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There is some disagreement in the literature in regard to whether or not large plant gains are a problem when
input-output controllability issues are involved. In this paper, controllability requirements are derived for
two types of input errors, namely, restricted (low) input resolution (e.g., caused by a sticky valve) and input
disturbances. In both cases, the controllability is limited if the plant gain is large at high frequencies. Limited
input resolution causes limit cycle behavior (oscillations) similar to that observed with relay feedback. The
magnitude of the output variations is dependent on the plant gain at high frequency but is independent of the
controller tuning. Provided frequent input (valve) movements are acceptable, one may reduce the output
magnitude by forcing the system to oscillate at a higher frequency, for example by introducing a faster local
feedback (e.g., a valve positioner) or by pulse modulating the input signal.

1. Introduction

The main goal of feedback control is to the keep the plant
output (y) within specifications, despite disturbances, errors, and
uncertainty. A fundamental question arises: Is the process
input-output controllable? There are many factors that must
be considered, and one of them is the magnitude of the process
gain. The gain is dependent on the frequency and, for multi-
variable plants, it also is dependent on the input direction. To
quantify this, the singular valuesσi(G(jω)) of the process transfer
function G(s) are considered. Of particular interest are the
maximum and minimum singular values, denoted asσj(G) and
σ(G), respectively. In this paper, for simplicity, mainly single
input-single output (SISO) systems are considered, where
σj(G(jω)) ) σ(G(jω)) ) |G(jω)|.

It is well-accepted that small process gains may cause
problems. For example, the requirement for avoiding input
saturation is

that is, a minimum gain of 1 is required.1 This assumes that the
desired output changes (setpoints) are of magnitude 1 and the
allowed inputs are also of magnitude 1, both expressed in terms
of the 2-norm.

It is less clear whether large process gains pose a problem.
Skogestad and Postlethwaite2 considered the condition number,
which is defined as

and make the following statement:A large condition number
may be caused by a smallValue of σ(G), which is generally
undesirable. On the other hand, a largeValue of σj(G) is not
necessarily a problem.

On the other hand, Moore3 claims that high sensitivity (high
gains) can be a problem, because of the low input resolution in
valves and actuators. He states:ValVes and other actuators all
haVe a minimum resolution, with respect to positioning. These

limitations restrict the fine adjustments that are often necessary
for high gain processes to attain steady operation. If the fine
adjustment that is necessary for steady state is less than the
resolution of theValVe, sustained oscillations are likely to occur.
Consider, for example, a steamValVe with resolution of(1.0%.
If a ValVe position of 53.45% is necessary to meet the target
temperature, then theValVe will, at best, settle to a limit cycle
that hunts oVer a range from∼55%to 53%. If the process gain
is 10, the hunting of theValVe will cause a limit cycle in the
control temperature of 20%.In this paper, we confirm that limit
cycles are unavoidable under such conditions, but we also find
that it is the process gain at the frequency of the limit cycles,
and not at steady-state, that matters for controllability.

McAvoy and Braatz4 argued, along the same lines as Moore,3

and state that, for control purposes, the magnitude of steady-
state process gain (σj(G)) should not exceed∼50.

In this paper, two main types of input errors are discussed.
We first consider the input oscillations caused by restrictions
of the input (valve) resolution. Later, in section 7, we consider
input (load) disturbance, which is not related to the valve
resolution problems. Most of the results are derived for first-
order plus delay processes. When possible, more general
derivations are presented.

2. Restricted Input Resolution and Limit Cycles

As mentioned by Moore3 and proved below, feedback control
with restricted (low) input resolution results in limit cycles
(hunting). A simple representation of restricted (low) input
resolution is to use a quantized input, as depicted in Figure 1.
The outputuq from the quantizer is

whereq is the quantization step and theround function takes
its argument to the nearest integer. This may, for example,
represent restricted valve resolution and, to some extent, valve
stiction and valve dead band.5 An extreme case with only one
quantization step is an on-off valve.

Figure 2 shows a feedback system with a quantizer. Here,
G(s) is the plant transfer function model,K(s) the controller,y
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the plant output with referencer, andu the manipulated variable
(for simplicity, the Laplace variables is often omitted). The
low input resolution results in a stepwise input “disturbance”
of magnitudeq, and this again results in oscillations in the plant
outputy(t) of magnitudea. Note thata here is defined as the
“total” amplitude from the bottom to the top of the oscillations.

Theorem 1. For the feedback system with a quantizer in
Figure 2, limit cycles are ineVitable if there is integral action
in the controller, such that the output, on aVerage, has no
steady-state offset.

Proof. At steady state, the aVerageValue of the output y is
equal to the reference r; that is, yss ) r, where yss denotes the
aVerage (“steady-state”)Value of y(t) as t f ∞. To achieVe
this, the input u must, on aVerage, equal the followingValue:

where G(0) denotes the steady-state plant gain. Except for the
special case that uss happens to correspond exactly to one of
the quantizer leVels qi (which, in practice, with measurement
noise, will not occur), the quantized input uq must then cycle
between at least two of the quantizer leVels.

Let us consider the most common case where the output
cycles between the two neighboring quantizer stabilizes touss,
which, here, are denotedq1 andq2. Let f and (1- f) denote the
fraction of time spent at each of the two levels. Then, at steady
state (ast f ∞), uss) fq1 + (1 - f)q2 and we have the following
expression for the fraction of timeu spends at levelq1:

Note that the closeruss is to one of the quantizer levels, the
longer the timeuq will remain on it.

Example 1. As an example, consider the system simulated
in Figure 3, whereq1 ) 0 andq2 ) 0.03 (this may represent an
on/off valve). The third-order plant model is

and we use a proportional-integral (PI) controller,

Note that the integral time is chosen so that we cancel the
dominant pole inG(s) (the IMC tuning rule). The steady-state
plant gain isG(0) ) 100. Initially, the system is at steady state,
with uq ) q1 ) 0 andy ) r ) 0. We then make a step change
r ) 1. The steady-state plant gain isG(0) ) 100; therefore, to
achieveyss ) 1, the required average input isuss ) 1/100 )
0.01 which is closer toq1 ) 0 thanq2 ) 0.03. The fraction of
time thatuq remains atq1 ) 0 is f ) (0.03 - 0.01)/0.03)
0.67. As expected, this agrees with the simulations.

Example 2.A similar simulation example withq1 ) 0 and
q2 ) 0.03 is shown in Figure 3, but for a first-order with delay
plant:

with k ) 100,θ ) 1, andτ ) 10. We use the same PI controller
as in eq 5 withτI ) τ ) 10 andKc ) 0.04. The main difference,
in comparison to example 1, is that the step reference change
is much smaller,r ) 0.2, such that the input stays at the upper
quantizer level ofq2 ) 0.03 a much shorter time. The steady-
state plant gain isk ) G(0) ) 100; therefore, to achieveyss )
0.2, the required average input isuss ) 0.2/100) 0.002. From
eq 3, the fraction of timeuq remains atq1 ) 0 is f ) (0.03-
0.002)/0.03) 0.93. Again, this is consistent with the simula-
tions.

For the simulated system in Figure 3 (see example 1), the
magnitude of limit cycles (oscillations) iny is a ) 0.189 and
the period isT ) 6.72 s. The oscillations iny(t) are observed
to be quite similar to sinusoidal. For the simulated system in
Figure 4 (see example 2), we havea ) 0.3 andT ) 16.07 s.
However, in this case, the oscillations iny(t) are far from
sinusoidal.

We next want to derive analytic expressions fora and T.
We first make the simplifying assumption that the resulting
limit cycles are sinusoidal, and then we study the more general
case.

3. Describing Function Analysis of Oscillations (Assuming
Sinusoids)

The quantizer (nonlinearity) that causes the limit cycles can
be regarded as a relay without hysteresis and, in the following,
is treated as such. As an approximation, the amplitude of the
oscillations can then be determined analytically from an
harmonic linearization or describing function analysis of the
nonlinearity. This analysis is exact if the resulting limit cycle
is sinusoidal. For the feedback system in Figure 2, the condition
for oscillation is given by7

where N(au) is the describing function of the nonlinearity
(quantizer), which is a function of the amplitudeau of the
oscillations inu(t) at the quantizer input, andL ) GK is the

Figure 1. Quantization of a smooth signal.

Figure 2. Feedback control of a process with restricted input resolution
(quantizer).

Figure 3. Simulation results for the system in example 1.
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loop-transfer function (excluding the quantizer). For a relay
without hysteresis, the describing function is6

whereq is the relay amplitude (quantization step). Because,
according to eq 8,N(au) is a real number, it follows from eq 7
that ω is actually the ultimate frequency (ωL,180) and

The amplitude of the corresponding oscillations at the plant
output area ) au/|K(jωL,180)|, which leads to

whereT is the period of oscillation. This is exact if the limit
cycles are sinusoidal.

Example 1 (continued).For the system given by eqs 4 and
5, ∠L(jωL,180) ) -π/2 - 2 arctan(1‚ ωL,180) ) -π[rad] )
-180°, which yieldsωL,180 ) 1 rad/s and|G(jωL,180)| ) 4.999.
From a describing function analysis, the period of oscillation
is thenT ) 2π/ωL,180 ) 6.28 s, and, from eq 10,a ) (4/π)-
q|G(jωL,180)| ) 0.191. This is in good agreement with the
simulation results (T ) 6.72 s,a ) 0.189).

First-Order with Delay Process.Consider a first-order with
delay plantG() controlled by a PI controller withτI ) τ,

For this system, we have∠L(jωL,180) ) -(π/2) - ωL,180θ )
-π, which gives ωL,180 ) (π/2)(1/θ) and |G(ωL,180)| )

k/x[(π/2)(θ/τ)]2+1. From the describing analysis in eqs 10
and 11, we then have

For small delays (θ/τ , 1), this givesa ≈ (8/π2)q(k/τ)θ, and
we see that amplitude of the oscillations increases proportionally
with k′k/τ (which is the initial slope of the step response) and
θ. For large delays (θ/τ . 1), a ≈ (4/π)qk, and we see that
amplitude of the oscillations increases proportionally withk
(steady-state gain) and is independent ofθ. In all casesa
increases proportionally withq.

Example 2 (continued).With k ) 100,θ ) 1, τ ) 10, and
q ) 0.03, eq 14 givesT ) 4 s anda ) 0.243. This should be
compared with the actual value from the simulations which are
T ) 16.1 s anda ) 0.296. Taking into account that the
oscillations iny(t) are far from sinusoidal, the value ofa in eq
14 obtained from the describing function analysis is quite good
(∼20% too small). However, the periodT is a factor of 4 too
small.

The two examples suggest that the amplitude ofa in eq 17
from the describing function analysis is quite accurate, but they
also indicate that the actual period may be much larger. This
conclusion is confirmed by an exact analysis for a first-order
with delay plant, which is presented next.

4. Exact Analysis of Oscillations for a First-Order Plus
Delay Process

In this section, exact results for non-sinusoidal quantized
responses are derived for a first-order with delay plant that is
controlled by a PI controller withτI ) τ. The following theorem
is based on the work by Wang et al.10

Theorem 2. For a system giVen by eqs 12 and 13, set up
according to the configuration of Figure 2 with a quantizer leVel
q, the amplitude and period of the limit cycle oscillations are

and

where t1 ) θ/(1 - f) and f is calculated from uss ) fq1 +
(1 - f)q2.

Proof. See the Appendix.
Example 2 (continued).With f ) 0.933, the amplitude and

period of oscillation calculated using eqs 15 and 16 area )
0.2962 andT ) 16.07 s, respectively, which matches exactly
the observed results in Figure 4.

Note that the assumptionτI ) τ is the reason whya andT
are independent of the controller settingsKc andτI.

In Figure 5, the amplitudea/(kq) from eq 15 is plotted as a
function of θ/τ for various values off. For small delays (θ ,
τ), a increases almost proportionallyθ/τ; however, for large
values ofθ, it levels off at a constant value ofa ) kq. Note
that a is dependent only weakly onf.

To compare, the dashed line in Figure 5 represents eq 14
from the describing function analysis. The agreement is gener-
ally very good, with a maximum difference of 27% for large
values ofθ/τ.

On the other hand, note that the period of oscillation can be
very different from that which is observed with the describing
function analysis. From eq 16, the periodT increases propor-
tionally with the delayθ, which agress with the valueT ) 4θ
in eq 16 from the describing function analysis. However, in
the exact analysis,T also is dependent onf and goes to infinity
asf approaches 0 or 1. From eq 16, the minimum valueT ) 4θ

Figure 4. Simulation results for the system in example 2.
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is obtained whenf ) 0.5, and only this limiting value agrees
with the describing function analysis. This is not too surprising,
because the input is most similar to “sinusoidal” whenf ) 0.5.

5. Controllability Requirements for Systems with
Restricted Input Resolution

Consider a feedback system with restricted input resolution
(quantized input), as shown in Figure 2. Assume there is integral
action in the controller, such that there are limit cycles (Theorem
1). Letamax denote the maximum allowed amplitude of the limit
cycles (oscillations) iny. Then, from eq 10, the following
approximate controllability requirement applies:

Note that this condition is dependent on the plant only and,
more specifically, the plant gain at frequencyωL,180.

Remark 1. The controllability condition (eq 17) is ap-
proximate because it is based on a describing function analysis,
which is exact only for sinusoidal oscillations. Nevertheless,
the results in the previous section indicates that the gain from
the describing function analysis is surprisingly accurate. For a
first-order plus delay process, the maximum deviation was only
27% (for large values ofθ/τ). Thus, eq 17 is expected to provide
a tight controllability condition.

Remark 2. The controller has some effect on the condition,
becauseωL,180 is the frequency where the sum of the phase lag

in the controllerK and plantG is 180ï. However, for a well-
tuned controller, we typically haveωL,180 ≈ 1.57/θ; that is,ωL

is dependent only on on the effective delayθ in the plant.
Specifically, this value applies for a first-order (or second-order)
plant that has been tuned with an SIMC PI(D) controller8 (the
value is exact whenτ1 is smaller than∼8θ, where the SIMC
rule is τI ) τ1, and also applies well for the case whenτ1 is
large and the SIMC rule isτI ) 8θ).

Remark 3. Persistent oscillations are generally undesirable.
Therefore, the allowedamax value for oscillations is typically
considerably much smaller (∼10%) than the maximum allowed
output deviation,ymax; i.e., amax ) 0.1ymax.

6. How To Mitigate Oscillations Caused by Restricted
Input Resolution

From the describing function analysis, the magnitudea of
the output oscillations for the system in Figure 2 is given by eq
14. The magnitude can be reduced, for example, by the
following means:

(a) Change the valve so that the resolution is better (use a
smaller quantization levelq).

(b) Redesign the process or the measurement devices to get
a smaller effective delayθ.

(c) Introduce fast, forced cycles at the input with a higher
frequency than those generated “naturally”. For example, one
may use high-frequency pulse modulation or add a high-
frequency “dither” signal (e.g., amplified measurement noise
caused by derivative action in controller).

(d) “Valve positioner”: Use a measurement ofuq and add
a local feedback at the input to generate faster cycling (see
Figure 6). This may be viewed as a combination of cases (b)
and (c).

The problem with approaches (b), (c), and (d) is that fre-
quent input moves may be undesirable, for example, because
the valve cannot be moved so quickly or because of excessive
wear.

Frequency (Pulse) Width Modulation. Let us consider, in
more detail, approaches (c) and (d). A system with restricted
(low) input resolution and no (average) steady-state offset is
bound to cycle (Theorem 1) and the amplitudea of the
oscillations is given by the process gain at the frequency of
oscillations (e.g., see eq 10). So far, we have let the system
cycle at its “natural” frequency,ωL,180, as given by eqs 11 and
16. However, because the gain|G(jω)| for most processes is
lower at high frequencies, an attractive alternative is forcing
the system to cycle at a higher frequency.

One approach, (d), uses a valve position controller that is
based on measuringuq, as shown in Figure 6. Here, the
controllerK sets the setpointus for the valve position (input),
and the “internal” valve position controller (KI) adjusts the input
u signal such that the actual inputuq matches the desired input
us (at least on average). The valve position controller (KI) should
have integral action, or a sufficiently high proportional gain,
such that the internal loop cycles. The frequency of the cycling
is determined by the effective delay in the “internal” valve

Figure 5. Amplitude a in eq 15, plotted againstθ/τ, for first-order plus
delay processes. The lower figure is a magnified view of the upper figure
for small values ofθ/τ.

|G(jωL,180)| < π
4(amax

q ) (17)

Figure 6. Frequency modulation generated using a valve position controller
(KI).
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position loop, which generally is much smaller than the delay
in the overall outer loop. The results is that the frequency of
the oscillations is much higher and the resulting amplitudea
of the output is much smaller. This is consistent with the
recommendations in theInstrument Engineers’ Handbook,11

where it is noted that a positioner can reduce the dead band
of a valve/actuator combination from as much as 5% to
<0.5%.

However, one may not have a measurement of the actual input
uq, and a valve position controller is, in fact, not necessary to
reduce the effect of low input resolution. A more general
approach, (c), is to introduce forced pulsing by adding a
frequency modulatorF at the output of the controller. One
realization forF is an internal feedback loop, as depicted in
Figure 7. This is similar to the valve positioner controller, except
that we need an internal quantizer, because there is no
measurement ofuq. The modulator forces the system to cycle
at a higher frequency than that which follows “naturally”. For
example, forced pulsing is commonly used for on/off valves in
small-scale plants where the valve may open or close every
second and the controller sets the average position.

Example 3.Through the use of a valve position controller,
as shown in Figure 6, the response of the system in eqs 12 and
13 is depicted in Figure 8. The valve dynamics is assumed to
be a delay of 0.1, and the remaining process (G) has a delay of
0.9. As it can be seen, the output amplitude is drastically reduced
at the expense of high-frequency input oscillations.

P-Control. Another potential approach to eliminate oscilla-
tions is to use a P controller (with a sufficiently low controller
gain). However, in practice, this approach is not acceptable,
because it results in an unacceptable steady-state offset. Con-
sider a set-point changer, for which the desired input to achieve
no offset isuss ) r/G(0) (see eq 2). Assume thatr is such that
uss is between two quantization levels for the input. For any
non-oscillating control system, including feedforward, we
then have∆u ) |uq - uss| g q/2 and the resulting offset in the
output is

From this observation, we conclude that the offset|y - r| will
be large for a plant with a large steady-state gain,|G(0)|, so P
control is, in practice, not recommended as a method to mitigate
oscillations.

7. Input (Load) Disturbance

Consider a plant model in deviation variables

whereG is the plant model,Gd the disturbance model,y the
plant output,u the manipulated variable, andd the disturbance
(for simplicity, the Laplace variables is often omitted). Without
control, the effect of disturbances on the output isy ) Gd(s)d,
and the term “large” disturbances means that the product|Gdd|
is large, such that the output deviation|y| will be large, unless
we apply control. In this section, input disturbances are mainly
considered, i.e.,Gd ) G. This case is illustrated in Figure 9,
whered ) du is the disturbance at the plant input.

Feedforward Control. As mentioned in the Introduction, a
large plant gain, especially at steady state, is a problem with
feedforward control. As an example, consider a planty ) G(u
+ d), whered ) du is the input (load) disturbance. Clearly, if
|G| is large, then|u + d| must be small, to avoid a large|y|.
With feedforward control,u is adjusted based on measuringd.
First, an accurate measurement ofd is required and it must be
possible to adjustu such that|u - d| is small. The latter is not

Figure 7. System with frequency modulation. The box shows one way of
generating high-frequency oscillations. Alternatively, for an on/off valve,
a clock may be used to set the frequency while the controller sets the pulse
width.

|y - r| ) |G(0)|‚|uq - uss| g |G(0)|q
2

(18)

Figure 8. Effect of using valve position control for the system in
example 2.

Figure 9. Block diagram of a feedback control system with disturbance at
the input of the plant.

y(s) ) G(s)u(s) + Gd(s)d(s) (19)
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possible with restricted input resolution. For example, returning
to the example of Moore3 from the Introduction: |u - d| )
2% and|G| ) 10 gives|y| ) 20%, all at steady state.

Feedback Control.On the other hand, with feedback control,
“large” disturbances are not necessarily a problem, at least not
at steady state. Consider a single disturbanced. Without control,
the steady-state sinusoidal response fromd to the output isy(ω)
) Gd(jω)d(ω), where phasor notation is used and|d(ω)| denotes
the magnitude of the disturbance at frequencyω. We assume
that the magnitude is independent of the frequency, i.e.,|d(ω)|
) d0, and we assume that the control objective is that the output
is less thanymax at any given frequency, i.e.,|y(ω)| < ymax. From
this, one can immediately draw the conclusion that no control
is needed if|Gd(jω)d0| < ymax at all frequencies(in which case
the plant is said to be “self-regulating”). If |Gd(jω)d0| > ymax at
some frequency, then control is needed. With feedback control
(u ) -Ky), we get y(s) ) S(s)Gd(s)d(s), where S is the
sensitivity function (S ) (I + GK)-1). The requirement|y(ω)|
< ymax then becomes

With integral action in the controller,|S| is zero at steady state;
therefore, generally, it does not matter if|Gd| is large at steady
state (provided there is no problem with input saturation, but
this is mainly a design issue rather than a control issue).
However,|S| increases with frequency and crosses a value of 1
at the bandwidth frequencyωS: |S(jωS)| ) 1. At this frequency,
the requirement described by eq 20 gives the controllability
requirement

Input Disturbance. However, the purpose of this paper is
not to consider plants for which|Gd| is large, but rather plants
for which |G| is large (in practice, these are often related,
because all plants have disturbances at the input to the plant).
To this effect, we consider input (load) disturbancesdu for which
Gd(s) ) G(s) (see Figure 9). Hence, eq 21 gives the following
controllability bound on the allowed plant gain at frequency
ωS:

This bound is independent of the controller and, thus, provides
a fundamental controllability requirement. In most cases,|G|
is smaller at high frequency, so the bound is easier to satisfy if
ωS is increased. However, for stability reasons, the value ofωS

is limited, and a typical upper bound isωS ≈ 0.5/θ, whereθ
denotes the “effective delay” around the feedback loop.2

Input disturbances are very common, but what is the expected
value of |du|? This is difficult to answer, because input
disturbances have many sources. For example, in many cases,
the input is a valve that receives its power from a hydraulic
system (e.g., the brakes of a car) or from pressured air (many
process control applications). A change (disturbance) in the
power system will then cause an input disturbance. The value
of |du| will vary, depending on the application. If it is assumed
that the system has been scaled such that the largest expected
input u is of magnitude 1, then it seems reasonable that|du| is
at least 0.01, and that a typical value is 0.1 or larger.

Steady-State Implications.The condition described by eq
22 provides a bound on the plant gain at frequencyωS. The

implications, in terms of the steady state, are discussed next by
considering a first-order with delay plant,

wherek ) |G(0)| is the steady-state gain of the plant. The high-
frequency asymptote is|G(jω)| ≈ k/τω ) k′/ω, wherek′ ) k/τ
is the initial slope of the step response. WithωS ≈ 0.5/θ, eq 22
gives the controllability requirement:

Equation 24 may seem to indicate that a plant with a large
steady-state gaink is fundamentally difficult to control (see case
1 below). However, as discussed in case 2, this is not always
true, because, according to eq 22, it is the gain at frequencyωS

that should be small and a process can have a large steady-
state gain while having a small gain at high frequency.

Case 1.In some cases, a large steady-state gaink implies a
large gain at high frequencies, resulting in not being able to
satisfy the controllability requirement in eq 21. A physical
example is a pH neutralization process, as studied in chapter 5
in the work of Skogestad and Postlethwaite.2 The component
balance for the excess of acidy gives the modelτhsy(s) ) 1/ε
u(s) - y(s). whereτh is the residence time andu the neutraliza-
tion flow. This is of the form of eq 23, withk ) 1/ε andτ )
τh. The reason for the small value ofε is that the desired
concentration in the tank (y) can be on the order of 106 smaller
than in the neutralization inflow. Because of the large high-
frequency gain, this plant is not controllable, according to eq
22, and a design change is required, for example, where the
neutralization is done in several steps (tanks) rather than in a
single step.

Case 2.As an example of a case where a large steady-state
gain does not imply control problems, consider a near-integrating
process:

This is of the form of eq 23, withk ) k′/ε andτ ) 1/ε. Thus,
asε f 0, the steady-state gainG(0) ) k′/ε approaches infinity,
but the high-frequency slope of the gaink′ remains finite,
because it is independent ofε, so eq 24 may not impose any
controllability limitation. A physical example is a liquid level
whereε represents the self-regulating effect. The mass balance
may be written ass∆V(s) ) ∆qin - ∆qout, where the linearized
outflow is∆qout ) k′∆Z(s) + ε∆V(s) andZ is the valve position.
ε f 0 for the case when the outflow is only dependent weakly
on V. With y ) ∆V, u ) ∆Z, andd ) ∆qin, this results in a
model of the form in eqs 25 and 23.

8. Discussion

We have derived expressions for the amplitude and period
of oscillations that result with feedback control of a system with
restricted input resolution (quantizer). Importantly, the amplitude
and period were determined (under certain assumptions about
the integral time) to be independent of the controller gain.
However, note that the time before cycling actually starts may
be considerably longer than the periodT of the oscillations,
and that this start-up time is dependent on the controller gain.
By detuning the controller (reducing the controller gain),
generally a longer time is required for the oscillations to start.

|S(jω)|‚|Gd(jω)||d(ω)| < ymax ∀ω (20)

|Gd(jωS)| <
ymax

|d(ωS)|
(21)

|G(jωS)| <
ymax

|du(ωS)|
(22)

G(s) ) Gd(s) ) ke-θs

τs + 1
(23)

k
τ

) k′ < 0.5
ymax

θ|du|
(24)

G(s) ) ( k′
s + ε)e-θs (25)
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This is confirmed by the simulations in Figure 3 in McAvoy
and Braatz,4 where a detuned controller gives no oscillations
with a simulation time of 80 s. However, it is easily confirmed
that oscillations do indeed develop if the simulation time is
extended to 95 s or more.

In this paper, we have considered the effect of input (valve)
inaccuracy and input load disturbances, with the following
corresponding controllability requirements:

Which condition is the more restrictive? There is no general
answer, but let us first consider two reasons for why the latter
(input disturbance) may be more restrictive. First, the input
disturbance|du| is normally larger than the quantization stepq.
Second, the bound for input load disturbance occurs at a lower
frequencyωS, where the gain|G(jω)| is generally larger than
that at frequencyωL,180. Especially, assume that the magnitude
of the first-order plus delay plant in the high-frequency range
can be approximated by|G(jω)| ) k/τω. Then, taking the typical
valuesωS ) 0.5/θ andωL,180 ) 1.5/θ|, we get

This leads to the conclusion that the output deviation caused
by an input disturbance is likely to be larger than the sustained
output variations caused by restricted input resolution. On the
other hand, we are less likely to accept sustained oscillations
(amax) than short-time deviations (ymax), so one could argue that
amax is usually smaller thanymax (a typical value may beamax

) 0.2ymax). In summary, it is not clear which is the more
restrictive.

McAvoy and Braatz4 have stated that, for control purposes,
the magnitude of the steady-state process gain (k ) σj(G(0)))
should not exceed 50. In this paper, we have derived control-
lability conditions, eqs 17 and 22, that limit the plant gain at
frequenciesωL,180 andωS, respectively. These conditions have
some implications for the steady-state gain which, in special
cases, may provide some justification for the rule-of-thumb of
McAvoy and Braatz.4 Specifically, the expression described by
eq 18 for steady-state offset with P control givesk e (2|y -
r|)/q. For example, withq ) 0.02 and|y - r|max ) amax ) 0.2,
this requiresk < 20. Thus, P control should only be used for
plants with a small steady-state gain. Furthermore, eq 22 may
be rewritten, as in eq 24, to getk < 0.5ymax(τ/θ|du|). If we select
|ymax| ) 1, |du| ) 0.1, andτ/θ ) 10 (similar to that used in the
simulation in McAvoy and Braatz4), we then derive a bound of
k < 50. However, note that the bounds described by eqs 18
and 24 do not imply that large steady-state gains are always a
problem for control. First, eq 24 is derived for a first-order with
delay model wherek andτ are assumed independent, whereas
they often are coupled (e.g., see eq 25). Second, eq 18 applies
to P control and the implication is that integral action must be
added for control of such processes.

In the Introduction, we referred to a case by Moore3 that
seems to prove that a large steady-state gain (i.e., large gain at
zero frequency) gives large output variations (poor control) when
we have restricted valve resolution. However, in practice, the
system will not cycle at a low frequency, but rather at a higher
frequency (ωL,180), where the process gain is smaller and the

resulting output variables are therefore smaller. We may also
introduce forced cycling or use valve position control to reduce
the output variation further.

9. Conclusion

In this paper, controllability requirements are derived for two
types of input errors, namely (i) restricted input resolution (e.g.,
that caused by valve inaccuracy) and (ii) input disturbances.

In regard to type i, limited input resolution with integral
feedback control (no steady-state offset) causes limit cycle
behavior (oscillations) (see Theorem 1). The magnitude of the
oscillations can be reduced by pulse-modulating the input signal
or using valve position control, but this assumes that frequent
input movements are acceptable. The controllability requirement
derived from an approximate describing function analysis,
assuming no forced oscillations, is

whereL ) GK and, typically,ωL,180 ≈ 1.5/θ (whereθ is the
effective delay in the loop). The variableamax is the allowed
magnitude for the resulting sustained output oscillations (limit
cycles). This expression agrees well (within 27%) with an exact
nonlinear analysis for a first-order plus delay process. With
forced oscillations (pulse modulating the input signal), we can
select the frequencyω to be much higher than the “natural”
cycling frequencyωL,180, and the controllability limitations are
generally less restrictive.

In regard to type ii, for input (load) disturbances of magnitude
|du|, the controllability requirement is

whereymax is the allowed magnitude of the resulting short-term
output deviation and, typically,ωS ≈ 0.5/θ.

In summary, large gains at frequencies around the closed-
loop bandwidth (ωS, ωL,180) may cause problems with feedback
control. There is no controllability condition that involves the
steady-state gaink ) |G(0)| only, so a large steady-state gain
is not, by itself, a problem for feedback control.

10. Appendix. Proof of Theorem 1

Consider the first-order plus delay process in eq 12. Now,
assume this process is excited by a periodic and persistent input
(it is applied becauset > 0) of the form given by Figure 10. It
represents the signal generated from a relay without hysteresis
in which q1 andq2 are the limit values,t1 is the time interval
whereuq remains inq1, andT is the period of oscillation (T )
t1 + t2). This signal can be represented in the Laplace domain
as a series of steps delayed in time. Assume now, without a
loss of generality, thatq2 ) 0 and q1 ) q. The resulting

|G(jωL,180)| < π
4(amax

q ) (17)

|G(jωS)| <
ymax

|du(ωS)|
(22)

|G(jωS)|
|G(jωL,180)|

≈ ωL,180

ωS
≈ 3 (26)

Figure 10. Input to be applied to the system in eq 15.

|G(jωL,180)| < π
4(amax

q ) (17)

|G(jωS)| <
ymax

|du(ωS)|
(22)
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transformed signal is given by

When this signal is applied to the process in eq 12, oscillations
result in the output.

The set of maximum (or minimum) values of these oscilla-
tions are such thatt ) {t|t ) t1 + mT + θ, ∀m ∈N} and the
minimum (or maximum) values are found in the sett ) {t|t )
mT + θ, ∀m ∈ N}.

The maximum (or minimum) atθ + T < t e θ + t1 + T is

which, inverted to the time domain, gives

Thus, the maximum (or minimum) is

Hence, the maximum (or minimum) amplitude,yext1, can be
extended to

which can be written as

The infinite sum in eq 32 is given by

where the fact that (e-T/τ)n converges to zero asn approaches
infinity is used.

Accordingly,

The minimum (or maximum) atθ + t1 + T < t e θ + 2T,
yext2, is determined by following the same development process
used to deriveyext1, i.e.,

The amplitude is calculated bya ) yext1 - yext2, or

The formula in eq 36 is dependent ont1 andT, which must be
determined.

From Figure 2,

whereK(s) is given by eq 13,r(s) is a step change in reference
(r(s) ) r0/s), andy(s) ) K(s)G(s)uq(s), whereG(s) is given by
eq 12.

In the limit when t f ∞, the quantizer behaves exactly as
the relay depicted in Figure 10 and, assuming thatq1 and q2

are arbitrary values, the first three terms ofuq are

where the fact thatT ) t1 + t2 is used.
Consider a PI controller. Substituting eq 38 into eq 37 and

inverting it to the time domain, the following equation foru(t)
in the intervalθ e t < t0 + θ is observed:

For the intervalθ + t0 e t < t0 + t1 + θ, u(t) is given by

Similarly, for the intervalθ + t0 + t1 e t < t0 + t1 + t2 + θ,

So far, no assumptions on the controller settings (Kc andτI)
have been made. The expressions described by eqs 39-41
become drastically simplified if the integral time is selected as
τI ) τ, which is an appropriate setting for many plants.9

Furthermore, for a relay without hysteresis, its output (uq(t))
changes because its input (u(t)) is equal to zero, and, because
the quantizer behaves as a relay whent f ∞, the following
equations give relations fort1 and t2.

For t ) t0:

For t ) t0 + t1:

For t ) t0 + t1 + t2:

Combining eqs 42-44, the following expressions give the
periodT of the oscillations:

uq(s) ) q
s
(1 - e-t1s + e-Ts - e-(t1 + T)s +

e-2Ts -e-(t1 + 2T)s + ...) (27)

y(s) ) ( k
τs + 1)e-θs(qs)(1 - e-t1s+ e-Ts) (28)

y(t) ) kq(1 - e-(t-θ-T)/τ + e-(t-θ-t1)/τ + e-(t-θ)/τ) (29)

y(t1 + T + θ) ) kq(1 - e-t1/t + e-T1/τ + e-(t1+T)/τ) (30)

yext1 ) kq(1 - e-t1/τ + e-T/τ - e-t1+T/τ + e-2T/τ - ...) (31)

yext1 ) kq[(1 - e-t1/τ)(1 + e-T/τ + e-2T/τ + e-3T/τ + ...)]
(32)

lim
nf∞

∑
j)0

n

(e-T/τ)j )
1

1 - e-T/τ
(33)

yext1 ) kq(1 - e-t1/τ

1 - e-T/τ) (34)

yext2 ) kq[e-T/τ(1 - e-t1/τ)

1 - e-T/τ ] (35)

a ) kq(1 - e-t1/τ + e-T/τ - e-(T-t1)/τ

1 - e-T/τ ) (36)

u(s) ) K(s)[r(s) - y(s)] (37)

uq(s) )
q2

s
+

q1 - q2

s
(e-t1s - e-(t1+t2)s), (38)

u(t) )
Kc

τI
{r0(t + τI) - kq2[(τI - τ)(1 - e-(t-θ)/τ) + t - θ]}

(39)

u(t) )
Kc

τI
{r0(t + τI) - kq2[(τI - τ)(1 - e-(t-θ)/τ) +

t - θ] - k(q1 - q2)[(τI - τ)(1 - e-(t-t1-θ)/τ) + t - t1 - θ]}
(40)

u(t) )
Kc

τI
{r0(t + τI) - kq2[(τI - τ)(1 - e-(t-θ)/τ) +

t - θ] - k(q1 - q2)[(τI - τ)(1 - e-(t-t1-θ)/τ) +

t - t1 - θ] + k(q1 - q2)[(τI - τ)(1 - e-(t-t1-t2-θ)/τ) +
t - t1 - t2 - θ]} (41)

r0(t0 + τI) ) kq2(t0 - θ) (42)

r0(t0 + t1 + τI) ) kq2(t0 + t1 - θ) - k(q1 - q2)(t0 - θ)
(43)

r0(t0 + t1 + t2 + τI) ) kq2(t0 + t1 + t2 - θ) -
k(q1 - q2)(t0 + t2 - θ) + k(q1 - q2)(t0 - θ) (44)
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On average, the input must equal the steady-state value,uss )
yss/G(0) ) r0/k (wherek ) G(0)), and if this does not happen
to exactly correspond to one of the quantizer level, the quantized
inputuq will cycle between the two neighboring quantizer levels
(q1 andq2). Let f and (1- f) denote the fraction of time spent
at each level. Then, at steady state,uss) r0/k ) fq1 + (1 - f)q2

and, from this expression,f is determined to be

From eq 48,

which completes the proof.
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t1 )
k(q1 - q2)θ

kq1 - r0
(45)

t2 )
k(q1 - q2)θ

r0 - kq2
(46)

T ) t1 + t2 (47)

f )
r0 - kq2

k(q1 - q2)
(48)

t1 ) θ
1 - f

(49a)

T ) θ( 1
1 - f

+ 1
f ) (49b)
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