement combination madrifor

To quantify the difference between alternative control poli-

the special case with no implementation error. In fact, the cies, we consider the loss. For a given disturbathdbe loss is
method is so simple that the second author (Skogestad) thoughtefined as the difference between the actual cost and the optimal
it had to be wrong when it was proposed by the first author cost®

(Alstad). We have attempted to keep the mathematics as simple
as possible. A more-detailed comparison with previous results

and extensions are presented in a forthcoming publication (also

see ref 13).

2. Problem Formulation

L = J(c, d) — J(cP(d).d) ~ %(c — HTI_(c — P
4)

where the second-order approximation holds for small deviations
from the nominal optimum. The selected controlled variables

We assume that the operational goal is to use the degrees ofi'e assumed to be independent and the Hessian ndgiris

freedoms () to minimize the costJ), while satisfying equality

assumed to be nonsingufakVith a constant setpoint policy,

and inequality constraints. The (original) constrained steady- We havec = ¢s + n, wheren is the implementation error. In

state optimization problem can, for a given disturbad¢cbe
formulated as

min J(x, u, d) (1)
subject to
f(x,u,d)=0
gix,u,d) <0
y =f,(x,u,d) 2

wherex € R™, u € R%, andd € R" are the states, inputs, and
disturbances, respectively;is the set of equality constraints
corresponding to the model equati@nis the set of inequality

this paper, we assunme= 0 (see assumptiof4 presented later

in this work) and assume that the setpoint is nominally optimal,
Cs = c°P{(d*), whered* is the nominal value of the disturbance.
Then,c = c®'and the loss for small deviations from the nominal
optimum is

L~ HE@) — @I — @) )

This gives the following insight (which is not very surprising
and could have been stated directlyWith independent
controlledvariablesc and no implementation error, a constant
setpoint policy is optimal it°Pi(d) is independent ofl, i.e.
coP{(d) — cory(d*) = 0.

constraints that limits the operation (e.g., physical limits on 3. Null Space Method

temperature measurements or flow constraints) yaiegpresents
the measurements.

When solving this optimization problem, we generally find

that some constraints are active, correspondingy(io u, d) =

0. To achieve steady-state optimal operation, we assume her

that we control all the active constraitft$®and that the set of
active constraints does not change (see assump8gresented

later in this work). Controlling the active constraints consumes
a corresponding number of the degrees of freedom (inputs), and

we consider, in the following, the remaininghconstrained

reduced-space optimization problem where the scalar cost

functionJ is to be minimized with respect to thig remaining
degrees of freedom (inputs)

muin J(u, d) 3)

We consider the unconstrained optimization problem as given
by eq 3; that is, we assume “active constraint control”, where
all optimally constrained variables are assumed to be kept
constant at their optimal values. The goal is to find a linear

fneasurement combinatioa = Hy to be kept at constant

setpointscs. Here,H is a constanty, x ny matrix andy is a
subset of the available measurements. We make the following
assumptions:

Al. Steady statéWe consider only steady-state operation.
The justification for this is that the economics of operation is
primarily determined by the steady state. Of course, this assumes
that we have a control system in place that can quickly bring
the plant to its new steady state.

A2. DisturbancesOnly disturbances that affect the steady-
state operation are included.
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A3. Active constraint controlWe assume that the same active which gives the requirement
constraints remain active for all values of the disturbances and
that we control these constraints.

A4. No implementation errofThe implementation error is
the sum of the control error and the effect of the measurement
error. The assumption of no steady-state control error is satisfied
if we use a controller with integral action. It is a more serious
assumption to neglect the measurement error, so the method
implicitly assumes that the measurements have been carefully Next, we must prove the conditions under which this is

HF(d — d*) =0 (11)

This must be satisfied for anyd (— d*), so we must require
that

HF =0 (12)

selected.

We then have the following result.

Theorem 1: Null space methodAssume that we he n,
independent unconstrained freariables u, ng independent
disturbancedd, n, independent measuremerytsand we want
to obtain . = n, independent controlledariables c that are
linear combinations of the measurements

c=Hy (6)
Let

opt

oy
ad"

be the optimal sensifity matrix evaluated with constant acte
constraints. If p > ny + ng, it is possible to select the matrix
H in the left null space oF, H € ./(FT), such that we get

HF =0

With this choice foH, fixing ¢ (at its nominal optimabalue)
is first-order optimal for disturbanced; that is, the loss is zero
as long as the sensiity matrix F does not change.

Proof. We first prove that selectirig such thaHF = 0 gives

possible. To satisfHF(d — d*) = 0, we must seledt such
thatH €. {(FT). The rank of then; x n, matrixH is n, (because

ny = ne, Nc = Ny, and the controlled variables are independent).
The rank of theny x ng matrix F is ng (becausey, > ng and the
disturbances are assumed to be independent). The fundamental
theorem of linear algebra says that the left null spacé- of
(J(FT)) has a rank of, — r, wherer = ng is the rank ofF. To

be able to find arH of rankn, in the left null space ofF, we

must then requir@, — ng = ny or, equivalentlyny = ny + ng.

a

The proposed null space method is optimal only locally. It is
globally optimal in cases where the sensitivity maffixs not
dependent on the operating point (disturbances), for example,
for a system with a quadratic cost objective and linear model
equations (see eq 13, presented later in this work). Nevertheless,
based on several case studies, this does not seem to be an
important limitation in most practical cases.

Obtaining F. The optimal sensitivity matrixkF may be
computed from the Hessian matricelg(andJyq) and steady-
state gain matrices®¥ and G}), using

F=—(G"3d— GY (13)
However, in practice, it is usually easier to obt&rdirectly,
by optimizing for the selected disturbances using a nonlinear

zero disturbance loss. For small disturbances, the optimal changesteady-state model of the plant. Note that we do not necessarily
in the measurements to a change in the disturbances can bé&eed an explicit representation of the model equations, because

written as
y*P(d) — y*P(d) = F(d — d*) (7)
where
|
Pt oy
od, oy
F= (8)
pt pt
Ly
o0, o,

we can findF numerically. For example, we may use one of
the commercial steady-state process simulators, such as Aspen
Plus or Hysys. In theory, one may even obtdn from
experiments on a real operating plant; however, it seems unlikely
that this methodology will be sufficiently accurate.

Numerically, then, x ng matrix F may be obtained by
perturbing the disturbancesand re-solving the optimization
problem in eq 3 with the active constraints being constant:

(1) Under nominal conditiongd(= d*), use the steady-state
model to obtain the nominal optimuyPP{d*) and identify
the active constraints (finding the nominal optimum may be
difficult, because the optimization problem is generally non-
convex).

(2) For each of they disturbances, make a small perturbation

is the optimal sensitivity matrix evaluated at the nominal point (g, = g¢ 4 Ad,) and resolve the optimization with the constant
*.In eq 7, we have only included the first-order term in the active constraints to obtaig°P(d) (this is generally simple,
Taylor expansion, so eq 7 is valid for small disturbances such pecause it is only a small perturbation to the existing nominal

that second- and higher-order terms i  d*) can be
neglected, or, equivalently, as longfsloes not change. From

solution).
(3) Compute Ay°rt = yop{(d) — yoP{(d*) and obtain F

eq 6, the corresponding optimal change in the controlled numerically using eq 8. A minimum afy + 1 optimization

variables isc°P{(d) — coP(d*) = H(y°P{d) — y°P{d*)) and by
inserting eq 7 we get

¢(d) — c*(d) = HF(d — d¥) (9)

runs are required; however, more runs may be needed to obtain
an accurate estimate fér.

Ganesh and Biegl&rhave provided an efficient and rigorous
strategy for findingr, based on a reduced Hessian method. In
addition, some process simulators have built-in optimizers from

From the insight stated at the end of the previous section, which the optimal sensitivitfFF- may be available.

the constant setpoint policy is optimal if

c®Pl(d) — c*P(d*) =0 (10)

The next step is to obtaid. Numerically,H may be obtained
from a singular value decomposition Bf. We haveHF = 0
or, equivalently, FTHT = 0. Thus, selectindd™ as the input



singular vectors oFT, corresponding to zero singular values in
FT, gives an orthogonal basis.

Example 1. Consider a simple example with one uncon-
strained degree of freedou , n, = 1, and one disturbance d,
ny = 1. The cost function to be minimized during operation
(for varying d) is

J(u, d) = (u— d)?
Nominally d* = 0. We hae available two measurements:

y; = 0.9u+ 0.1d

and
y,=0.50—d

Because n= 2 = n, + ng and the two measurements are
independent, it is possible to find a linear measurement
combination

Yy
c=Hy=[h hZ][y;] =hy; + hy,

for which a constant setpoint ggs zero disturbance loss, at
least locally. We first must obtain the optimal sen#iyi matrix

F. Optimality is ensured whef®J/ou) = 2(u — d) = 0, which
gives WPt = d and ¥t = 0 O d. The corresponding optimal
outputs are

Y =d

and
5" =—0.5d

and (8) gies thatFT = [1 —0.5]. Alternatively, use (13) with
G'T=10.9 0.5], GiT = [0.1 —1], Jyu = 2, and Jyg = —2.
From the null space method, the optimal matdxmust satisfy
HF =0, or

hf, +hf,=0
h, + h,(—=0.5)=0=h, = 0.5,
The solution is non-unique. For example, selectingH gives
c=0.5yty,

Keeping the controlledvariable ¢ at its nominally optimal
setpoint, ¢ = c°P{d*) = 0, gives zero disturbance loss, as is
easily verified. Generally, the loss will be zero only locally,
i.e., for small changes in d, but, for this example, the cost
function is quadratic with linear model equations, and the loss
will be zero for any magnitude of the disturbance d.

4. Discussion

4.1. Measurement SelectiorOne weakness of the null space

method is that it does not consider the measurement error, or,

more generally, the implementation error. If we have extra
measurements, that is, > n, + ng, then we have extra degrees
of freedom in selectingd that should be used to reduce the

Ind. Eng. Chem. Res., Vol. 46, No. 3, 200849

see Alstadf), but let us provide some results. Let the linear
model be

Ay = GYAu + GAd = éy[ig] (14)
wherey has been scaled, with respect to the expected measure-
ment error, andi andd have been scaled such that they have
similar effects on the cost. It can then be shown that a reasonable
approach is to maximize the minimum singular value of the
matrix GY = [GYG)] from the combined inputs and distur-
bances to the selected measurements. To understand why this
is reasonable, we may imagine using the measurements to
backcalculate the inputs and disturbances. For the casewvith
=ny + ng, G is invertible and we get

[ﬁ;‘,] =[Gy (15)
To avoid sensitivity to measurement errorsyinwe want the
norm of [GY]~1 to be small, which is equivalent to wanting a
large minimum singular valugy(GY). From eq 15, we also see
why it is reasonable to requimg > n, + ng in the null space
method, because this is the requirement for being able to
uniquely determine all independent variables (inputs and
disturbances) from the measurements.

4.2. Freedom in Selecting HEven for the casey = n, +
ng, there are an infinite number of matrickisthat satisfyHF
= 0. This stems from the freedom of selecting basis vectors
for the null space. LeHy be one such matrix, i.eHoF = 0.
For exampleHo may consist of the one set of basis vectors
that span the null space &'. Then,H = CHy also satisfies
HF = 0, provided then; x n; matrix C is nonsingular.

Actually, the degrees of freedom in selecti@gandH) are
the same as the degrees of freedom that are used in steady-
state decoupling (or similar) in control. The linear model for
the selected controlled variables can be written as

Ac=HAy = HGYAu + HGAd = GAu + GdAd( )
16

and the degrees of freedom in the mat@ixmay be used to
affectG = HGY andGq = HG}. For example, it is possible to
selectH such thatG = I, and we have a decoupled steady-
state response from to c.

4.3. Disturbances.The minimum number of measurements
required in the null space methoal,(+ ng) may be large if we
have many disturbances (a lamggevalue). Therefore, in practical
applications, it is desirable to reduce the number of disturbances.
Unfortunately, there does not seem to be any simple rigorous
procedure for eliminating unimportant disturbances, although
some approaches are discussed in Chapter 5 of the work by
Alstad?® It is obvious that we may eliminate disturbanats
that satisfy both of the following conditions: (1) no steady-
state effect on the measuremenisq independent ofl, i.e.,

GgY =), and (2) no steady-state effect on the optimal operation
(u°rtis independent off;).

It could be argued that we may eliminate all “unobservable”
disturbances that satisfy condition 1, because we have no way
of detecting them and, thus, correcting for them. However, such
disturbances may affect the optimal operation and result in large

sensitivity to measurement error. A simple approach is to selectlosses; therefore, an analysis based on neglecting them may be

a subset of the “best” measurements such that wenget n,

highly misleading. To achieve acceptable operation in such

+ ng, but which should these measurements be? This is outsidecases, we must obtain additional measurements, for example,

the scope of this paper, and it will be treated in more detail a

of the disturbance itself. One example would be a price change,

forthcoming publication on the extended null space method (also as is discussed in more detail below. Also, we cannot eliminate
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all disturbances that have no effect on optimal operation and
thus satisfy condition 2. This is because the disturbance may
effect a measurement, and controlling this measurement will

Condenser

then result in a loss. /* Top product
In practice, with too few measurements, one may eliminate SN . £
some disturbances and obtain the controlled variablesHy s Gl
using the null space method, but, afterward, one should analyze Prefrarbibnat U>\
the loss with all disturbances included. Alternatively, one may .
be able to obtain the optimal combination numerically using 1 4| Side-stream
the exact local method of Halvorsen etfabr the extended Feed product
null space method that will be presented in a forthcoming F,z9
publication. 2 5
4.4, Physical Interpretation. The proposed null space V4
method yields controlled variables that are linear combinations »
of the available measurements. A disadvantage is that the 6  Vapor split (Ry)
physical interpretation of what we control is usually lost. This 1%
is by no means a fundamental limitation, because, in principle, Reboiler
we can control any signal from the process, as long as it is
independent. Thus, if all measurements are regarded as signals,
the concept of controlling a combination of signals may be easier Bl
to grasp. If possible, one can choose to combine measurements Bottom product
of one type, for instance, only temperatures (e.g., in a d'S“"_at'on Figure 2. Schematic of the Petlyuk distillation column implemented in a
column) or only mass flows. In any case, we can scale variablessingle shell (“divided wall column”).
such that the resulting measurements are dimensionless, which
is common in practice.
that the set of active constraints does not change. If they maysPpace method is optimal only locally. It is globally optimal in
change, then one must, for each set of active constraints, obtairfases where the sensitivity mattixis not dependent on the
new controlled variables = Hy satisfyingHF = 0, whereF operating point. Nevertheless, based on several case studies,
is evaluated with the given set of active constraints. This this does not seem to be an important limitation in most praCticaI
involves offline calculations. In addition, one must have an cases. Other possibly more-serious limitations for practical use
online strategy for identifying a change in active constraints are that (1) implementation errors are not explicitly handled
change and some logic for switching to a new set of controlled (€xcept through the selection of which measurements to use),
variables. Thus, for cases where the active constraints shift(2) the active constraints are assumed not to change (as discussed
frequently with the disturbances, other online methods may be Previously, in more detail), (3) the optimal setpoint fomust
better suited, for example, real-time optimization (RTO) com- be obtained (not really a limitation, but rather a fact), and (4)
bined with model predictive control (MPC). Alternatively, we the derivation of the optimal measurement combinator

e

could use the ideas of Arkun and Stephanopdélosregard Hy is based on steady-state models, and one must later check
to how to handle varying active constraints. that the resulting structure has acceptable dynamic controllability
4.5. Nonobservable Disturbances and Price Change3elf- (this may usually be achieved using a cascade control structure

optimizing control is based on using feedback to detect where local controllers handle the dynamic responsecaisd

disturbances and optimally adjust the inputs to achieve near-controlled at steady state using the setpoints for the local

optimal operation. Thus, one must require that the disturbancescontrollers as manipulated variables).

are observable (visible) in the measuremant®©ne example

of a “disturbance” that is not visible in the measurements is 5- Petlyuk Distillation Case Study

prices. However, pricegy) do enter in the objective function,

because typically = 3ipixi, and price changes will change the 1 he4jing alternative for the separation of ternary mixtures.

optimal point of operation. _ Compared with the traditional configuration of two columns in
To handle price changes (or, more generally, disturbancesseries, typical savings on the order of 30% are reportdxbth

that are not observable in the measuremg)ytsne must assume  energy and capital costHowever, the savings in energy may

that the price (disturbances) is known (measured). Price changegye gifficult to achieve in practice, and the goal here is to suggest

5.1. Introduction. The Petlyuk distillation column is an

can then be handled in two ways: simple control policies. We are looking for a “self-optimizing”
(1) Adjust the setpoints in a feedforward manner. Then, for control structure that, despite external disturbances and mea-
a price change@p, we have that surements errors, gives near-optimal operation with constant
setpoints.
Cs = c{(p*) + HF,Ap (17) The Petlyuk column has six sections and may be implemen-

ted as a “divided wall” column, as illustrated in Figure 2.
whereF, = (3y°PYapT) is the optimal sensitivity from the prices The boilup and reflux streams are split at the dividing wall
to the measurements. with split fractionsRy = Vo/Ve and R_ = Lj/L3, respectively.

(2) Include the prices as extra measurementg and use With a given feed and pressure, the Petlyuk column has five
the regular procedure of selecting self-optimizing control Steady-state degrees of freedom. For example, these may be
variables, as previously described. selected as

The first approach is probably the simplest and most
transparent® uy=[L V SR R/] (18)
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Table 1. Data for Petlyuk Case Study }

parameter value
Column Data ﬁ
number of stages in each section Nr=8 B L pa

relative volatilities o'=[931] ;
boiling point A, B, and C [K] TL=1[299.3 342.15 399.3] ?
Feed i
flow *=1
composition 2T =[1/31/3 1/3] 4 5
liquid fraction gt = 0.477 5
. —_— L EEEEe -
Product Compositions Fozq 0 g S, xg
distillate X o* =0.97 2
side-stream X3 & =0.97 I ——  —
bottom Xt =0.97
Disturbances (d) +

feed flow F=F*+0.1 i;; v
feed composition

Za zn=7,+0.1
Z8 zz=7+0.1
liquid fraction g=q*+0.1

product specification B,y
X Xap =Xap £ 0.01 Figure 3. Physical location of the best subset of measurements for
X X g =22 g+ 0.01 alternative 1.
X Xos=Xa g £ 0.01
Measurement/implementation Errorj { Table 2. Alternative Control Structures
temperatures 0.5 K (absolute)
flows 2.5% (relative) Alternative ¢ [ Cs Cs Cs
RL, Ry 0.025 absolute 1 Xap Xes Xcg ¢, 3 null space method, use
RvandR.
2 Xap Xss Xcg Ry Codf null space method, fiRy
corresponding to the reflux, boilup, side-stream flow, liquid split, 3 X0 Xes Xg Ry DTs fix DTsandR
4 Xap Xss Xcs Ry R constant split&ky andR.

and vapor split, respectively.

Assume that the feed consists of three key components A,
B, and C, with mole fractiong™ = [za zs zc], a molar flow (2) The optimal value ofV varies, with respect to the
rateF, and a liquid fractiorg. The light component A dominates  disturbances, and may be difficult to find, requiring a detailed
in the distillate stream[¥) and component B dominates in the model and a direct measurement of the disturbances (or a very
side-stream$), whereas the heavy component C dominates in accurate estimate) to be viable. This is unrealistic in most cases.
the bottom stream). (3) The measurement or estimation\bfnay be difficult to

We consider a case study with a relative volatility of 3 achieve (measuring vapor flow); thus, it may be sensitive to
between the key components and eight theoretical stages in eacheasurement error when trying to implement the optimal
of the six sections. Key data are given in Table 1, and further ~ Thus, the approach here is to use self-optimizing control. As
details are found in Chapter 8 in the work by Alstdd. candidate measurementg),(we include all flows (ratioed to

We assume that the operational objective is to use the five € feed), as well as the temperature at all stages. This gives
degrees of freedom to minimize the energy usdge,V, while ~60 measurements. The component compositions in each
maintaining the following three product specifications (“active Product stream are also measured; however, because of the fact
constraints”): (1) distillate purityXap), (2) bottom purity kc.g), that they are active constraints (and, thus, are cons@ant), they
and (3) side-stream puritk{s), wherex;; is the mole fraction are not useful for self-optimizing control and are not included

of component in streamj. Minimizing the energy ), with n yi . ] f d f id
respect to the remaining two degrees of freedom, gives an Aternatlve L T‘_NO Degrees o F_ree omWe first consider
unconstrained nominal optimum, with using the two available unconstrained degrees of freedam (

= 2) to control (and fix) two measurement combinations. The
oot 1 T — 11 % _ two unconstrained degrees of freedom could, for example, be
ugh (@) =[L* V- & RERj]= u = [R_Ry] (but the specific choice does not actually matter
[0.7618 0.5811 0.3227 0.3792 0.5123] for the steady-state analysis). The assumed disturbance vector
is (these are determined to be the most important disturbances,
The minimum boilup Vmin) with an infinite number of stages  from those listed in Table 1)

is Vi, = 0.5438; therefore, the nominal optimal boilup of
0.5811 is~6% higher than the theoretical minimum. Zy
Because the objective is to minimize the boilup, which also _|%
i i i i Oy = (19)
is an input, one may mistakenly believe that one can use an q
open-loop approach, where the optimal value for the boilup is X8.s

calculated and implemented in the colurivhy VoPt However,

Halvorsen and Skogestédnoted that such an approach is here the subscript “tdf’ denotes that the are two degrees of
impossible (or at least very difficult): freedom. The last entry represents the composition offset for
(1) The operation is infeasible fof < V°PY so we must ensure  the side-stream product. The feed ratis not included, because
thatV > \ort we have chosen to use only intensive variables when forming
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Table 3. Percentage Loss (irV) for All Disturbances?

Loss [%]
Alternative F- Fy Zn- Zat Z5— 5+ - qt+
1 0.0 0.0 0.0171 0.0207 0.0166 0.0111 0.0001 0.0000
2 0.0 0.0 0.0037 0.1340 0.2247 0.1666 0.1876 0.1084
3 0.0 0.0 5.0840 11.8810 0.3469 0.8295 1.0441 1.1740
4 0.0 0.0 46.7037 6.3019 95.1660 9.8256 32.4629 6.0578
Loss [%]
Alternative Xg,D_ X(/i,D, Xg,B+ X(OZ.B, X(E)s,s+ X(E);,s, (Ly™)P (Ly9e
1 0.0025 0.0095 0.0639 0.2082 0.0002 0.0007 0.0213 0.0117
2 0.0040 0.0110 0.0060 0.0174 0.0004 0.0004 0.0847 0.0206
3 0.0074 0.0207 0.0033 0.0034 0.0025 0.0075 0.2108 0.0475
4 0.0262 0.0253 0.0245 0.0311 0.2579 1.0198 9.3142 3.6254
aThe symbol “-" in the subscript denotes negative perturbation, where&as it the subscript denotes positive perturbation from the nominal value.

b Maximum loss for the implementation errofsAverage loss for the implementation errors.

the controlled variables (with a constant column efficiency, a The corresponding minimum number of measurements needed
feed rate change is automatically compensated for at steady statéor the null space method is, + ng = 1+ 5= 6. The following
by fixing intensive variables). subset of measurements was obtained:

To use the null space method, we need from Theorem 1 to 1

combinen, + ng = 2 + 4 = 6 measurements. To select the LEY,
best subset of 6 out of the60 candidate measurements, we Tio
use the measurement selection approach mentioned in the Ty
discussion section. This results in the following six temperature Yodt = Ty, (24)
measurements: T
5
] T
T37 ! 12I
T which is very similar to the two-degrees-of-freedom case. The
_|Tas 20 optimal measurement combination from the null space method
Yidt = Tos (20) is
T4
T, Coqt = —0.388T,, —0.658T,,+ 0.192T,; — 0.0471,, +

i 0.448; + 0.4211,, (25)

The location of the selected measurements is shown in Figure

3. Note that the majority of measurements are located in the Loss Evaluation Using a Nonlinear Model. The two
bottom portion of the column, whereas only two measurements previously mentioned control structures are compared with two
are located above the feed point. The sensitivity mafrixas alternative control structures (see Table 2). Alternative 3 is a
obtained numerically by perturbing each of the four disturbances control structure proposed by Halvorsen and SkogeStatiere
and reoptimizing. The null space method in Theorem 1 gives Cots = (T4 — Tz2g) + (T12 — T3g) is @ symmetry measure of the
the optimal matrixH, corresponding to the following measure- temperature difference over the dividing wall, whereas alterna-
ment combinations (controlled variables): tive 4 is the “open loop” approach.

The nonlinear losses for the alternative control structures for
different realistic magnitude of the disturbances and measure-
ment errors are given in Table 3. In the table, we have also
included losses for changes (“disturbances”) in the distillate
and bottom product compositions (active constraints), which
were not included in the original disturbances used to derive
Ciar andcygr. The conclusion is that the self-optimizing properties
are excellent for both alternatives 1 and 2. When fixing two

assumed that the vapor spi is a degree of freedom during measurement combinations in alternative 1, the loss in energy
operation (available for manipulation); however, most likely, USageY)is <0.02% for the disturbances considered arti2%

this is not possible in practice. Therefore, it is interesting to [0f @ disturbance in the bottom composition (which was not
consider the case wheRy is fixed. In fixing Ry , we add the considered when derivingyr). The losses, with respect to

implementation error of controllingy to the disturbance vector ~ IMmPlementation errors, are also very small. When fixitgand
and get Cogr (alternative 2), the loss is~10 times higher for the

previously considered disturbances; however, it is still only
7 ~0.2% and, thus, is insignificant, from a practical point of view.
A Because the loss is so small, the strategy of fix®Rygand Coqt

Car1 = —0.472;; + 0.3127,, + 0.1137,, — 0.457T,5 +
0.561T, — 0.378T, (21)

Cat = 0.185T;; + 0.376T,, — 0.667T,; — 0.524T, —
0.154T, + 0.285T, (22)

Alternative 2: One Degree of FreedomUntil now, we have

_ % is clearly preferred for practical implementations. The losses
ogr = (23) for the other two control structures are higher, with a maximum
Xg,s disturbance loss of 11% for alternative 3 and 95% for alternative

Ry 4. Alstad? also considered alternatives whd®g and a single
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temperature was fixed. The best methodology was to fix a (5) Mahajanam, R.; Zheng, A.; Douglas, J. A shortcut method for

temperature just below the side stream with a maximum controlled variable selection and its application to the butane alkylation
disturbance loss of-1.4% processind. Eng. Chem. Re2001, 40 (14), 3208-3216.

h Kk of Alstad® i | d-l d . (6) Halvorsen, 1. J.; Skogestad, S.; Morud, J. C.; Alstad, V. Optimal
_In the work of Alstad;® nonlinear closed-loop dynamic  ggjection of controlled variablemd. Eng. Chem. Re003 42 (14), 3273-
simulations are shown, which confirm the practical implementa- 3284,
tion of alternative 2. (7) Hori, E. S.; Skogestad, S.; Alstad, V. Perfect steady-state indirect
control. Ind. Eng. Chem. Re®005 44 (4), 863-867.
(8) Srinivasan, B.; Primus, C. J.; Bonvin, D.; et al. Run-to-run
optimization via control of generalized constrair@antrol Eng. Pract2001,
This paper has introduced the null space method for selecting® (8), 91+-919. o S
controlled variables. We consider a constant setpoint policy, _ (%) Stinivasan, B.; Bonvin, D.; Visser, E. Dynamic optimization of batch
. . processes|. Characterization of the nominal soluticBomput. Chem. Eng.
where the controlled variables are kept at constant setpints 5003 27 (1), 1-26.
\_Ne propose to _53|eCt self-optimizing controlled Va“a_b|es aS  (10) Srinivasan, B.; Bonvin, D.; Visser, E.; et al. Dynamic optimization
linear combinationsc = Hy of a subset of the available of batch processedl. Role of measurements in handling uncertainty.
measurementyg. With no implementation error, it is locally =~ Comput. Chem. En@003 27 (1), 27-44.
optimal to select such thaHF = 0, whereF = (3yopt/adT) is (11) Francois, G.; Srinivasan, B.; Bonvin, D. Use of measurements for

. o . . enforcing the necessary conditions of optimality in the presence of
the optimal sensitivity, with respect to disturbarcedowever, constraints and uncertainty. Process Contro2005 15 (6), 701-712.

ignoring thg |m_plementat|on error is a serious short<_:om|n_g f_or (12) Guay, M.; Zhang, T. Adaptive extremum seeking control of
some applications. To compensate for this partially, it iS nonlinear dynamic systems with parametric uncertainfiegomatica2003
important to use measurementshat are independent and not 39 (7), 1283-1293.

sensitive to measurement error. Another shortcoming is that a (13) Alstad, V. Studies on the Selection of Controlled Variables, Ph.D.

; ; Thesis, Norwegian University of Science and Technology, 2005. Available
new set of controlled variables (for the unconstrained degreesvia the Internet at the home page of S. Skogestad: http://www.nt.ntnu.no/

of freedom) must be found for each possible set of active sers/skoge/publications/thesis/2005_alstad.
ConStramFS- The global properties of the prOpO_SEd variable  (14) Maarleveld, A.; Rijnsdorp, J. E. Constraint control on distillation
combinationc = Hy must be evaluated by computing the loss columns.Automatical97Q 6 (1), 51-58.

for expected disturbances and implementation errors using the (15) Arkun, Y.; Stephanopoulos, G. Studies in the Synthesis of Control

nonlinear model, and a controllability analysis should also be Structures for Chemical Processes: Part IV. Design of Steady-State
. . y Y .. Optimizing Control Structures for Chemical Process UMIEhE J.198Q
performed before implementation. The method has been il- 26 (6), 975-991.

lustrated on a Petlyuk distillation example, where we find that (16) strang, G.Linear Algebra and Its Applications3rd Edition;
the null space method yields controlled variables with very small Harcourt Brace & Company: 1988.
losses. (17) Ganesh, N.; Biegler, L. T. A reduced Hessian strategy for sensitivity
analysis of optimal flow sheet&IChE J.1987, 33 (2), 282-296.
(18) Skogestad, S. Near-optimal operation by self-optimizing control:
From process control to marathon running and business sys@angut.
(1) Morari, M.; Stephanopoulos, G.; Arkun, Y. Studies in the synthesis Chem. Eng2004 29 (1), 127-137.
of control structures for chemical processes. Part I: Formulation of the  (19) Triantafyllou, C.; Smith, R. The design and operation of fully
problem, process decomposition and the classification of the controller task. thermally coupled distillaton columngrans. Inst. Chem. Eng992 7 (A),
Analysis of the optimizing control structureSIChE J.198Q 26 (2), 220~ 118-132.
232. (20) Halvorsen, I. J.; Skogestad, S. Optimal operation of Petlyuk
(2) Skogestad, S. Plantwide control: The search for the self-optimizing distillation: Steady-state behavial. Process Control999 9, 407—424.
control structureJ. Process Contro200Q 10, 487-507.

6. Conclusion

Literature Cited

(3) Larsson, T.; Hestetun, K.; Hovland, E.; Skogestad, S. Self-Optimizing Receied for review March 9, 2006
Control of a Large-Scale Plant: The Tennessee Eastman ProwsEng. Revised manuscript receed November 9, 2006
Chem. Res2001, 40 (22), 4889-4901. AcceptedNovember 10, 2006

(4) Govatsmark, M. S.; Skogestad, S. Selection of controlled variables
and robust setpoint$nd. Eng. Chem. Re®005 44 (7), 2207-2217. IE060285+



