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Abstract

There is some disagreement in the literature on whethertdarge plant gains
are a problem when it comes to input-output controllabilitythis paper, control-
lability requirements are derived for two kinds of inputars, namely restriced
(low) input resolution (e.g. caused by a sticky valve) anglindisturbances. In
both cases, the controllability is limited if the plant gasriarge at high frequen-
cies. Limited input resolution causes limit cycle behaymscillations) similar to
that found with relay feedback. The magnitude of the outpriations depends on
the plant gain at high frequency, but is independent of thtrobier tuning. Pro-
vided frequent input (valve) movements are acceptablepaereduce the output
magnitude by forcing the system to oscillate at a highenfeagy, for example by
introducing a faster local feedback (e.g. a valve positipaeby pulse modulating
the input signal.

Keywords: High gain, input disturbance, valve resolution, quantiierit cy-
cle, controllability, Pl-controller.

1 Introduction

The main goal of feedback control is to the keep the plantustpwithin specifica-
tions in spite of disturbances, errors and uncertainty. #damental question arises: Is
the process input-output controllable? There are mangfathat need to be consid-
ered and one of them is the magnitude of the process gain. dihedgpends on the
frequency and, for multivariable plants, also on the indueation. To quantify this,
the singular values; (G(jw)) of the process transfer functi@i(s) are considered. Of
particular interest are the maximum and minimum singuldwes denoted (G) and
o(G), respectively. In this paper, for simplicity, mainly SIS@stems are considered,
wheres (G(jw)) = o(G(jw)) = |G(jw)l-
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It is well accepted that small process gains may cause prablg-or example,
the requirement for avoiding input saturationsi§z) > 1, that is, a minimum gain
of one is required This assumes that the desired output changes (setpoiatsf a
magnitudel and the allowed inputs are also of magnitugddoth expressed in terms
of the 2-norm.

Itis less clear whether large process gains pose a problengeStad and Postleth-
waite? consider the condition number, definedd§’) = 7(G)/a(G) and make the
following statement:A large condition number may be caused by a small value of
a(G), which is generally undesirable. On the other hand, a largleie of(G) is not
necessarily a problem.

On the other hand, Moofeclaims that high sensitivity (high gains) can be a prob-
lem because of low input resolution in valves and actuatdesstatesValves and other
actuators all have a minimum resolution with respect to pysing. These limitations
restrict the fine adjustments often necessary for high gaingsses to reach a steady
operation. If the fine adjustment necessary for steady stdess than the resolution
of the valve, sustained oscillations are likely to occurn€ider, for example, a steam
valve with resolution of:1.0%. If a valve position 0653.45% is necessary to meet the
target temperature, then the valve will, at best, settle torét cycle that hunts over
a range from about5% to 53%. If the process gain i40, the hunting of the valve
will cause a limit cycle in the control temperature 2if%. In this paper, we confirm
that limit cycles are unavoidable under such conditionswmifind that it is the pro-
cess gain at the frequency of the limit cycles, and not atgtstate, that matters for
controllability.

McAvoy and BraatZ argue along the same lines as Mobaad state that for con-
trol purposes the magnitude of steady-state process g&{#)) should not exceed
about50.

In this paper two main types of input errors are discussed.fikdeconsider the
input oscillations caused by restrictions of the inputyeakesolution. Later, in section
7, we consider input (load) disturbance which is not relatethe valve resolution
problems. Most of the results are derived for first-ordesplelay processes. When
possible, more general derivations are presented.

2 Restricted input resolution and limit cycles
As mentioned by Moorgand proved below, feedback control with restricted (low)

input resolution results in limit cycles (hunting). A sirepglepresentation of restricted
(low) input resolution is to use a quantized input as depiateFigure 1. The output
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Figure 1: Quantization of a smooth signal.

uq from the quantizer is
uq = ¢q-round (u/q), 1)



wherey is the quantization step and trmund function takes its argument to the nearest
integer. This may, for example, represent restricted vagelution and to some extent
valve stiction and valve dead bahdAn extreme case with only one quantization step
is an on-off valve.

Figure 2 shows a feedback system with a quantizer. Bggg is the plant transfer
function model,K (s) the controller,y the plant output with reference andu the
manipulated variable (for simplicity, the Laplace varibis often omitted). The low
input resolution results in a stepwise input “disturbano&’magnitudeq. and this
again results in oscillations in the plant outgt) of magnitude:. Note thata here is
defined as the “total” amplitude from the bottom to the tophaf dscillations.
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Figure 2: Feedback control of process with restricted impsiblution (quantizer)

Theorem 1 For the feedback system with a quantizer in Figure 2 limileyare in-
evitable if there is integral action in the controller sudiat the output in average has
no steady-state offset.

Proof. At steady-state the average value of the outpistequal to the reference
thatisyss = r wherey,, denotes the average (“steady-state”) value,Of) ast — oo.
To achieve this the input must on average equal the following value

Yss r
"= 0] ~ 00 @
whereG(0) denotes the steady-state plant gain. Except for the speat®d thatu
happens to exactly correspond to one of the quantizer ley€ghich in practice with
measurement noise will not occur), the quantized ingutust then cycle between at
least two of the quantizer levels.

Let us consider the most common case where the output cyeteeén the two
neighboring quantizer levels ta,;, here denoted; andg,. Let f and (| — f) denote
the fraction of time spent at each of the two levels. Thenteddy-state (as — o0)
uss = fq1 + (1 — f)g2 and we have the following expression for the fraction of time

u spends at levey;:
f _ g2 — Uss (3)
q2 — q1
Note that the closeu,, is to one of the quantizer levels, the longer the timewill
remain on it.
Example 1. As an example consider the system simulated in Figure 3 whee0

andge = 0.03 (this may represent an on/off valve). The third order plaoti is

100

) = M2

(4)
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and we use a PIl-controller

K(s) :KC(TIS—i-l)

. K.=0.04,77 =10 (5)
TIS

Note that the integral time is chosen so that we cancel therdothpole inG(s) (IMC
tuning rule). The steady-state plant gaind¢0) = 100. Initially, the system is at
steady-state withu;, = ¢1 = 0 andy = » = 0. We then make a step change= 1.
The steady-state plant gain@g0) = 100, so to achieve,; = 1 the required average
inputisuss = 1/100 = 0.01 which is closer ta;; = 0 thange: = 0.03. The fraction of
timew, remainsat; = 0is f = (0.03 —0.01)/0.03 = 0.67. As expected, this agrees
with the simulations.
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Figure 3: Simulation results for system in Example 1.

Example 2 A similar simulation example with; = 0 andgs = 0.03 is shown in
Figure 3, but for a first-order with delay plant

keﬂ‘)s

G(s) = m,

(6)
with £ = 100, § = 1 andr = 10. We use the same PI-controller as in (5) with=
7 = 10 and K. = 0.04. The main difference compared to Example 1 is that the step
reference change is much smalles: 0.2, such that the input stays a much shorter time
at the upper quantizer level g8 = 0.03. The steady-state plant gainks= G(0) =
100, so to achieveys; = 0.2 the required average inputis; = 0.2/100 = 0.002.
From (3), the fraction of time, remains at; = 0is f = (0.03—0.002)/0.03 = 0.93.
Again, this agrees with the simulations.

For the simulated system in Figure 3 (Example 1), the madaitf limit cycles
(oscillations) iny is a = 0.189 and the period i§" = 6.72s. The oscillations iny(t)
are seen to be quite close to sinusoidal. For the simulatdisyin Figure 4 (Example
2), we haver = 0.3 andT' = 16.07s. However, in this case the oscillationsift) are
far from sinusoidal.

We next want to derive analytic expressionsdand?'. We first make the simpli-
fying assumption that the resulting limit cycles are sindaband then study the more
general case.
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Figure 4: Simulation results for system in Example 2.

3 Describing function analysis of oscillations (assuming
sinusoids)

The quantizer (nonlinearity) that causes the limit cyckasloe regarded as a relay with-
out hysteresis and is in the following treated as such. A@ncximation, the ampli-
tude of the oscillations can then be found analytically framharmonic linearization
or describing function analysis of the nonlinearity. Thisanalysis is exact if the re-
sulting limit cycle is sinusoidal. For the feedback systerfigure 2, the condition for
oscillation is given by

N(aw)L(jw) = -1, 7

whereN(a,,) is the describing function of the nonlinearity (quantizet)ich is as a
function of the amplitude:,, of the oscillations inu(¢t)— at the quantizer input, and
L = GK is the loop transfer function (excluding the quantizer)r &aelay without
hysteresis, the describing functiorf is
4q
N(aw) = —, (8)
Ty,
andgq is the relay amplitude (quantization step). Since accorthr(8), N (a,,) is a real
number, it follows from (7) that is actually the ultimate frequeneyz, 150 and
1 4q
Nay) = ———=— 9
( ) |L(JwL,180)| em ©



The amplitude of the corresponding oscillations at thet@atput arer = a,,/|K (jwr, 150)]
which leads to
_ 4q|G(ij7180)| (10)
i
r o= (11)

Wr,180

whereT' is the period of oscillation. This is exact if the limit cyslare sinusoidal.

Example 1 (continued) For the system given by (4) and (8).L(jwr 180) =
7% — 2arctan(1 . wLylg()> = —a which yieldSwL_rlg() =1 [rad/S] aan(ijylg()” =
4.999. From a describing function analysis the period of osdillatis thenT =
52— = 6.28s. and from (10} = 2¢|G(jwr150)| = 0.191. This is in good agree-
ment with the simulation resultd’(= 6.72s,a = 0.189).

First-order with delay process. Consider a first-order with delay pla6t) con-
trolled by a Pl-controller withau; = 7,

ke 95

G = 12
() = 2 12
1
K(s) = K220 oo (13)
TIS
For this system we haVﬂL(ijylg()) = 7% — wLJgoH = —m which giveSwL_rlg() =

24 and|G(w1s0)| = k/ (32)2 + 1. From the describing analysis in (10) and (11)
we then have

4 _ak o T =46 (14)
T

For small delaysf/r < 1) this givesa ~ %qé@, and we see that amplitude of the
oscillations increases proportionally with = /7 (intial slope of step response) and
6. For large delaysf{/T > 1), a = %qk, and we see that amplitude of the oscillations
increases proportionally with (steady-state gain) and is independertt.dh all cases

a increases proportionally witi

Example 2 (continued) With £ = 100,60 = 1,7 = 10 andg = 0.03 (14) gives
T = 4s anda = 0.243. This should be compared with the actual value from the simu-
lations whicha ard” = 16.1s anda = 0.296. Taking into account that the oscillations
in y(t) are far from sinusoidal, the value ofin (14) obtained from the describing
function analysis is quite good (abdfi% too low). However, the period is a factor
of four too small.

From the two examples its seems that the amplitudeio{17) from the describing
function analysis is quite accurate, but that the actuabdenay be much larger. This
conclusion is confirmed by an exact analysis for a first-ovdtr delay plant presented
next.

4 Exact analysis of oscillations for first-order plus de-
lay process
In this section, exact results for non-sinusoidal quadtizsponses are derived for a

first-order with delay plant controlled by a PI controllertivi; = 7. The following
theorem is based on the work by Waetgal . 1°.



Theorem 2 For a system given by (12) and (13) set up according to the goration
of Figure 2 with quantizer leve], the amplitude and period of the limit cycle oscilla-
tions are

T
a = kq = (15)
=
1 1

wheret; = % andf is calculated fromuss = fq1 + (1 — f)ga.

Proof: See the appendix.

Example 2 (continued) With f = 0.933, the amplitude and period of oscillation
calculated using (15) and (16) aie= 0.2962 andT" = 16.07s, respectively, which
matches exactly the observed results in Figure 4.

Note that the assumptian = 7 is the reason why andT" are independent of the
controller settingd<,. andry.

In Figure 5 the amplitud(;% from (15) is plotted as a function cﬁ for various
values off. For small delays{ << 7), a increases almost proportionaltyr, but for
large values of it levels off at a constant value af = kq Note thata depends only
weakly onf.

To compare, the dashed line in Figure 5 represents (14) fiemdscribing function
analysis. The agreement is generally very good with a maximifference oR7% for
large values of /7.

On the other hand, note that the period of oscillation candyg different from
that found with the describing function analysis. From (ft& periodT” increases
proportionally with the delay, which agress with the valu€ = 46 in (16) from
the describing function analysis. However, in the exactyaig 7' also depends offi
and goes to infinity ag approache$ or 1. From (16), the minimum valug& = 46
is obtained wherf = 0.5, and only this limiting value agrees with the describing
function analysis. This is not too surprising as the inpuhast close to “sinusoidal”
whenf = 0.5.

5 Controllability requirements for systems with restricted
input resolution

Consider a feedback system with restricted input resoltioantized input) as shown
in Figure 2. Assume there is integral action in the contralech that there are limit
cycles (Theorem 1). Let,.. denote the maximum allowed amplitude of the limit
cycles (oscillations) iny. Then, from (10) the following approximate controllakyjlit
requirement applies:

T Gmax

G(j < — ,
| (JWL,180)| 4 g

(17)

Note that this condition depends on the plant only, and mpeeifically on the plant
gain at frequencyy, 1so.

Remark 1. The controllability condition (17) is approximate becaitss based
on a describing function analysis which is exact only fousimidal oscillations. Nev-
ertheless, the results in the previous section indicatdgtie gain from the describing
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function analysis is surpisingly accurate. For a first-opas delay process, the max-
imum deviation was onl27% (for large values ofl/7). Thus, (17) is expected to
provide a tight controllability condition.

Remark 2. The controller has some effect on the condition, becausg is the
frequency where the sum of the phase lag in the contré{leand plantG is 180.
However, for a well-tuned controller we typically havg 150 ~ 1.57/6, that is,wy,
depends only on on the effective detain the plant. Specifically, this value applies for
a first (or second) order plant tuned with a SIMC PI(D)-coltérd (the value is exact
whenr; is smaller than abow? where the SIMC-rule is; = 71, and also applies well
for the case when; is large and the SIMC-rule ig; = 86).

Remark 3. Persistent oscillations are generally undesirable. Toerethe al-
lowed a,,., for oscillations is typically considerably much smallebdat 10%) than
the maximum allowed output deviatiof,ax, i-€.,dmax = 0.1ymax.

6 How to mitigate oscillations caused by restricted in-
put resolution

From the describing function analysis, the magnitud# the output oscillations for
the system in Figure 2 is given by (14). The magntitude caredaaed, for example
by the following means:

(a) Change the valve so that the resolution is better (snagliantization levet).

(b) Redesign the process or the measurement devices tomellarseffective delay
6.

(c) Introduce fast, forced cycles at the input with a higlegfiency than those gen-
erated “naturally”. For example, one may use high-freqygndse modula-
tion or add a high-frequency “dither” signal (forced singisd disturbance at the
plant input).

(d) “Valve positioner”: Use a measurementgfand add a local feedback at the in-
put to generate faster cycling, see Figure 6. This may beadeas a combination
of cases (b) and (c).

The problem with approaches (b), (c) and (d) is that fasttimgygling may be
undesirable, for example, because the valve cannot be ngwéalst or because of
excessive wear.

Freqguency (pulse) width modulation Let us consider in more detail approaches
(c) and (d). A system with restricted (low) input resolutiamd no (average) steady-
state offset is bound to cycle (Theorem 1) and the amplitudéthe oscillations is
given by the process gain at the frequency of oscillatiorgs, see (10). So far, we
have let the system cycle at its “natural” frequengy; sy, as given by (11) and (16).
However, since the gaifG(jw)| for most processes is lower at high frequencies, an
attractive alternative is make the system cycle at a higleguiency.

One approach (d) is to use a valve position controller basesh@asuring:,, as
shown in Figure 6. Here, the controll&r sets the setpoint, for the valve position
(input), and the “internal” valve position controller (Kdgdjusts the input signal such
that the actual input, matches the desired inpuf (at least on average). The valve
position controller (KI) should have integral action, ordfigiently high proportional
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Figure 6: Frequency modulation generated using valveipasibntroller KI.

gain, such that the internal loop cycles. The frequency efdycling is determined
by the effective delay in the “internal” valve position Igophich generally is much
smaller than the delay in the overall outer loop. The regslthe that the frequency
of the oscillations is much higher and the resulting amggtu of the output is much
smaller. This agrees with the recommendations in the lndsnt Engineers’ Hand-
book!?, where it is noted that a positioner can reduce the dead andadve/actuator
combination from as much as 5% to less than 0.5%.

However, one may not have a measurement of the actual igpaind a valve po-
sition controller is in fact not necessary to reduce theotié low input resolution. A
more general approach (c) is to introduce forced pulsingdaljrey a frequency modu-
lator F' at the output of the controller. One realization fors an internal feedback loop
as depicted in Figure 7. This is similar to the valve posgiooontroller, except that
we need an internal quantizer because there is no measuremen The modulator
forces the system to cycle at a higher frequency than thelatddllows “naturally”.
For example, forced pulsing is commonly used for on/off ealin small-scale plants
where the valve may open or close every second and the dentseks the average
position.

Example 3 By use of a valve position controller as shown in Figure 6 résponse
of the system in (12) and (13) is depicted in Figure 8. Theevdliynamics is assumed
to be a delay of).1, and the remaining proces&) has a delay 00.9. As it can be
seen, the output amplitude is drastically reduced at theresgoof high-frequency input
oscillations.

P-control. Another potential approach to eliminate oscillationsdsuse a P-
controller (with a sufficiently low controller gain). Howex; in practice this approach
is not acceptable because it results in an unacceptabltystémste offset. Consider a
setpoint change, for which the desired input to achieve no offsetis = % see
(2). Assume that is such thatu,, is in the middle between two quantization levels
for the input. Then, for any non-oscillating control systentluding feedforward, we
haveAu = |u, — uss| > 2 and the resulting offset in the output is

[y =1 = 1G(O)] - ug = uss] > 1G(0)|2 (18)

From this we conclude that the offggt— | will be large for a plant with a large
steady-state gainiz(0)|, so P-control is in practice not recommended as a method to
mitigate oscillations
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Figure 7: System with frequency modulation. The box showsway of generating
high-frequency oscillations. Alternatively, a clock mag bsed to set the frequency
while the controller sets the pulse width.

7 INPUT (LOAD) DISTURBANCE

Consider a plant model in deviation variables
y(s) = G(s)u(s) + Ga(s)d(s) (19)

whereG is the plant model(z; the disturbance modey, the plant outputy the ma-
nipulated variable, and the disturbance (for simplicity, the Laplace variablis often
omitted). Without control the effect of disturbances ondlput isy = G4(s)d, and
by “large” disturbances is meant that the prodid€d| is large, such that the output
deviation|y| will be large unnless we applyc ontrol. In this section, ingisturbances
are mainly considered, i.65,; = G. This case is illustrated in Figure 9 whete= d,

is the disturbance at the plant input.

Feedforward control. As mentioned in the introduction, a large plant gain, espe-
cially at steady state, is a problem with feedforward cdn#s an example, consider
aplanty = G(u + d), whered = d,, is the input (load) disturbance. Clearly,| is
large, therju + d| needs to be small to avoid a large. With feedforward control is
adjusted based on measurigFirst, an accurate measurement/a$ required and it
must be possible to adjustsuch thaju — d| is small. The latter is not possible with
restricted input resolution. For example, returning togkample of Mooré from the
introduction;|u — d| = 2% and|G| = 10 gives|y| = 20%, all at steady state.

Feedback control On the other hand, with feedback control, “large” distumtes
are not necessarily a problem, at least not at steady staiasider a single distur-
banced. Without control the steady-state sinusoidal responsa fido the output is
y(w) = Gq(jw)d(w), where phasor notation is used dd@v)| denotes the magnitude
of the disturbance at frequenecy We assume that the magnitude is independent of
the frequency, i.eld(w)| = dy and assume that the control objective is that the output

11
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is less thanymax at any given frequency, i.€ly(w)| < ymax. From this, one can im-
mediately draw the conclusion thao control is needed G4 (jw)do| < ymax at all
frequencies (in which case the plant is said to be “self-tang”) . If |G4(jw)do| >
Ymax at Some frequency, then control is needed. With feedbadkadn = — Ky) we
gety(s) = S(s)Ga(s)d(s), whereS = (I + GK)~! is the sensitivity function. The
requirementy(w)| < Ymax then becomes

1SGw)] - 1Ga(w)lldw)] < Ymax, Vw (20)

With integral action in the controllefS| is zero at steady state, so in general it
does not matter ifG,| is large at steady state (provided there is no problem with
input saturation, but this is mainly a design rather thanrgrobissue). Howevelt,S|
increases with frequency and crosseat the bandwidth frequencys, |S(jws)| = 1.

At this frequency the requirement (20) gives the contrdlitgtrequirement

. ymax
(Gatjws)| < =, (21)

Input disturbance. However, the purpose of this paper is not to consider plamts f
which |G| is large, but rather plants for whigtr| is large (in practice, these are often
related because all plants have disturbances at the infhe f@ant). To this effect, we
consider input (load) disturbancés for which G4(s) = G(s) (see Figure 9). Hence,
(21) gives the following controllability bound on the alled plant gain at frequency
ws

Gljws)| < -2 (22)

Figure 9: Block diagram of a feedback control system wittudlsance at the input of
the plant.

This bound is independent of the controller, and thus preal fundamental con-
trollability requirement. In most casé&| is smaller at high frequency, so the bound
is easier to satisfy ibg is increased. However, for stability reasons the valuepfs
limited, and a typical upper boundis ~ % wheref denotes the “effective delay”
around the feedback lodp

Input disturbances are very common, but what is the expeetiee of|d,|? This
is difficult to answer, because input disturbances have nsanyces. For example,
in many cases the input is a valve which receives its powen fachydraulic system
(e.g. the brakes of a car) or from pressured air (many praegsol applications). A
change (disturbance) in the power system will then causeut disturbance. The

13



value of|d,| will vary depending on the application. If it is assumed tthegt system
has been scaled such that the largest expected inigutf magnitudel, then it seems
reasonable that,, | is at leasD.01, and that a typical value i1 or larger.

Steady-state implications.Condition (22) provides a bound on the plant gain at
frequencyws. The implications in terms of the steady-state are disclssxt by
considering a first-order with delay plant,

kefes

G(s) = Ga(s) = ma

(23)
wherek = |G(0)| is the steady-state gain of the plant. The high-frequengmatote
is |Gjw)| ~ £ = % wherek’ = £ is the initial slope of the step response. With

TW

wg =~ % (22) gives the controllability requirement

k / ymax

— =K< 0'59|du| (24)
(24) may seem to indicate that a plant with a large steadg-g&ink is fundamentally
difficult to control (see case 1 below). However, as disadigsease 2 this is not always
true because from (22) it is the gain at frequetagythat should be small and a process
can have a large steady-state gain while having a small gaiglafrequency.

Case 1. In some cases a large steady-state gaimplies a large gain at high
frequencies, resulting in not being able to satisfy the imlatbility requirementin (21).
A physical example is a pH-neutralization process as stlidiehapter 5 in Skogestad
and Postlethwaite The component balance for the excess of acgives the model
Thsy(s) = Lu(s) — y(s). wherer, is the residence time andthe neutralization flow.
This is on the form of (23) witlk = 1/e andr = 75,. The reason for the small value of
e is that the desired concentration in the tapkdan be in the order dfo® smaller than
in the neutralization inflow. Because of the large high-frexcy gain, this plant is not
controllable according to (22), and a design change is reduior example, where the
neutralization is done in several steps (tanks) ratheritharsingle step.

Case 2. As an example of a case where a large steady-state gain dbespip
control problems, consider a near-integrating process:

K —0s

G(s) = panpL (25)

This is on the form of (23) withk = ’% andr = L. Thus, as — 0, the steady-state

gainG(0) = ’% approaches infinity, but the high-frequency slope of tha gaiemains
finite as it is independent af so (24) may not impose any controllability limitation.
A physical example is a liquid level wheeaepresents the self-regulating effect. The
mass balance may be writtenaSV (s) = Agin — Agout, Where the linearized outflow
is Agour = K'AZ(s) + eAV (s) andZ is the valve positione — 0 for the case when
the outflow only depends weakly an. With y = AV, v = AZ, andd = Ag;,, this
results in a model of the form in (25) and (23).

8 DISCUSSION

We have derived expressions for the amplitude and perioddailations that result
with feedback control of a system with restricted input teSon (quantizer). Im-
portantly, the amplitude and period were found (under @edasumptions about the
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integral time) to be independent of the controller gain. ldeer, note that the time
before cycling actually starts may be considerably longantthe period” of the os-
cillations, and that this start-up time does depend on timraltber gain. By detuning
the controller (reducing the controller gain) it generdfikes longer time for the os-
cillatings to start. This is confirmed by the simulations igufe 3 in McAvoy and
BraatZ where a detuned controller gives no oscillations with a $tion time of80
s. However, it is easily confirmed that oscillations do intldevelop if the simulation
time is extended to 95 s or more.

In this paper, we have considered the effect of input (vailvagcuracy and input
load disturbances, with the corresponding controllgbikiguirements

7T a/f)'LCL.,C

|G(jwr,180)] < 1 g (17)
. Ymax
|G(jws)| < T (@s)] (22)

Which condition is the more restrictive? There is no genargwer, but let us first
consider two reasons for why the latter (input disturbameay be more restrictive.
First, the input disturbanci,,| is normally larger than the quantization stgpSec-
ond, the bound for input load disturbance occurs at a lowesrufencyws where the
gain |G(jw)| is generally larger than at frequeney, 1s50. Specially, assume that the
magnitude of the first order plus delay plant in the high-frexacy range can be approx-
imated by|G(jw)| = 2. Then, taking the typical valuess = %2 andwy, 150 = 52,
we get

|G(jws)| _ wr,180
|G(ij,180| ws

~3 (26)

This leads to the conclusion that the output deviation adibgean input disturbance
is likely to be larger than the sustained output varuaticnssed by restricted input
resolution. On the other hand, we are less likely to accegibgied oscillationsa,, ..)
than short-time deviationg(, .. ), S0 one could argue thay, ... is usually smaller than
Ymaz (@ typical value may be,,,... = 0.2y,.42)- In Summary, it is not clear which is
the more restrictive.

McAvoy and BraatZ state that, for control purposes, the magnitude of the gtead
state process gairt & (G(0))) should not exceeB0. In this paper, we have derived
controllability conditions, (17) and (22), that limit théapt gain at frequenciesy, 150
andwg, respectively. These conditions have some implicationdHe steady-state
gain which in special cases may provide some justificatiarttfe rule-of-thumb of
McAvoy and BraatZ. Specifically, the expression (18) for steady-state offgtt P-
control givesk < 2|y 2lv=rl For example, witly = 0.02 and|y — 7|maz = Amaz = 0.2
this requiresk < 20 Thus P-control should only be used for plants with a small
steady-state gain. Furthermore, (22) may be rewritten §4into getk < 0. 5997’;*(

If we selectiynaz| = 1, |du| = 0.1, and7 = 10 (similar to that used in the simulation
in McAvoy and Braat?) then we derive a boundl < 50. However, note that the
bounds (18) and (24) do not imply that large steady-statesgaie always a problem
for control. First, (24) is derived for a first-order with dglmodel where: and
are assumed independent, whereas they often are cougledee.(25). Second, (18)
applies to P-control and the implication is that integraiacneeds to be added for
control of such processes.
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In the introduction, we referred to a case by Mobwhich seems to prove that
a large steady-state gain (i.e. large gain at zero freqyagiegs large output varia-
tions (poor control) when we have restricted valve resotutHowever, in practice the
system will not cycle at a low frequency, but at a higher fagy (o1, 150) where the
process gain is smaller and the resulting output variabtetharefore smaller. We may
also introduce forced cycling or use valve position contindurther reduce the output
variation.

9 CONCLUSION

In this paper, controllability requirements are derived tiwo kinds of input errors,
namely (1) restricted input resolution (e.g. cased by vateecuracy) and (2) input
disturbances.

(1) Limited input resolution with integral feedback contfoo steady-state offset)
causes limit cycle behavior (oscillations) (Theorem 1).e Thagnitude of the oscil-
lations can be reduced by pulse modulating the input signaking valve position
control, but this assumes that frequent input movementaareptable. The controlla-
bility requirement derived from an approximate descrilfimgction analysis, assuming
no forced oscillations, is

™ amaz
‘ - 17
|G (jwr,180)] < 1 ¢ (7)
whereL = GK and, typicallyw;, 150 ~ % (¢ is the effective delay in the loopd,,.qx
is the allowed magnitude for the resulting sustained outguaillations (limit cycles).
This expression agrees well (within 27%) with an exact medr analysis for a first-
order plus delay process. With forced oscillations (pulsgluiating the input signal),
we can select the frequeneyto be much higher than the “natural” cycling frequency
wr,,180 and the controllability limitations are generally lesstriesive.
(2) For input (load) disturbances of magnitudg|, the controllability requirement
is
. ymax
G (jws)| < ==, (22)
|du(ws)]

wherey,... is the allowed magnitude of the resulting short-term outfaviation, and
and typicallyws ~ %2.

In summary, large gains at frequencies around the closgidandwidthg s, wr, 180)
may cause problems with feedback control. There is no clalbitity condition that
involves the steady-state gain= |G(0)| only, so a large steady-state gain is not by

itself a problem for feedback control.

10 APPENDIX - Proof of Theorem 1

Consider the first-order plus delay process in (12). Nowjmsgsthis process is excited
by a periodic and persistent input (it is applied since 0) of the form given by Figure
10. It represents the signal generated from a relay withgstiehnesis in whicly; and
q2 are the limit valuest; is the time interval where, remains ing;, andT" = t; + ¢

is the period of oscillation. This signal can be represeirteldaplace domain as a
series of steps delayed in time. Assume now, without losepnégality that, = 0 and
q1 = q. The resulting transformed signal is given by
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uq(s) _ %(1 _ e—tls + e—Ts _ e—(t1+T)s + e—QTs _ e—(t1+2T)S 4. )(27)

d,

[A/'ti L T Time
0

Figure 10: Input to be applied to the system in (15).

When this signal is applied to the process in (12), osaitatiresult in the output.
The set of maximum (or minimum) values of these oscillatiares such that =
{t|t = t1 + mT + 6,¥Ym € N} and the minimum (or maximum) values are found in

the sett = {t|t = mT + 6,¥m € N}.
The maximum (or minimum) &+ 7 <t <0+t +Tis

k —0s9 —t -T
= S=(1— 18 8 28
oo = e L et T, (28)

which inverted to the time domain gives

y(t) _ kq(l o ef(tfefT)/T + ef(tfeftl)/-r +67(t79)/fr> (29)

The maximum (or minimum) is thus:

Yt +T+0) = kq(l—e /7 e T/ — e (a7 (30)

Hence, the maximum (or minimum) amplitugg.;; can be extended to

Yewr1i = kq(l —e 0/ 4 e T/T o=t D)/m 4 o=2T/T _ ..y (31)

which can be written as

Yeur1 = kgl(l—e T)(14e /T4 e /M4 e3T/T 4] (32)

The infinite sum in (32) is given by

NS, T 1
Jim 2 (e = )

=0

where the fact thate=7/7)™ converges to zero asgoes to infinity is used.
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Accordingly,
L—et/7
Yeat1 = kq (W) (34)

The minimum (or maximum) &l + t1 + T < ¢t < 0 + 2T, Yezso, IS found by
following the same development used to derjvg;, i.e.

e—T/T(l _ e—tl/T)
Yext2 = kq |: 1_ e*T/T :| ) (35)
The amplitude is calculated by= yert1 — Yeata OF
1— eftl/‘r + efT/T o ef(Tftl)/'r
a=kq ( = ) (36)
The formula in (36) depends an and7" which must be determined.
From Figure 2:
u(s) = K(s)[r(s) —y(s)], 37)

where K (s) is given by (13),r(s) is a step change in referencg{) = =), and
y(s) = K(s)G(s)uq(s), whereG(s) is given by (12).

In the limit whent — oo, the quantizer behaves exactly as the relay depicted in
Figure 10 and assuming that andg, are arbitrary values, the first three termsugf
are:

uq(s) = qf + qIS;qQ(e*tls _ e (titta)s)

, (38)

where the fact thdl’ = ¢; + ¢, is used.
Consider a Pl-controller. Taking (38) into (37) and invegtit to time domain, the
following equation foru(¢) in the intervald < t < to + 6 is found:

ut) = I:—;{ro(t b)) — kol — 1) (1 — =0/ gy (39)

For the intervab + to <t < ¢y + t1 + 0, u(t) is given by

ut) = I:—;{m(t +11) = kga[(rr — 7)1 — e ) -t — 0] -
k(g — @) (1 — 1) (1 — e E0=0/my oy ¢ — 0]} (40)

Likewise, for the intervab + tq +t1 <t < tg+t1 +ta + 6,
K. —(t—0)/7
u(t) = T—I{ro(t—l—n)—kqg[(TI—T)(l—e )+t—6] —

k(g1 — q)[(rr = 7)1 — e 70Ty pp — gy — 0] +
k(g — q2)[(rr — 7)(1 —e”Omhmt220/m) 4y —t, — 0]} (41)
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So far, no assumptions on the controller settings &ndr;) have been made. The
expressions (39)-(41) drastically simplify if the integtime is selected as; = 7,
which is an appropriate setting for many plahts

Furthermore, for a relay without hysteresis its outpuf({)) changes as its input
(u(t)) equals to zero and since the quantizer behaves as a relay twhe co, the
following equations give relations for andts.

Fort = ty:
ro(to + 71) = kqa(to — 6) (42)
Fort =ty + t1:
ro(to +t1+71) = kg(to+t1 —0) — k(g1 — q2)(to — 0) (43)
Fort =ty + t1 + to:
ro(to+t1+te+71) = kga(to+t1+t2—0)—k(gn —q2)(to+1t2 —0) +
k(g1 — q2)(to — 6) (44)

Combining (42)-(44) the following expressions give theiper!" of the oscilla-
tions:

k(g1 — q2)0
" (@1 — q2) (45)
kg1 — o
k(g1 — q2)0
ty = (1 — q2) (46)
ro — kq2
T = t1+1t2 (47)
On average, the input must equal the steady-state vaglue- % = =2 (where

k = G(0)), and if this does not happen to exactly correspond to onkefjtiantizer
level, the quantized input, will cycle between the two neighboring quantizer levels,
g1 andge. Let f and (L — f) denote the fraction of time spent at each level. Then, at
steady state,s = 72 = fq1 + (1 — f)g2 and from this expressiofiis found to be

_ 10— kg2
/= k(g1 — g2) (48)
From (48),
ho= s (49)
1 1
r=290 (ﬁ + })7

which completes the proof.
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11 LIST OF CAPTIONS

- Figure 1: Quantization of a smooth signal.

- Figure 2: Feedback control of process with restricted impsolution (quan-
tizer).

- Figure 3: Simulation results for system in Example 1.
- Figure 4: Simulation results for system in Example 2.
- Figure 5: Amplitudea in (15) plotted againstf— for first order plus delay pro-

cesses. The lower figure is a close-up of the upper figure fatlsralues of
%)

T

- Figure 6: Frequency modulation generated using valveipasiontroller KI.
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Figure 7: System with frequency modulation. The box shomesway of gener-
ating high-frequency oscillations. Alternatively, for an/off valve a clock may
be used to set the frequency while the controller sets treepuidth.

Figure 8: Effect of using valve position control for the 8m in Example 2.

Figure 9: Block diagram of a feedback control system witstudbance at the
input of the plant.

Figure 10: Input to be applied to the system in (15).
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