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This paper considers the extension of relative gain array (RGA) to norm-bounded uncertain systems. We
present a method for calculating a tight bound on the worst-case relative gain and derive necessary and
sufficient conditions for the sign change of the relative gain over the uncertainty set. The proposed results
improve on recently published results [Chen and Seborg,AIChE J.2002, 48, 302]. More importantly, it is
shown that the role of RGA is limited for ascertaining the integrity of uncertain systems. This conclusion is
in direct contrast with the corresponding result for adjudging integrity of nominal systems, where the usefulness
of RGA is well-known. As an offshoot, we present a signal-based representation of the relative gain for
uncertain systems.

1. Introduction

The Relative Gain Array (RGA)1 is a well-established tool
for the analysis and design of control systems. RGA has many
useful algebraic properties, which also have strong control
implications (see Skogestad and Postlethwaite2 for an overview
of properties and usefulness of RGA). For example, one property
of RGA is that, under minor assumptions, the system has
integrity if and only if the pairings are selected such that relative
gains of all the principal submatrices of the permuted steady-
state gain matrix are positive.3 The system is said to possess
integrity4 if there exists a diagonal controller with integral action
in every output channel, such that closed-loop stability is
maintained in the presence of possible controller failures. This
paper considers extension of RGA to norm-bounded uncertain
systems. This problem is important in practice, because models
of real systems always have some uncertainty associated with
them. Many results based on RGA hold well for the nominal
model of the system but can be difficult to apply to uncertain
systems (e.g., verifying the condition for integrity3 for every
member of the set of models describing the uncertain system is
computationally intractable in general).

RGA for uncertain systems previously has been considered
under the restrictive assumption of element-wise uncertainty or
changes in only one element of the gain matrix.5,6 The more
general case, where all the elements of gain matrix are allowed
to change simultaneously, is considered by Grosdidier et al.,7

Skogestad and Morari,5 and also recently in greater detail by
Chen and Seborg.8 For systems with simultaneous additive
perturbations in all of its elements, Chen and Seborg8 have
presented lower and upper bounds on the relative gain. Large
relative gains calculated for the nominal model imply strong
directionality in the system and potential control problems.5

Then, the results of Chen and Seborg8 are useful for analyzing
the directionality of the uncertain system. These bounds can
also be used to determine an upper bound on the allowable
perturbations before the relative gains become negative or the
system loses integrity; however, this bound can be loose in

general. This may happen because, even when the lower bound
on the relative gain is negative, the actual value may remain
positive over the given uncertainty set.

The purpose of this paper is to use a more rigorous approach
to improve on the results of Chen and Seborg.8 We present a
method for obtaining a bound on the magnitude of the worst-
case relative gain, calculated at steady state and also at higher
frequencies. Compared to the results of Chen and Seborg,8 the
bound is tight in the sense that there exists an uncertain plant
that achieves this bound. We derive the necessary and sufficient
conditions for the sign change of the relative gain of norm-
bounded uncertain systems. More importantly, we show that
the relative gain changes sign, only if the gain of the uncertain
system or one of its principal submatrices corresponding to the
relative gain becomes singular over the uncertainty set. This
result implies that the role of RGA is limited for ascertaining
the integrity of uncertain systems, as the nonsingularity of these
matrices is trivially necessary for integrity of the uncertain
system. This conclusion is in direct contrast with the corre-
sponding result for adjudging the integrity of nominal systems,
where the usefulness of RGA is well-known. The discussion is
limited to systems with additive norm-bounded perturbations.
The results can be easily generalized, however, to systems
described by other norm-bounded uncertainty descriptions (e.g.,
multiplicative uncertainty) and also to systems with multiple
sources of perturbations. As an offshoot, we present a signal-
based representation of the relative gain for uncertain systems.

2. Preliminaries

In this section, we standardize the notation, collect some
useful matrix identities, and present a signal-based interpretation
of relative gain. The latter result is vital for derivation of the
more-important results later in the paper and may be of
independent interest to the reader.

2.1. Notation. For a given matrixA ∈ R m×n, A ij and A ij

denote theij th element (or block) and the submatrix ofA with
the ith row andjth column removed, respectively.A i* andA* i

denote theith row andith column ofA, respectively. A matrix
made of elementsa11 . . . a1n . . . amn is represented as [aij]. Let
∆ ) {diag(∆i)} denote a set of complex matrices with a given
block-diagonal structure, where some of the blocks may
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be repeated and may be restricted to be a real matrix. The
structured singular value ofA is given as9

unless no allowable∆ makes (I - A∆) singular, in which case
µ∆(A) ) 0. For a partitioned matrix,Fu(A,∆) denotes the upper
linear fractional transform (upper-LFT), which is defined as

In this paper, we use the following identities, which are related
to the determinant of matrices, frequently:10

(1) For A ∈Rm×n and B ∈Rn×m, det(I + AB) ) det(I +
BA).

(2) For the partitioned matrixA, with A22 square and
nonsingular,

The latter identity is also called the Schur complement Lemma.
We denote the nominal model of the rational, stable, linear

time-invariant and square system asG(s) and its steady-state
gain matrix asG ∈ Rn×n. The set of steady-state gain matrices
of the perturbed plants with additive norm-bounded uncertainty
is represented as

The uncertainty set at higher frequencies is defined similarly.
For nonsingularG, the steady-state relative gain between the
ith output andjth input is defined as1

which represents the ratio of the open-loop gain and the apparent
closed-loop gain, when all other loops are closed using
controllers with integral action. The relative gain for uncertain
systems can be defined similar to eq 4, where

for everyGp ∈ ΠA. Here,Gp
-1 is assumed to exist for allGp ∈

ΠA (see Remark 1). We use the notationλij(Gp) to explicitly
show the element ofΠA, for which the relative gain is
calculated. Steady-state RGA, which contains relative gains for
all input-output pairs, is denoted asΛ(Gp) ) [λij(Gp)].

Remark 1.For λij(Gp) in eq 5 to be well-defined, it is
necessary thatGp

-1 exists orGp is nonsingular over the set
ΠA. The assumption of existence ofGp

-1 is not restrictive,
because, if someGp ∈ ΠA is singular, integral control is not
possible, because of the presence of a hidden mode. Numeri-
cally, the nonsingularity ofGp ∈ ΠA can be verified by
evaluatingµ∆(VG-1W). When µ∆(VG-1W) < 1, it follows
from the definition of structured singular value in eq 1 that
det(I + VG-1 W∆) ) det(I + G-1 W∆V) ) det(G-1)det(Gp)
is nonsingular over the uncertainty set.

2.2. Signal-Based Interpretation of Relative Gain.We next
present a signal-based interpretation ofλij(Gp), or, more specif-
ically, λii(Gp). Based on eq 5,λii(Gp) can be alternately denoted
as

whereei is the unit column vector with itsith entry being 1 and

the remaining entries being 0 (not to be confused with theith
element of vectore). On the basis of eq 3,

Now let y ) λii(Gp)u. Based on eqs 6 and 7,λii(Gp) can be
represented by the signal flow diagram shown in Figure 1. Here,
we have used the fact that eq 7 represents an inverse additive
uncertainty representation forG-1 (see, for example, Skogestad
and Postlethwaite2).

Remark 2. In Figure 1, the termG-1 can be further expanded
as (I + (G - I ))-1, which can be represented as a negative
feedback loop withI in the forward path and (G - I ) in the
feedback path. Figure 1 then does not contain any nonlinear
functions ofG; however, this additional manipulation is not
deemed necessary here.

3. Worst-Case Relative Gain

Skogestad and Morari5 have shown that large relative gains
calculated based on the nominal model of the system demon-
strate fundamental control problems. Large (positive or negative)
elements of RGA imply ill-conditioning (large condition
number) and, thus, the presence of strong directionality in the
system. The arguments of Skogestad and Morari5 also carry over
to uncertain systems, where large worst-case relative gains imply
poor controllability. In the following discussion, we present a
method for calculating the magnitude of worst-case relative gain.
The derived result is for diagonal elements of RGA,λii(Gp).
This result, however, can be used for calculating the worst-
case magnitudes ofλij(Gp) for any i, j e n by permutingGp

such that [Gp] ij appears as one of the diagonal elements of the
permuted matrix. This happens because permuting the gain
matrix results in similar permutations in the RGA matrix.1

As a shorthand notation, we denoteE ) eiei
T. By analyzing

the signal flow diagram in Figure 1, the following relationships
can be established:

where

and

At this stage, we can combine eqs 8 and 9 to express the
relationship betweenu andy in the form of an upper-LFT, as
shown in Figure 2. This representation is commonly used for
analysis of norm-bounded uncertain systems (see, e.g., Skoge-
stad and Postlethwaite2). Based on Figure 2, we have

which serves as an alternate representation ofλii(Gp). Note that,
for Fu(M ,∆h ) to be well-defined, it is assumed that (I - M11∆h )

µ∆(A) ) (min σj(∆): det(I - A∆) ) 0)-1 (1)

Fu(A,∆) ) A22 + A21∆(I - A11∆)-1A12 (2)

det([A11 A12

A21 A22]) ) det(A22)‚det(A11 - A12A22
-1A21)

ΠA: Gp ) G + W∆V (for σj(∆) e 1) (3)

λij(G) ) Gij[G
-1] ji (4)

λij(Gp) ) [Gp] ij[Gp
-1] ji (5)

λii(Gp) ) (ei
T Gp ei) (ei

T Gp
-1 ei) ∀ Gp∈ ΠA (6)

Gp
-1 ) [G(I + G-1W∆V)]-1 ) (I + G-1W∆V)-1G-1 (7)

[y∆
T ν∆

T y ]T ) M [u∆
T ψ∆

T u ]T (8)

[u∆
T ψ∆

T ]T ) ∆h [y∆
T ν∆

T ]T (9)

M ) [M11 M12

M21 M22])

[0 -VEG-1W VEG-1ei

0 -VG-1W VG-1ei

ei
TW -ei

T GEG-1W ei
T GEG-1 ei

] (10)

∆h ) [∆ 0
0 ∆ ] (11)

λii(Gp) ) Fu(M ,∆h ) (12)
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is invertible. This assumption is not restrictive, as is shown by
Lemma 1 below.

When∆ ) 0 (no uncertainty),

and we recover relative gain for the nominal system, as expected.
Remark 3.We note that the uncertainty associated with

relative gain always has a block-diagonal structure, irrespective
of the structure of∆ (see eq 11). This follows from the definition
of relative gain for uncertain systems in eq 5, where the
uncertainty enters the expression once through [Gp] ij and again
through the inverse term [Gp

-1] ji.
We next use the equivalence in eq 12 to present the bound

on the magnitude of worst-case relative gain.
Lemma 1.Let Gp be nonsingular over the setΠA in eq 3.

Then, (I - M11∆h ) is invertible for allowable∆h , whereM11

and∆h are given by eqs 10 and 11, respectively.
Lemma 1 implies that the relative gain represented as an

upper-LFT in eq 12 is well-defined, wheneverGp is nonsingular.
The fact thatλii(Gp) is well-defined for nonsingularGp also
follows intuitively, from the definition of relative gain for
uncertain systems in eq 5 (also see Remark 1).

Proposition 1.Let Gp be nonsingular over the setΠA in eq
3, such thatλii(Gp) in eq 5 is well-defined. Assume that the
positive real scalarγ satisfies

where

|δ| e 1, andM , with the specified partitioning, is given in eq
10. Then,

To find the magnitude of worst-case relative gain, one must
find the largestγ that satisfies eq 13. Numerically, such a value
of γ can be found by replacing the inequality in eq 13 by an
equality and solving

using a bisection algorithm. The structured singular value
calculated in this fashion is called skewed-µ and is useful for
robust performance analysis (see, e.g., Skogestad and Postleth-
waite2).

Braatz et al.11 have shown that the exact calculation ofµ is
computationally intractable. Thus, computation of the exact
value of the worst-case relative gain can be difficult, but tight
bounds can be obtained using the upper bound onµ calculated

through the well-knownD-scaling method.9 When the (bound
on) worst-case relative gain is large, controllability of the
uncertain system can be poor, because of strong directionality.
Note that, although Proposition 3 is stated only for steady-state
relative gain for notational simplicity, it also holds at higher
frequencies and can be used to calculate the magnitude of the
worst-case frequency-dependent relative gain.

4. Robust Integrity and Relative Gain

In this section, we explore the usefulness of RGA for
adjudging the integrity of uncertain systems. Before proceeding
with the main developments, we provide a formal definition of
integrity for uncertain systems (also referred as robust integrity),
which is a minor extension of the definition of integrity for
nominal systems presented by Campo and Morari.4

Definition 1. The systemG(s) is said to haverobust integrity,
if there exists a diagonal controllerK̂ (s) ) HK (s) with integral
action, which stabilizesGp(s) for all Gp(s) ∈ ΠA(s) andH ∈ H,
where

The above definition requires the existence of a diagonal
controller, with integral action in every output channel, which
provides robust stability of the system, when all of the individual
subcontrollers are in operation and also when any combination
of the subcontrollers fail. It is inherently assumed that the
subcontrollers that fail are immediately taken out of service after
instantaneous detection, i.e., the corresponding entries in the
diagonal controller matrix are replaced by zero.

Next, we recall the necessary and sufficient conditions for
integrity of nominal systems3 with pairings selected on the
diagonal elements ofG:

N1. G is nonsingular, and
N2. The diagonal elements of the RGA calculated for all

principal submatrices ofG are positive.
For integrity, it is also necessary that the principal submatrices

of G (includingGii andGii) be nonsingular, but nonsingularity
of these submatrices is inherent in N2. When one or more of
the principal submatrices ofG are singular, the corresponding
relative gains are zero and N2 is violated (cf. eq 4).

For integrity of uncertain systems, clearly the minimum
requirement is that the conditions N1 and N2 hold for every
Gp ∈ ΠA. Specifically, for robust integrity with pairings selected
on the diagonal elements ofGp, it is necessary that

Figure 1. Signal-based representation of relative gain for the uncertain system described in eq 6.

Fu(M ,∆h ) ) M22 ) ei
TGEG-1ei ) λii(G)

µ∆̃ [M11 M12

γM21 γM22]e 1 (13)

∆̃) [∆h 0
0 δ ]

max
Gp∈ΠA

|λii(Gp)| e γ-1 (14)

µ∆̃[M11 M12

γM21 γM22]) 1

Figure 2. Representation of relative gain as an upper-Linear Fractional
Transform (upper-LFT).

H ) {H ) diag(hi) | hi ) {0,1}, i ) 1, ...,n} (15)
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R1. Gp is nonsingular, and
R2. All the principal submatrices ofGp are nonsingular, and
R3. The diagonal elements of the RGA calculated for all

principal submatrices ofGp are positive over the uncertainty
set.

First note that, for robust integrity, we explicitly consider
the nonsingularity of the principal submatrices ofGp. This is
required, because, for uncertain systems, the relative gains can
remain positive (e.g., systems with diagonal multiplicative
uncertainty) or stay constant (see, e.g., Example 1) over the
uncertainty set, even if one or more of the principal submatrices
of Gp are singular. Second, conditions R1, R2, and R3 have
only been claimed to be necessary (and not also sufficient as
N1 and N2). This happens because we have inherently allowed
the use of different controllers over the subsets of the uncertainty
set. Establishing the sufficiency (or insufficiency) of conditions
R1, R2, and R3 and the existence of a linear-time invariant
controller with integral action that provides robust integrity, upon
the satisfaction of these conditions, are open problems. We stress
that when condition R1 is violated, integral control is not
possible using any controller, including full multivariable
controllers. Conditions R2 and R3 specifically involve robust
integrity using decentralized controllers.

To evaluate the importance of RGA for the robust integrity
problem, we explore the relation between conditions R2 and
R3 next. Using the Schur complement Lemma,10 we have

When λii(G) > 0, the minimal requirement for violating
condition R3 is that at least one of [Gp] ii, det(Gp

ii), and det(Gp)
changes sign over the uncertainty set. Since∆ is a closed set,
the sign change depends directly on these gains being singular
over the uncertainty set. These arguments are easily extended
to relative gains calculated for principal submatrices ofGp.
Therefore, ifGp and its principal submatrices are nonsingular
andλii(G) > 0, the relative gains are always positive over the
uncertain set in eq 3. Similarly, if one or more of the relative
gains change sign,Gp or one of its principal submatrices become
singular over the uncertainty set. Based on these observations,
we conclude that once the nonsingularity ofGp and its principal
submatrices is established, checking the signs of relative gains
over the uncertainty set is redundant. This somewhat surprising
conclusion implies that, in contrast to nominal systems, the role
of RGA is limited for ascertaining the integrity of uncertain
systems described by eq 3.

For uncertain systems, it is sometimes beneficial to find the
size of allowable perturbations before the system loses integrity.
Based on the findings of this section, we also conclude that,
for determining an upper bound on the allowable additive
perturbations before the system in eq 3 loses integrity, RGA is
not useful either and it suffices to find the smallest perturbation
that makes [Gp] ii, Gp

ii, or Gp singular. Note that these same
arguments also hold for systems with uncertainty descriptions
other than additive uncertainty, as long as∆ is a closed set.

5. Sign Change of Relative Gain

In a recent paper, Chen and Seborg8 presented lower and
upper bounds on the relative gain for uncertain systems. The
relative gains are considered to be positive over the uncertainty
set, if the lower bounds are positive. However, it may be difficult
to adjudge whether the relative gains change sign from these

bounds. This may happen, because even when the lower bound
on the relative gain is negative, the actual value may remain
positive over the given uncertainty set.

It was shown in the previous section that, for the relative
gains to change sign, it is necessary that the gain of the uncertain
system or one of its principal submatrices becomes singular over
the uncertainty set. However, the singularity of these gains is
not sufficient for sign change of the relative gains, e.g., for
systems with diagonal multiplicative uncertainty. In this section,
we improve upon the results of Chen and Seborg8 by deriving
the necessary and sufficient conditions for sign change of
relative gains, using the structured singular value framework.
We point out that the results derived in this section are of
algebraic interest only.

Proposition 2. Let Gp be nonsingular over the setΠA in eq
3, such thatλii(Gp) in eq 5 is well-defined. Then,λii(Gp) changes
sign over the setΠA if and only if (iff),

where

where∆h ) diag(∆, ∆) andE ) eiei
T.

In this paper, we have considered systems with additive
perturbations only. By finding equivalent signal- and LFT-based
representations of relative gain, it is possible to derive conditions
similar to eq 16 for systems with other forms of norm-bounded
uncertainties (e.g., multiplicative uncertainty) and also for
systems with multiple sources of perturbations. In the case of
additive perturbations, it is possible to simplify the condition
described by eq 16 further, as demonstrated next.

Corollary 1. Under the same conditions of Proposition 2,
λii(Gp) in eq 5 changes sign iff there exists an allowable∆ such
that one of [Gp] ii andGp

ii become singular over the setΠA in
eq 3.

Based on Corollary 1, it follows that, for systems with norm-
bounded additive uncertainty, checking whether relative gains
change sign is equivalent to checking whether [Gp] ii and Gp

ii

become singular over the uncertainty set in eq 3. In comparison
to assessing the sign change of relative gains based on the lower
and upper bound,8 this result is not conservative. We note that
the nonsingularity of [Gp] ii andGp

ii over the uncertainty set can
be verified similar to that ofGp (see Remark 1).

For some uncertainty descriptions, the relative gain may not
change sign even when [Gp] ii and Gp

ii are singular over the
uncertainty set. For example, for the diagonal input or output
multiplicative uncertainty description, the uncertainty can be
effectively treated as a diagonal scaling matrix. Because RGA
is scaling invariant,1 the relative gains remain constant for
arbitrarily large diagonal multiplicative uncertainty.

Remark 4.Systems with diagonal multiplicative uncertainty
can also be represented in a form with an additive uncertainty
description. For example, the set of plantsG (I + diag(δi)R)
can be represented in the form of eq 3 withW ) G, V ) R,
whereR ) diag(ri). Clearly, forri > 1 for somei, there exists
δi < 1 that makesGii singular. As the relative gains are scaling
independent, this may seem to contrast the findings of Corollary
5. This is not the case, because det(Gp) ) det(G)‚det(I + G-1G
diag(δi)R) and there exists diag(δi) with δi < 1 for all i that

λii(Gp) )
[Gp] ii det(Gp

ii)

det(Gp)
∀ Gp∈ ΠA

µ∆h (N) > 1 (16)

N )

[-λii
-1(G)VEG-1EW -VEG-1(I - λii

-1(G)EGEG-1) W

-λii
-1(G) VG-1EW -VG-1 (I - λii

-1(G)EGEG-1) W ]
(17)

1754 Ind. Eng. Chem. Res., Vol. 45, No. 5, 2006



also makesGp singular. This violates the assumptions of
Proposition 2 and, thus, the results of Corollary 1 hold.

6. Examples

In this section, we illustrate the usefulness of the results
presented in this paper through two case studies on distillation
columns. Example 1 primarily involves the computation of the
magnitude of the worst-case relative gain, whereas Example 2
focuses on the results presented in Section 5. (The Matlab files
for these examples are available in the Supporting Information.)

Example 1. In this example, we consider the Wood-Berry
distillation column.12 For this process, the nominal steady-state
gain matrix and RGA are given as follows:

The uncertainty description is assumed to be of the form

which corresponds to independent variations of the individual
elements. To represent the set of uncertain plants in the standard
form given in eq 3, we use∆ ) diag(δij), where

Using Proposition 1, we then have maxGp∈ΠA|λ11(Gp)| e 2.095
and 4.0057, forR ) 0.01 and 0.1, respectively. ForR > 0.17,
eq 13 has no solution for arbitrarily small values ofγ (including
γ ) 0) and, thus, maxGp∈ΠA|λ11(Gp)| ) ∞. Indeed, it can be
confirmed thatGp becomes singular forR > 0.17 and, thus,
λ11(Gp) is not well-defined.

For R ) 0.17, maxGp∈ΠA|λ11(Gp)| ) 549.95. The worst-case
relative gain occurs whenδ11,δ12 ) -1, δ21,δ22 ) 1, and

For Gp in eq 19, the maximum and minimum singular values
are 30.344 and 0.01, respectively, which shows that the uncertain
system has strong directionality and the controllability is poor.5

The magnitudes of the worst-case relative gain, as presented
here, match the corresponding results of Chen and Seborg;8

however, such a conclusion generally does not hold.

Next, we consider the alternate uncertainty description,

For this uncertainty description, the elements ofGp are highly
correlated andλ11(Gp) is independent of the perturbationδ, i.e.,
maxGp∈ΠA|λ11(Gp)| ) |λ11(G)| ) 2.009. This result can also be
established analytically by noting

which is independent ofδ. Furthermore, for the alternate
uncertainty description withR ) 1, clearly there exists allowable
perturbations that yieldG11 or G22 singular, but relative gains
do not change signs. This may seem to violate the findings of
Proposition 2, but note that there also exists an allowable
perturbation that makesGp singular (also see Remark 4).

Example 2.To illustrate the results of Section 5, we consider
the example of binary distillation column,13 whose nominal
steady-state model and RGA are given as

TheΛ(G) shows that the system can have integrity only if the
pairings are selected on the diagonal elements ofG. It can be
further verified that the relative gains of all the 2× 2 principal
submatrices are positive. Thus, the existence of a controller is
guaranteed such that the nominal system has integrity.3

Next, let the model of the uncertain system be of the form in
eq 18, which was earlier considered by Chen and Seborg.8 The
objective is to determine the largest value ofR such that
λii(Gp) remain positive fori ) 1, ..., 3, where Chen and Seborg8

suggested that values ofR ) 0.5 can be easily tolerated. We
next show that this conclusion is incorrect and only smaller
perturbations can actually be accommodated. For this purpose,
we assume that the uncertain system has the form of eq 20,
which can only allow for smaller uncertainties than eq 18. Thus,
if R ) 0.5 cannot be tolerated by the uncertain system described
in eq 20, it cannot also be tolerated by the uncertain system
described in eq 18.

The uncertain system described in eq 20 can be represented
in the standard form (see eq 3) withW ) R‚I , V ) |G|, and∆
) δ‚I . It follows from Proposition 2 and the definition ofµ
that the largest value ofR, such thatλii(Gp) > 0 for all i, is
given as miniµ∆

-1(N), whereV ) |G|, W ) I , and∆ ) δ‚I .
Because∆ is a repeated scalar,µ∆(N) ) F(N),9 whereF denotes
the spectral radius. Now, fori ) 1, 2, and 3, we haveF(N) )
1, 3.3114, and 1, respectively, and, thus, the largest value of
allowableR is given as 1/3.3114) 0.302. We also note that,
for R ) 0.302,Gp

22 ) G22 - R|G22| is singular. Furthermore,
[Gp] ii and Gp

ii remain nonsingular for 0e R < 0.302, which
confirms the findings of Corollary 1.

7. Conclusions

Using the structured singular value (µ) framework, we have
presented a method for calculation of the magnitude of the

λ11(Gp) ) 1 - 1
[Gp]12[Gp]21

[Gp]11[Gp]22

) 1 - 1
G12(1 - R‚δ)G21(1 + R‚δ)

G11(1 + R‚δ)G22(1 - R‚δ)

) 1 - 1
G12G21

G11G22

) λ11(G)

G ) [ 0.66 -0.61 -0.0049
1.11 -2.36 -0.012

-33.68 46.2 0.87 ]
Λ(G) ) [ 1.95 -0.67 -0.27

-0.66 1.90 -0.23
-0.28 -0.23 1.51] (21)

G ) [12.8 -18.9
6.6 -19.4]

Λ(G) ) [2.001 -1.001
-1.001 2.001 ]

[Gp] ij ) Gij + R‚δij‚|Gij|, |δij| e 1 (18)

W ) [|g11| |g12| 0 0
0 0 |g21| |g22| ]

V ) R‚[1 0 1 0
0 1 0 1]T

Gp ) [Gij + 0.17‚δij‚|Gij|] ) [10.624 -22.113
7.722 -16.102] (19)

[Gp] ij ) Gij + R‚δ‚|Gij|, for |δ| e 1 (20)
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worst-case relative gain. This result is useful for analyzing the
presence of strong directionality in the uncertain system. We
have derived the necessary and sufficient conditions for sign
change of relative gain for norm-bounded uncertain systems.
More importantly, it is shown that the relative gain changes
sign, only if the gain of the uncertain system or one of its
principal submatrices corresponding to the relative gain becomes
singular over the uncertainty set. Note that the nonsingularity
of these matrices is trivially necessary for integrity of the
uncertain system. This result implies that, in contrast to nominal
systems, the role of RGA is limited for ascertaining the integrity
of uncertain systems. To derive the necessary and sufficient
conditions for integrity of uncertain systems, one must consider
alternate methods, e.g., the approach based on parametrization
of all stabilizing controller with integral action, as used by
Gündes and Kabuli.14

Appendix

Proof of Lemma 1. Based on eq 10, we have

Thus, the nonsingularity ofGp over the setΠA implies that (I
- M11∆h ) is invertible.

Proof of Proposition 1.Based on the definition of structured
singular value in eq 1, any value ofγ satisfying eq 13 implies
that

is nonzero. The last equality follows using the Schur comple-
ment Lemma,10 because (I - M11∆h ) is nonsingular for allowable
∆h (see Lemma 1). The last expression, in turn, implies that

is nonzero for allowable∆h . From the definition of structured
singular value in eq 1, we have

which establishes eq 14, becauseλii(Gp) ) Fu(M ,∆h ). The
equality in eq 22 follows, because, for full-block perturbations,
µ is equal to the maximum singular value of the matrix, which
is the magnitude of the scalar in the present case.

Proof of Proposition 2. Since ∆ is a closed set,λii(Gp)
changes sign over the setΠA in eq 3, iff

for someGp∈ΠA, whereM is given by eq 10. The requirement
in eq 23 can be written, somewhat crudely, as (Fu(M ,∆h ))-1 )
∞ for someGp∈ΠA. Now, (Fu(M ,∆h ))-1 is given asFu(M̃,∆h ),
where2

We notice, from the expression for upper-LFT in eq 2, that
(Fu(M ,∆h ))-1 ) ∞, iff ( I - N ∆h ) is singular for some allowable
∆h , whereN ) M̃11 ) M11 - M12M22

-1M21. The expression for
N in eq 17 is obtained by substituting forM ij using eq 10 and
simplifying the resulting expression. Now, it follows from the
definition of structured singular value in eq 1 that (I - N∆h ) is
singular for some allowable∆h iff eq 16 holds.

Proof of Corollary 1. Without loss of generality, we assume
that i ) 1. After some lengthy, but straightforward algebraic
manipulations, it can be shown that the (1,2) element ofN in
eq 17 is zero. Then, (I - N∆h ) is a block-triangular matrix and

Using E ) e1e1
T, we have

and, thus,

Thus,µ∆
-1(N11) denotes the smallest perturbation that makes

[Gp]11 singular.
Now, let G-1 be partitioned as

where [G-1]11 is a scalar. Then, usingE ) e1e1
T,

The last equality follows because [G-1]22 - [G-1]21[G-1]11
-1‚

[G-1]12 is the Schur complement of [G-1]11 in G-1, and, thus,
its inverse is given byG22.10 Let the matricesW and V be
partitioned to have compatible dimensions with the partitioned

det(I - M11∆h ) ) det([I VEG-1W∆
0 I + VG-1W∆ ])

) det(I + VG-1W∆) ) det(I + G-1W∆V)

) det(G-1)‚det(G + W∆V) ) det(G-1)‚det(Gp
-1)

det(I - [M11 M12

γM21 γM22][∆h 0
0 δ ])

) det([I - M11∆h -M12δ
-γM21∆h 1 - γM22δ ])

) det(I - M11∆h )‚det((1- γM22δ) -

(-γM21∆h )(I - M11∆h )-1(-M12δ))

(1 - γM22δ) - (-γM21∆h )(I - M11∆h )-1(-M12δ)

) 1 - γ(M22 + M21∆h (I - M11∆h )-1M12)δ

) 1 - γFu(M ,∆h )δ

max
Gp∈ΠA

µδ(γFu(M ,∆h )) ) max
Gp∈ΠA

|γFu(M ,∆h )| e 1 (22)

λii(Gp) ) Fu(M ,∆h ) ) 0 (23)

M̃ ) [M11 - M12M22
-1M21 M12M22

-1

M22
-1M21 M22

-1 ]

µ∆h (N) ) max(µ∆(N11), µ∆(N22)) (24)

N11 ) λ11
-1(G)(Ve1)(e1

TG-1e1)(e1
TW)

) λ11
-1(G)V*1[G-1]11W1*

) (G11[G
-1]11)

-1V*1[G-1]11W1* ) V*1G11
-1W1*

det(I - N11∆) ) det(I - V*1G11
-1W1*∆)

) det(I - G11
-1W1*∆V*1)

) G11
-1‚det(G11 - W1*∆V*1)

) G11
-1‚det([Gp]11)

G-1 ) [[G-1]11 [G-1]12

[G-1]21 [G-1]22
] (25)

G-1(I - λ11
-1(G)EGEG-1)

) G-1 - λ11
-1(G)(G-1e1)(e1

TGe1)(e1
TG-1)

) G-1 - [[G-1]11

[G-1]21
]λ11

-1(G)G11[[G-1]11 [G-1]12]

) [0 0
0 [G-1]22 - [G-1]21[G

-1]11
-1[G-1]12

]
) [0 0

0 G22
-1 ]
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G-1 in eq 25. Using the same arguments as those used for
singularity of [Gp]11, it can be shown thatµ∆

-1(N22) denotes
the smallest perturbation that makes [Gp]22 singular. Then,µ∆h (N)
> 1 iff any allowable∆ makes one of [Gp] ii andGp

ii singular
and the result follows.

Supporting Information Available: Matlab files for Ex-
amples 1 and 2 (TXT). This material is available free of charge
via the Internet at http://pubs.acs.org.
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