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This paper considers the extension of relative gain array (RGA) to norm-bounded uncertain systems. We
present a method for calculating a tight bound on the worst-case relative gain and derive necessary and
sufficient conditions for the sign change of the relative gain over the uncertainty set. The proposed results
improve on recently published results [Chen and SebAIGhE J.2002 48, 302]. More importantly, it is

shown that the role of RGA is limited for ascertaining the integrity of uncertain systems. This conclusion is
in direct contrast with the corresponding result for adjudging integrity of nominal systems, where the usefulness
of RGA is well-known. As an offshoot, we present a signal-based representation of the relative gain for
uncertain systems.

1. Introduction general. This may happen because, even when the lower bound
on the relative gain is negative, the actual value may remain
positive over the given uncertainty set.

The purpose of this paper is to use a more rigorous approach
to improve on the results of Chen and Sebbkiye present a
method for obtaining a bound on the magnitude of the worst-
case relative gain, calculated at steady state and also at higher
frequencies. Compared to the results of Chen and Séttbey,
bound is tight in the sense that there exists an uncertain plant
that achieves this bound. We derive the necessary and sufficient
conditions for the sign change of the relative gain of norm-
bounded uncertain systems. More importantly, we show that
the relative gain changes sign, only if the gain of the uncertain
system or one of its principal submatrices corresponding to the

The Relative Gain Array (RGA)is a well-established tool
for the analysis and design of control systems. RGA has many
useful algebraic properties, which also have strong control
implications (see Skogestad and Postlethwddtean overview
of properties and usefulness of RGA). For example, one property
of RGA is that, under minor assumptions, the system has
integrity if and only if the pairings are selected such that relative
gains of all the principal submatrices of the permuted steady-
state gain matrix are positiveThe system is said to possess
integrity* if there exists a diagonal controller with integral action
in every output channel, such that closed-loop stability is
maintained in the presence of possible controller failures. This
paper considers extension of RGA to norm-bounded uncertain - ; . . .
systems. This problem is important in practice, because modelsrel""t'vf3 gain becomes singular over t_he_ uncertainty set. .Th's
of real systems always have some uncertainty associated Withresqlt |mp||es that the.role of RGA is limited for ascertaining
them. Many results based on RGA hold well for the nominal the Integrity Of. uncertain systems, as the npnsmgulanty of thgse
model of the system but can be difficult to apply to uncertain matrices is trivially necessary for integrity of the uncertain

systems (e.g., verifying the condition for integfitior every system. This conclus!on IS In d|r_ect contrast W'.th the corre-
member of the set of models describing the uncertain system isSpondlng result for adjudging t_he integrity of nomlngl systems,
computationally intractable in general). where the usefulness of RGA is well-known. The discussion is

RGA for uncertain systems previously has been considered“m'ted to systems with additive norm-bounded perturbations.

under the restrictive assumption of element-wise uncertainty or gg:crz%zlélts (é)atlrrw]e:)ﬁo?rz?g)(;u%\?jgzrﬁlrllzcztgt’ai?lct)wggsegri tgoiygs(t:ms
changes in only one element of the gain matixThe more y Y P G-

general case, where all the elements of gain matrix are anowedmultiplicative uncertz_ainty) and also to systems with mUIt.iple
to change simultaneously, is considered by Grosdidier €t al., sources of perturb_auons. As an .OﬁShO.Ot’ we present a signal-
Skogestad and Morafiand also recently in greater detail by based representation of the relative gain for uncertain systems.

Chen and Sebor§.For systems with simultaneous additive o
perturbations in all of its elements, Chen and Sebdrave 2. Preliminaries
presented lower and upper bounds on the relative gain. Large

relative gains calculated for the nominal model imply strong seful matrix identities. and present a sianal-based interoretation
directionality in the system and potential control probléms. usetut matrix i ues, P 1tasig °d Interp '
of relative gain. The latter result is vital for derivation of the

Then, the results of Chen and Seboage useful for analyzing more-important results later in the paper and mav be of
the directionality of the uncertain system. These bounds can. P pap y

also be used to determine an upper bound on the aIIowabIemOk':‘pendent interest to the reader.

perturbations before the relative gains become negative or the 2-1- Notation. For a given matrixA € 2™, Aj and A’
system loses integrity; however, this bound can be loose in denote thejth element (or block) and the submatrix Afwith
theith row andjth column removed, respectivelf= and A+

denote theth row andith column ofA, respectively. A matrix

In this section, we standardize the notation, collect some

*To whom correspondence should be addressed. Fel7-735-

94154. Fax: +47-735-94080. E-mail: skoge@chemeng.ntnu.no. made of elementay; ... &, ... &y, is represented ag]. Let
" Present address: Division of Chemical and Biomolecular Engineer- A = {diag(Ai)} denote a set of complex matrices with a given
ing, Nanyang Technological University, Singapore 637722. block-diagonal structure, where some of the blocks may
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be repeated and may be restricted to be a real matrix. Thethe remaining entries being 0 (not to be confused withithe

structured singular value & is given a8

uA(A) = (MinG(A): detl — AA) =0)" 1)
unless no allowablA makes [ — AA) singular, in which case
ua(A) = 0. For a partitioned matrix7,(A,A) denotes the upper
linear fractional transform (upper-LFT), which is defined as

)

In this paper, we use the following identities, which are related
to the determinant of matrices, frequently:

(1) For A €™M andB €™M, det( + AB) = det( +
BA).

(2) For the partitioned matrixA, with Ay, square and
nonsingular,

de([All AlZ

A21 A22
The latter identity is also called the Schur complement Lemma.
We denote the nominal model of the rational, stable, linear
time-invariant and square system @¢s) and its steady-state
gain matrix ass € %", The set of steady-state gain matrices
of the perturbed plants with additive norm-bounded uncertainty
is represented as

TdAA) = Ay + ApA(l — AllA)71A12

]) = det(A ) dety; — A A, Ay

I,: G,=G + WAV (foro(A) < 1) 3)
The uncertainty set at higher frequencies is defined similarly.
For nonsingulaiG, the steady-state relative gain between the

ith output andth input is defined ds
(4)

which represents the ratio of the open-loop gain and the apparen
closed-loop gain, when all other loops are closed using
controllers with integral action. The relative gain for uncertain
systems can be defined similar to eq 4, where

/lij(Gp) = [Gp]ij[G )

for everyGy, € I1a. Here,Gp 1 is assumed to exist for ab, €

I1a (see Remark 1). We use the notatibi{Gp) to explicitly
show the element oflln, for which the relative gain is
calculated. Steady-state RGA, which contains relative gains for
all input—output pairs, is denoted as(G,) = [1j(Gp)].

Remark 1.For 1;(Gp) in eq 5 to be well-defined, it is
necessary thaBG, ! exists orG, is nonsingular over the set
ITx. The assumption of existence &, is not restrictive,
because, if som&,, € Ila is singular, integral control is not
possible, because of the presence of a hidden mode. Numeri
cally, the nonsingularity ofG, € Ila can be verified by
evaluatingua(VG ~W). When ua(VG~W) < 1, it follows
from the definition of structured singular value in eq 1 that
det( + VG 1WA) =det( + G 1 WAV) = detG Y)detGp)
is nonsingular over the uncertainty set.

2.2. Signal-Based Interpretation of Relative GainWe next
present a signal-based interpretationlgGp), or, more specif-
ically, 4ii(Gp). Based on eq 5i(Gy) can be alternately denoted
as

;Lij G)= Gij[Gﬂ]ji

—1
p i

4Gy = (e G,e) (e’ G, &) (6)

wheresg is the unit column vector with itgh entry being 1 and

0Ge I,

element of vectog). On the basis of eq 3,
-1 __ -1 -1 __ =1 —1~-1
G, =[G +G "WAV)] "= (1 + G "WAV) G @)

Now lety = 4ii(Gp)u. Based on egs 6 and Z;(Gp) can be
represented by the signal flow diagram shown in Figure 1. Here,
we have used the fact that eq 7 represents an inverse additive
uncertainty representation f@1 (see, for example, Skogestad
and Postlethwaif.

Remark 2In Figure 1, the ternG ! can be further expanded
as ( + (G — 1))7% which can be represented as a negative
feedback loop with in the forward path and@ — I) in the
feedback path. Figure 1 then does not contain any nonlinear
functions of G; however, this additional manipulation is not
deemed necessary here.

3. Worst-Case Relative Gain

Skogestad and Mor&rhave shown that large relative gains
calculated based on the nominal model of the system demon-
strate fundamental control problems. Large (positive or negative)
elements of RGA imply ill-conditioning (large condition
number) and, thus, the presence of strong directionality in the
system. The arguments of Skogestad and Moadsd carry over
to uncertain systems, where large worst-case relative gains imply
poor controllability. In the following discussion, we present a
method for calculating the magnitude of worst-case relative gain.
The derived result is for diagonal elements of RGA(G).

This result, however, can be used for calculating the worst-
case magnitudes dfj(Gyp) for anyi, j < n by permutingGp
such that {5p]; appears as one of the diagonal elements of the
permuted matrix. This happens because permuting the gain
matrix results in similar permutations in the RGA matkix.

As a shorthand notation, we dendfe= ee'. By analyzing
the signal flow diagram in Figure 1, the following relationships
%an be established:

[ya vA YI'=M[uy px ul (8)
lux wal =Alyy vil" 9)
where
M., M
M — 11 12]=
[le M,
0 -VEGw |VEGe
0 -—vclw VG e (10)
e'W —e GEG W |el GEG 'e
|
and
- Ao
A= [0 A] (11)

At this stage, we can combine eqs 8 and 9 to express the
relationship between andy in the form of an upper-LFT, as
shown in Figure 2. This representation is commonly used for
analysis of norm-bounded uncertain systems (see, e.g., Skoge-
stad and Postlethwaffe Based on Figure 2, we have
/lii(Gp) = 7M A) (12)
which serves as an alternate representatiol @p). Note that,
for 7,(M,A) to be well-defined, it is assumed that{ M11A)



Aii(Gp)
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Figure 1. Signal-based representation of relative gain for the uncertain system described in eq 6.

is invertible. This assumption is not restrictive, as is shown by
Lemma 1 below.
WhenA = 0 (no uncertainty),

T{M,A)=M,, = ¢/GEG 'g = ;(G)

and we recover relative gain for the nominal system, as expected.

Remark 3.We note that the uncertainty associated with

relative gain always has a block-diagonal structure, irrespective

of the structure oA\ (see eq 11). This follows from the definition
of relative gain for uncertain systems in eq 5, where the
uncertainty enters the expression once througgj;[and again
through the inverse ternG,1];.

ua A0 - ya
0 A

LN VA

u—» M | L,y

Figure 2. Representation of relative gain as an upper-Linear Fractional
Transform (upper-LFT).

through the well-knowrD-scaling method.When the (bound
on) worst-case relative gain is large, controllability of the
uncertain system can be poor, because of strong directionality.

We next use the equivalence in eq 12 to present the boundNote that, although Proposition 3 is stated only for steady-state

on the magnitude of worst-case relative gain.

Lemma 1Let G, be nonsingular over the séi, in eq 3.
Then, ( — MwuA) is invertible for allowableA, whereM 13
and A are given by eqgs 10 and 11, respectively.

relative gain for notational simplicity, it also holds at higher
frequencies and can be used to calculate the magnitude of the
worst-case frequency-dependent relative gain.

Lemma 1 implies that the relative gain represented as an 4 Robust Integrity and Relative Gain

upper-LFT in eq 12 is well-defined, whenev@g is nonsingular.
The fact thatl;(Gp) is well-defined for nonsingulaG, also
follows intuitively, from the definition of relative gain for
uncertain systems in eq 5 (also see Remark 1).

Proposition 1.Let G, be nonsingular over the séla in eq
3, such thatl;i(Gy) in eq 5 is well-defined. Assume that the
positive real scalay satisfies

Mll M12

3 <1 13
Ha [Vle VMzz] (13)

where

- [Ao0

o]

|6] = 1, andM, with the specified partitioning, is given in eq
10. Then,

-1

Grpe%lln(Gp)l <y (14)
To find the magnitude of worst-case relative gain, one must
find the largesy that satisfies eq 13. Numerically, such a value

of y can be found by replacing the inequality in eq 13 by an
equality and solving

1

s My, My,
AlyMy; YMy,

using a bisection algorithm. The structured singular value
calculated in this fashion is called skewedind is useful for

In this section, we explore the usefulness of RGA for
adjudging the integrity of uncertain systems. Before proceeding
with the main developments, we provide a formal definition of
integrity for uncertain systems (also referred as robust integrity),
which is a minor extension of the definition of integrity for
nominal systems presented by Campo and Mdrari.

Definition 1 The systent(s) is said to haveobust integrity
if there exists a diagonal controll&r(s) = HK (s) with integral
action, which stabilize&(s) for all Gy(s) € I1a(s) andH € %,
where

A ={H=diagh) | h={0,3,i=1,..,n} (15)
The above definition requires the existence of a diagonal
controller, with integral action in every output channel, which
provides robust stability of the system, when all of the individual
subcontrollers are in operation and also when any combination
of the subcontrollers fail. It is inherently assumed that the
subcontrollers that fail are immediately taken out of service after
instantaneous detection, i.e., the corresponding entries in the
diagonal controller matrix are replaced by zero.

Next, we recall the necessary and sufficient conditions for
integrity of nominal systeniswith pairings selected on the
diagonal elements db:

N1. G is nonsingular, and

N2. The diagonal elements of the RGA calculated for all
principal submatrices o& are positive.

For integrity, it is also necessary that the principal submatrices
of G (including G; andG'') be nonsingular, but nonsingularity
of these submatrices is inherent in N2. When one or more of

robust performance analysis (see, e.g., Skogestad and Postlettthe principal submatrices @ are singular, the corresponding

waite?).
Braatz et al! have shown that the exact calculationuofs

relative gains are zero and N2 is violated (cf. eq 4).
For integrity of uncertain systems, clearly the minimum

computationally intractable. Thus, computation of the exact requirement is that the conditions N1 and N2 hold for every
value of the worst-case relative gain can be difficult, but tight G, € I1a. Specifically, for robust integrity with pairings selected
bounds can be obtained using the upper bound ocalculated on the diagonal elements &, it is necessary that
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R1. Gy is nonsingular, and bounds. This may happen, because even when the lower bound
R2. All the principal submatrices @, are nonsingular, and  on the relative gain is negative, the actual value may remain
R3. The diagonal elements of the RGA calculated for all positive over the given uncertainty set.

principal submatrices o6, are positive over the uncertainty It was shown in the previous section that, for the relative

set. gains to change sign, it is necessary that the gain of the uncertain
First note that, for robust integrity, we explicitly consider system or one of its principal submatrices becomes singular over

the nonsingularity of the principal submatrices@f. This is the uncertainty set. However, the singularity of these gains is

required, because, for uncertain systems, the relative gains camot sufficient for sign change of the relative gains, e.g., for
remain positive (e.g., systems with diagonal multiplicative systems with diagonal multiplicative uncertainty. In this section,
uncertainty) or stay constant (see, e.g., Example 1) over thewe improve upon the results of Chen and Sebdngderiving
uncertainty set, even if one or more of the principal submatrices the necessary and sufficient conditions for sign change of
of G, are singular. Second, conditions R1, R2, and R3 have relative gains, using the structured singular value framework.
only been claimed to be necessary (and not also sufficient asWe point out that the results derived in this section are of
N1 and N2). This happens because we have inherently allowedalgebraic interest only.
the use of different controllers over the subsets of the uncertainty Proposition 2 Let G, be nonsingular over the séla in eq
set. Establishing the sufficiency (or insufficiency) of conditions 3, such thati(Gp) in eq 5 is well-defined. Ther;(Gy) changes
R1, R2, and R3 and the existence of a linear-time invariant sign over the sefl, if and only if (iff),
controller with integral action that provides robust integrity, upon
the satisfaction of these conditions, are open problems. We stress ux(N) > 1 (16)
that when condition R1 is violated, integral control is not
possible using any controller, including full multivariable where
controllers. Conditions R2 and R3 specifically involve robust
integrity using decentralized controllers. N =

To evaluate the importance of RGA for the robust integrity —/lifl(G)VEG “IEW —-VEG (I - ,1“*1((3)5(55(;*1) W
problem, we explore the relation between conditions R2 and |_, -1 -1 -l g -1 —1
R3 next. Using the Schur complement Lemtfave have 4i (G)VGEW  —VG (I — 4; “(G)EGEG )V(Vl7)

[G,]; detG,,
detG,) P

whereA = diagA, A) andE = eg.

In this paper, we have considered systems with additive
perturbations only. By finding equivalent signal- and LFT-based
representations of relative gain, it is possible to derive conditions

. . i similar to eq 16 for systems with other forms of norm-bounded
gﬁggg'g: s?ge,nli\t/t:a?ttﬁfaliiiﬁaﬁﬁ?n?ﬂgt dgitxgecg,;r;?og:fg)et uncertainti(_es (e.g:, multiplicative uncertai_nty) and also for
the sign change depends directly on tHese gains being sin’gularSySt.e.ms with mult.lple sources OT perturb.atlor)s. In the case of
over the uncertainty set. These arguments are easily extende ddlt“—/e perturbations, it is possible to simplify the condition
to relative gains calculéted for principal submatricesGyf escribed by eq 16 further, as demor_lstrated next.
Therefore, ifG, and its principal submatrices are nonsingular Corqllary L Under thg same condmons of Proposition 2,

PP ' ! " Li(Gp) in eq 5 changes sign iff there exists an allowahklsuch
andZ;(G) > 0, the relative gains are always positive over the that one of (,]s andG! become singular over the sHix in
uncertain set in eq 3. Similarly, if one or more of the relative q3 pal P 9

gains change sigiG;, or one of its principal submatrices become . . i
singular over the uncertainty set. Based on these observations Based on quollary L 't.fOHOWS tha.t, for systems W'th norm
we conclude that once the nonsingularity@fand its principal bounded additive uncertainty, checking whether relative gains
S : ) : i
submatrices is established, checking the signs of relative gainst_:)hang'e sign IIS equwalr(]ent to checking Whemégﬁ]f andG;
over the uncertainty set is redundant. This somewhat surprising ecome singular over the uncertainty setin eq 3. In comparison
to assessing the sign change of relative gains based on the lower

conclusion implies that, in contrast to nominal systems, the role q boundhi i Ve, W h
of RGA is limited for ascertaining the integrity of uncertain and upper boundihis result is not conservative. We note that

systems described by eq 3. the nonsingularity of ;i anng over the uncertainty set can
For uncertain systems, it is sometimes beneficial to find the P€ Verified similar to that o5, (see Remark 1).
size of allowable perturbations before the system loses integrity. FOf SOme uncertainty descrlptlon:i:i,, the relative gain may not
Based on the findings of this section, we also conclude that, change sign even wherG]i and G, are singular over the
for determining an upper bound on the allowable additive Uncertainty set. For example, for the diagonal input or output
perturbations before the system in eq 3 loses integrity, RGA is multlpllcatlve uncertainty descr|pt|on., the uncertainty can be
not useful either and it suffices to find the smallest perturbation effectively treated as a diagonal scaling matrix. Because RGA
that makes Gi G or Gy singular. Note that these same is scaling invariant, the relative gains remain constant for
arguments also hold for systems with uncertainty descriptions &rPitrarily large diagonal multiplicative uncertainty.

other than additive uncertainty, as longAss a closed set. Remark 4 Systems with diagonal multiplicative uncertainty
can also be represented in a form with an additive uncertainty

description. For example, the set of pla@y(l + diag@®i)R)
can be represented in the form of eq 3 With= G,V = R,

In a recent paper, Chen and SeBfopgesented lower and  whereR = diag(;). Clearly, forr; > 1 for somei, there exists
upper bounds on the relative gain for uncertain systems. Thed; < 1 that make$s; singular. As the relative gains are scaling
relative gains are considered to be positive over the uncertaintyindependent, this may seem to contrast the findings of Corollary
set, if the lower bounds are positive. However, it may be difficult 5. This is not the case, because @gj(= detG)-det( + GG
to adjudge whether the relative gains change sign from thesediag(@i)R) and there exists diagf with 6; < 1 for all i that

(G = ell,

When 1;(G) > 0, the minimal requirement for violating

5. Sign Change of Relative Gain



also makesG, singular. This violates the assumptions of
Proposition 2 and, thus, the results of Corollary 1 hold.

6. Examples

In this section, we illustrate the usefulness of the results
presented in this paper through two case studies on distillation
columns. Example 1 primarily involves the computation of the
magnitude of the worst-case relative gain, whereas Example 2
focuses on the results presented in Section 5. (The Matlab files
for these examples are available in the Supporting Information.)

Example 1.In this example, we consider the WoeBerry
distillation columnt? For this process, the nominal steady-state
gain matrix and RGA are given as follows:

_[12.8 —18.9

G_[6.6 —19.4]
_[2.001 -1.001
A(G)_[—1.001 2.001]

The uncertainty description is assumed to be of the form

[Gyly = Gy + o0y 1Gyl, 10y =1 (18)

which corresponds to independent variations of the individual

elements. To represent the set of uncertain plants in the standard

form given in eq 3, we usA = diag(;), where

_ 1914 1912l O 0
W—[o 0 19l 10
_[roa1q
V_O‘[o 10 1]

Using Proposition 1, we then have negxi,/411(Gp)| < 2.095
and 4.0057, foor = 0.01 and 0.1, respectively. For> 0.17,
eq 13 has no solution for arbitrarily small valuesy/qincluding
y = 0) and, thus, maxcmn,|111(Gp)| = «. Indeed, it can be
confirmed thatG, becomes singular fos. > 0.17 and, thus,
211(Gp) is not well-defined.

Foro = 0.17, maxen,|411(Gp)| = 549.95. The worst-case
relative gain occurs whedy1,012 = —1, d21,020 = 1, and

10.624 —22.113

7.722 —16.102 (19)

G,=[G; + 0.17:0;+|Gy|] = [

For Gy in eq 19, the maximum and minimum singular values
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1
[Gpli Glas
[Gpl1alGplzz
1
Gl — a+0)Gyy(1 + ard)
G(1+ a+0)G (1 — a+d)

}'ll(Gp) =1-

which is independent of. Furthermore, for the alternate
uncertainty description withb = 1, clearly there exists allowable
perturbations that yiel@®1; or Gy, singular, but relative gains
do not change signs. This may seem to violate the findings of
Proposition 2, but note that there also exists an allowable
perturbation that makeS, singular (also see Remark 4).

Example 2.To illustrate the results of Section 5, we consider
the example of binary distillation columf,whose nominal
steady-state model and RGA are given as

0.66 —0.61 —0.0049
1.11 —2.36 —0.012
—33.68 462  0.87 |

1.95 —0.67 —0.27]
A(G)=|-0.66 1.90-0.23
—0.28 —0.23 1.5

G

(21)

The A(G) shows that the system can have integrity only if the
pairings are selected on the diagonal elementS.oft can be
further verified that the relative gains of all the2 principal
submatrices are positive. Thus, the existence of a controller is
guaranteed such that the nominal system has integrity.

Next, let the model of the uncertain system be of the form in
eq 18, which was earlier considered by Chen and Sebohg
objective is to determine the largest value @fsuch that
ii(Gp) remain positive fof = 1, ..., 3, where Chen and Sebbrg
suggested that values af = 0.5 can be easily tolerated. We
next show that this conclusion is incorrect and only smaller
perturbations can actually be accommodated. For this purpose,
we assume that the uncertain system has the form of eq 20,
which can only allow for smaller uncertainties than eq 18. Thus,
if a = 0.5 cannot be tolerated by the uncertain system described
in eq 20, it cannot also be tolerated by the uncertain system
described in eq 18.

The uncertain system described in eq 20 can be represented
in the standard form (see eq 3) whili = a-l, V = |G|, andA
= o-l. It follows from Proposition 2 and the definition of

are 30.344 and 0.01, respectively, which shows that the uncertainthat the largest value af, such thati(Gp) > O for all i, is

system has strong directionality and the controllability is goor.

given as mipia~Y(N), whereV = |G|, W = I, andA = ¢-1.

The magnitudes of the worst-case relative gain, as presentedBecauseA is a repeated scalara(N) = p(N),° wherep denotes

here, match the corresponding results of Chen and Séborg;
however, such a conclusion generally does not hold.

Next, we consider the alternate uncertainty description,

[Gylij = Gj + a0°|Gyl, forjo] =1 (20)
For this uncertainty description, the elementgfare highly
correlated and;1(Gp) is independent of the perturbationi.e.,
Maxs,cralA11(Gp)| = 1412(G)| = 2.009. This result can also be

established analytically by noting

the spectral radius. Now, far= 1, 2, and 3, we have(N) =

1, 3.3114, and 1, respectively, and, thus, the largest value of
allowablea is given as 1/3.3114 0.302. We also note that,
for o = 0.302,G;? = G — «|G? is singular. Furthermore,
[Gylii and G'[', remain nonsingular for & a < 0.302, which
confirms the findings of Corollary 1.

7. Conclusions

Using the structured singular value) (framework, we have
presented a method for calculation of the magnitude of the
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worst-case relative gain. This result is useful for analyzing the for someGyella, whereM is given by eq 10. The requirement
presence of strong directionality in the uncertain system. We in eq 23 can be written, somewhat crudely, ag§(1,A)) "1 =
have derived the necessary and sufficient conditions for sign e for someGpella. Now, (7(M,A))tis given as7(M,A),
change of relative gain for norm-bounded uncertain systems. wheré

More importantly, it is shown that the relative gain changes

sign, only if the gain of the uncertain system or one of its ~ My —MpM oMy M My)

principal submatrices corresponding to the relative gain becomes M= M;ZIM ) M 2—21

singular over the uncertainty set. Note that the nonsingularity

of these matrices is triviaIIy necessary for integrity of the We notice' from the expression for upper-LFT in eq 2, that
uncertain system. This result implies that, in contrast to nominal (77(M,A))~1 = o, iff (I — N A) is singular for some allowable
systems, the role of RGA s limited for ascertaining the integrity A whereN = M13 = M1; — M1:M52M 1. The expression for
of uncertain systems. To derive the necessary and sufficient i eq 17 is obtained by substituting fot; using eq 10 and
conditions for integrity of uncertain systems, one must consider gjmplifying the resulting expression. Now, it follows from the

alternate methods, e.g., the approach based on parametrizatioefinition of structured singular value in eq 1 that{ NA) is
of all stabilizing controller with integral action, as used by sjngular for some allowabla iff eq 16 holds.

Gindes and Kabulf? Proof of Corollary 1. Without loss of generality, we assume
) thati = 1. After some lengthy, but straightforward algebraic
Appendix manipulations, it can be shown that the (1,2) elemeri o
Proof of Lemma 1. Based on eq 10, we have eq 17 is zero. Then) (— NA) is a block-triangular matrix and
A(N) = max(u,(Nyy), ua(N 24
. | VEG WA ua(N) (ua(N1y), ua(N2p) (24)
det( — M;A) =de 1 _ .
01+VG WA Using E = eie;, we have
= det( + VG 'WA) = det( + G 'WAV) Ny =743 (G)(Ve)(e[G 'e)(eW)
= det(G)-detG + WAV) = detG )-detG, ) =y (G)V.4[G 1, W,
Thus, the nonsingularity dB, over the sefla implies that = (G [G Y1) VG Wy = V., Gy ' WL

— MyiA) is invertible.
Proof of Proposition 1.Based on the definition of structured  and, thus,
singular value in eq 1, any value gfsatisfying eq 13 implies

that det( — Nj,A) = det( — V.,G;; "W .A)
de(l _ [M 1n My, “A 0]) = det( — Gll_lwl*AV*l)
YMz YMy][0 0 _
e ([I ~ My A —M0 ]) =Gy, “detGy, — W.AV.,)
TMad 1T yMed =Gy, det([G,l;)

= det{ — MllA)'det((l__ YM20) B . Thus, ua}(N11) denotes the smallest perturbation that makes
(=yMA)(I — M;A) (=M 19)) [Gpl11 singular.
Now, let G~ be partitioned as
is nonzero. The last equality follows using the Schur comple-

ment Lemma? becausel(— M1;A) is nonsingular for allowable 1 |I67Y4 [G7 Y0
A (see Lemma 1). The last expression, in turn, implies that B [Gfl] [Gfl] (25)
21 22
(1= yMy0) = (=yMA) (I = M,A) (=M 10) where G141, is a scalar. Then, using = eje],
=1—y(My+ MyuA(l — M ;A) "M ,)0
(Mg, i 21A( 114) 12) Gyl — Allfl(G)EGEGfl)
=1-r7M.A) =G — 4, (G)(G e)(e[Ge)(e]G )
is nonzero for allowable\. From the definition of structured Gy,
singular value in eq 1, we have =G '- G 11171(6)611[[G71]11 [Gil]lz]
21
maxuy(y 7 MA) = maxiy ZMA) <1 (22) oo o
0 [G 15— [G 124G 111 IG T2

which establishes eq 14, becaukdGp) = 7(M,A). The
equality in eq 22 follows, because, for full-block perturbations, 00
w is equal to the maximum singular value of the matrix, which o G2271
is the magnitude of the scalar in the present case.
Proof of Proposition 2. Since A is a closed setfi(Gy) The last equality follows becaus&{; — [G™ Y21 [G Y11 %
changes sign over the sHix in eq 3, iff [GY12 is the Schur complement o6[ 111 in G2, and, thus,
_ its inverse is given byG,.10 Let the matricesV andV be
j’ii(Gp) =7M,A)=0 (23) partitioned to have compatible dimensions with the partitioned
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G lin eq 25. Using the same arguments as those used for (6) Yu,_ _C. C.; Luyben, W. L. Robustness with respect to integral
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: : _ 7) Grosdidier, P.; Morari, M.; Holt, B. R. Closed-loop properties from
the smallest perturbation that mak@f,,Izz singular. Therua(N) ste(a&y-state gain informationd. Eng. Chem. Fundan19p82 2‘4)1, 221.

> 1 iff any allowableA makes one ofG]ii and GI,;I) singular (8) Chen, D.; Seborg, D. E. Relative gain array analysis for uncertain
and the result follows. process modelsAIChE J.2002 48, 302.
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