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Limit Cycles with Imperfect Valves: Implications for Controllability of Processes
with Large Gains

Antonio C. B. de Aradjo and Sigurd Skogestad*

Department of Chemical Engineering, Norwegian Lémsity of Science and Technology (NTNU),
Trondheim, Norway

There is some disagreement in the literature in regard to whether or not large plant gains are a problem when
input—output controllability issues are involved. In this paper, controllability requirements are derived for
two types of input errors, namely, restricted (low) input resolution (e.g., caused by a sticky valve) and input
disturbances. In both cases, the controllability is limited if the plant gain is large at high frequencies. Limited
input resolution causes limit cycle behavior (oscillations) similar to that observed with relay feedback. The
magnitude of the output variations is dependent on the plant gain at high frequency but is independent of the
controller tuning. Provided frequent input (valve) movements are acceptable, one may reduce the output
magnitude by forcing the system to oscillate at a higher frequency, for example by introducing a faster local
feedback (e.g., a valve positioner) or by pulse modulating the input signal.

1. Introduction limitations restrict the fine adjustments that are often necessary
for high gain processes to attain steady operation. If the fine
adjustment that is necessary for steady state is less than the
resolution of thevalve, sustained oscillations are likely to occur.
Consider, for example, a stearalve with resolution of:1.0%.
If a valve position of 53.4% is necessary to meet the target
s[emperature, then thealve will, at best, settle to a limit cycle
that hunts @er a range from~55%to 53%. If the process gain
is 10, the hunting of thealve will cause a limit cycle in the
control temperature of 20%n this paper, we confirm that limit
cycles are unavoidable under such conditions, but we also find
that it is the process gain at the frequency of the limit cycles,
and not at steady-state, that matters for controllability.

McAvoy and BraatZargued, along the same lines as Mobdre,
and state that, for control purposes, the magnitude of steady-
state process gai@(G)) should not exceed-50.

In this paper, two main types of input errors are discussed.
We first consider the input oscillations caused by restrictions

o(G) = 1 of the input (valve) resolution. Later, in section 7, we consider
= input (load) disturbance, which is not related to the valve

that is, a minimum gain of 1 is requirédhis assumes that the ~ resolution problems. Most of the results are derived for first-
desired output changes (setpoints) are of magnitude 1 and theorder plus delay processes. When possible, more general
allowed inputs are also of magnitude 1, both expressed in termsderivations are presented.
of the 2-norm.

It is less clear whether large process gains pose a problem.2. Restricted Input Resolution and Limit Cycles
Skogestad and Postlethwaitmnsidered the condition number,
which is defined as

The main goal of feedback control is to the keep the plant
output f) within specifications, despite disturbances, errors, and
uncertainty. A fundamental question arises: Is the process
input—output controllable? There are many factors that must
be considered, and one of them is the magnitude of the proces
gain. The gain is dependent on the frequency and, for multi-
variable plants, it also is dependent on the input direction. To
quantify this, the singular valueg(G(jw)) of the process transfer
function G(s) are considered. Of particular interest are the
maximum and minimum singular values, denoteds) and
a(G), respectively. In this paper, for simplicity, mainly single
input—single output (SISO) systems are considered, where
0(G(jw)) = a(G(jw)) = IG(jw)I.

It is well-accepted that small process gains may cause
problems. For example, the requirement for avoiding input
saturation is

As mentioned by Mooreand proved below, feedback control
with restricted (low) input resolution results in limit cycles
3(G) (hunting). A simple represgntat?on of restric.ted (I.ow). input
= E resolution is to use a quantized input, as depicted in Figure 1.
g The outputug from the quantizer is

7(G)

and make the following statemen#& large condition number

may b_e caused by a smalalue of o(G), which is ge_nerally U, =0~ round(g) 1)
undesirable. On the other hand, a largelue of5(G) is not

necessarily a problem.

On the other hand, Mootelaims that high sensitivity (high ~ whereq is the quantization step and theund function takes
gains) can be a problem, because of the low input resolution inits argument to the nearest integer. This may, for example,
valves and actuators. He statégalves and other actuators all ~ represent restricted valve resolution and, to some extent, valve
have a minimum resolution, with respect to positioning. These stiction and valve dead bafidAn extreme case with only one
guantization step is an eroff valve.

* To whom correspondence should be addressed: Tel7-7359- Figure 2 shows a feedback system with a quantizer. Here,
4154, Fax: +47-7359-4080. E-mail: skoge@chemeng.ntnu.no. G(9) is the plant transfer function modé{(s) the controllery
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Figure 1. Quantization of a smooth signal.
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Figure 2. Feedback control of a process with restricted input resolution
(quantizer).
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Figure 3. Simulation results for the system in example 1.

the plant output with referenegandu the manipulated variable
(for simplicity, the Laplace variabls is often omitted). The
low input resolution results in a stepwise input “disturbance”
of magnitudeg, and this again results in oscillations in the plant
outputy(t) of magnitudea. Note thata here is defined as the
“total” amplitude from the bottom to the top of the oscillations.

Theorem 1. For the feedback system with a quantizer in
Figure 2, limit cycles are ingtable if there is integral action
in the controller, such that the output, orvexage, has no
steady-state offset.

Proof. At steady state, thevarage value of the output y is
equal to the reference r; that issy/= r, where ysdenotes the
average (“steady-state”)value of \t) as t— . To achiee
this, the input u must, on.erage, equal the followingalue:

_ Y _ 1
"~ G(0) G(0)

@)

uSS

where G(0) denotes the steady-state plant gain. Except for the

special case thatdhappens to correspond exactly to one of
the quantizer leels q (which, in practice, with measurement
noise, will not occur), the quantized inpu§ must then cycle
between at least two of the quantizerdés.

Let us consider the most common case where the output

cycles between the two neighboring quantizer stabilizagsdo
which, here, are denoteg andgp. Letf and (1— f) denote the
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100

Gl& = (10s + 1)(s+ 1)?

(4)

and we use a proportionaintegral (PI) controller,

7S+ 1
K(g) = KC('I—S); K,=0.04, ;=10 (5
|

Note that the integral time is chosen so that we cancel the
dominant pole inG(s) (the IMC tuning rule). The steady-state
plant gain isG(0) = 100. Initially, the system is at steady state,
with u; = g1 = 0 andy = r = 0. We then make a step change
r = 1. The steady-state plant gain@0) = 100; therefore, to
achieveyss = 1, the required average inputigs = 1/100=
0.01 which is closer tg; = 0 thang, = 0.03. The fraction of
time thatuy remains atgy, = 0 is f = (0.03 — 0.01)/0.03=
0.67. As expected, this agrees with the simulations.

Example 2. A similar simulation example witly; = 0 and
g2 = 0.03 is shown in-Figure;3, but for a first-order with del
plant:

ke— Os

GO =71

(6)

with k= 100,60 = 1, andr = 10. We use the same PI controller
as in eq 5 withr; = 7 = 10 andK. = 0.04. The main difference,
in comparison to example 1, is that the step reference change
is much smallerr = 0.2, such that the input stays at the upper
quantizer level of, = 0.03 a much shorter time. The steady-
state plant gain i& = G(0) = 100; therefore, to achiewas=
0.2, the required average inputlig = 0.2/100= 0.002. From
eq 3, the fraction of timely remains aig; = 0 isf = (0.03 —
0.002)/0.03= 0.93. Again, this is consistent with the simula-
tions.

For the simulated system in Figure 3 (see example 1), the
magnitude of limit cycles (oscillations) inis a = 0.189 and
the period isT = 6.72 s. The oscillations ig(t) are observed
to be quite similar to sinusoidal. For the simulated system in
Figure 4 (see example 2), we hase= 0.3 andT = 16.07 s.
However, in this case, the oscillations yt) are far from
sinusoidal.

We next want to derive analytic expressions &oand T.
We first make the simplifying assumption that the resulting
limit cycles are sinusoidal, and then we study the more general
case.

3. Describing Function Analysis of Oscillations (Assuming
Sinusoids)

The quantizer (nonlinearity) that causes the limit cycles can
be regarded as a relay without hysteresis and, in the following,

fraction of time Spent at each of the two levels. Then at Steady is treated as such. As an approximation, the amp“tude of the

state (a$ — =), uss= fq; + (1 — f)gz and we have the following
expression for the fraction of time spends at leved);:

q;—u

SS
04— 0

f= ©)

Note that the closeuss is to one of the quantizer levels, the
longer the timeug will remain on it.

Example 1. As an example, consider the system simulated
in Figure 3, where); = 0 andg, = 0.03 (this may represent an
on/off valve). The third-order plant model is

oscillations can then be determined analytically from an
harmonic linearization or describing function analysis of the
nonlinearity. This analysis is exact if the resulting limit cycle
is sinusoidal. For the feedback system in Figure 2, the condition
for oscillation is given by
N(ayL(w) = — )
where N(a,) is the describing function of the nonlinearity

(quantizer), which is a function of the amplitudg of the
oscillations inu(t) at the quantizer input, and = GK is the
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Figure 4. Simulation results for the system in example 2.
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loop-transfer function (excluding the quantizer). For a relay
without hysteresis, the describing functiofi is

N(a)) = ;—:u ®)

whereq is the relay amplitude (quantization step). Because,
according to eq 8\(a,) is a real number, it follows from eq 7
thatw is actually the ultimate frequencw( 159 and

1 _ 4
IL(o 180l 7,

The amplitude of the corresponding oscillations at the plant
output area = a/|K(jw 180, which leads to

N(a) = 9)

a= M (10)
7
27

T= 11

W\ 1180 (1D

whereT is the period of oscillation. This is exact if the limit
cycles are sinusoidal.

Example 1 (continued).For the system given by egs 4 and
5, OL(jwL 1890 = —a/2 — 2 arctan(l: w159 = —xfrad] =
—180, which yieldsw| 150 = 1 rad/s andG(jw 1s0)| = 4.999.
From a describing function analysis, the period of oscillation
is thenT = 27/w| 150 = 6.28 s, and, from eq 1@ = (4/x)-
qlG(jwL 18] = 0.191. This is in good agreement with the
simulation resultsT = 6.72 s,a = 0.189).

First-Order with Delay Process.Consider a first-order with
delay plantG() controlled by a PI controller withy = t,

—0s
60 =171 2
K(s) = KC(Tli; 1), =1 (13)

For this system, we havBL(jw 180 = —(1/2) — wi 180
—m, which gives w180 (7/2)(116) and |G(w, 159
K/ [(/2)(/7)]*+1. From the describing analysis in egs 10
and 11, we then have

a=-— ak

T (72)@6)]? + 1

andT = 460

(14)

For small delays/r < 1), this givesa ~ (8/7?)q(k/7)0, and

we see that amplitude of the oscillations increases proportionally
with K/t (which is the initial slope of the step response) and
0. For large delaysr > 1), a ~ (4/w)gk, and we see that
amplitude of the oscillations increases proportionally wkith
(steady-state gain) and is independentfofin all casesa
increases proportionally with.

Example 2 (continued).With k = 100,60 = 1, r = 10, and
g = 0.03, eq 14 give§ = 4 s anda = 0.243. This should be
compared with the actual value from the simulations which are
T = 16.1 s anda = 0.296. Taking into account that the
oscillations iny(t) are far from sinusoidal, the value afin eq
14 obtained from the describing function analysis is quite good
(~20% too small). However, the periodis a factor of 4 too
small.

The two examples suggest that the amplitude of eq 17
from the describing function analysis is quite accurate, but they
also indicate that the actual period may be much larger. This
conclusion is confirmed by an exact analysis for a first-order
with delay plant, which is presented next.

4. Exact Analysis of Oscillations for a First-Order Plus
Delay Process

In this section, exact results for non-sinusoidal quantized
responses are derived for a first-order with delay plant that is
controlled by a PI controller witly, = 7. The following theorem
is based on the work by Wang et*al.

Theorem 2. For a system:@n by eqs 12 and 13, set up
according to the configuration of Figure 2 with a quantizerde
g, the amplitude and period of the limit cycle oscillations are

1— e*t]_/‘[ 4 e*T/‘[ _ ef(Tftl)/r

1— efT/z

a=kq (15)

and

T= e(ﬁ + %) (16)

where § = 6/(1 — f) and f is calculated from ¢4 = fq; +
(1 -

Proof. See the Appendix.

Example 2 (continued).With f = 0.933, the amplitude and
period of oscillation calculated using eqs 15 and 16 are
0.2962 andT = 16.07 s, respectively, which matches exactly
the observed results in Figure 4.

Note that the assumption = t is the reason why and T
are independent of the controller settirgsandz,.

In Figure 5, the amplitude/(kq) from eq 15 is plotted as a
function of 6/z for various values of. For small delaysf <
7), a increases almost proportional®y/z; however, for large
values of#, it levels off at a constant value af = kg. Note
thata is dependent only weakly ohn

To compare, the dashed line in Figure 5 represents eq 14
from the describing function analysis. The agreement is gener-
ally very good, with a maximum difference of 27% for large
values of6/z.

On the other hand, note that the period of oscillation can be
very different from that which is observed with the describing
function analysis. From eq 16, the periddncreases propor-
tionally with the delayd, which agress with the valug = 46
in eq 16 from the describing function analysis. However, in
the exact analysig, also is dependent drand goes to infinity
asf approaches 0 or 1. From eq 16, the minimum vaiue 46
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Figure 5. Amplitude a in eq 15, plotted againgl/z, for first-order plus
delay processes. The lower figure is a magnified view of the upper figure
for small values of/r.

is obtained wheri = 0.5, and only this limiting value agrees
with the describing function analysis. This is not too surprising,
because the input is most similar to “sinusoidal” whien 0.5.

5. Controllability Requirements for Systems with
Restricted Input Resolution

Ind. Eng. Chem. Res., Vol. 45, No. 26, 2008027
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Figure 6. Frequency modulation generated using a valve position controller

(KI).

in the controllerk and plantG is 180%. However, for a well-
tuned controller, we typically have| 150~ 1.579; that is,w.

is dependent only on on the effective del@yin the plant.
Specifically, this value applies for a first-order (or second-order)
plant that has been tuned with an SIMC PI(D) contréligne
value is exact whem; is smaller than~86, where the SIMC
rule is 7y = 741, and also applies well for the case whanis
large and the SIMC rule i = 86).

Remark 3. Persistent oscillations are generally undesirable.
Therefore, the allowednax value for oscillations is typically
considerably much smaller(L0%) than the maximum allowed
output deviationymayx i.€., 8max = 0.1ymax

6. How To Mitigate Oscillations Caused by Restricted
Input Resolution

From the describing function analysis, the magnitadef
the output oscillations for the system in Figure 2 is given by eq
14. The magnitude can be reduced, for example, by the
following means:

(a) Change the valve so that the resolution is better (use a
smaller quantization levai).

(b) Redesign the process or the measurement devices to get
a smaller effective delay.

(c) Introduce fast, forced cycles at the input with a higher
frequency than those generated “naturally”. For example, one
may use high-frequency pulse modulation or add a high-
frequency “dither” signal (e.g., amplified measurement noise
caused by derivative action in controller).

(d) “Valve positioner”: Use a measurement @f and add
a local feedback at the input to generate faster cycling (see
Figure 6). This may be viewed as a combination of cases (b)
and (c).

The problem with approaches (b), (c), and (d) is that fre-

Consider a feedback system with restricted input resolution quent input moves may be undesirable, for example, because
(quantized input), as shown in Figure 2. Assume there is integral the valve cannot be moved so quickly or because of excessive
action in the controller, such that there are limit cycles (Theorem weatr.

1). Letamaxdenote the maximum allowed amplitude of the limit
cycles (oscillations) iny. Then, from eq 10, the following
approximate controllability requirement applies:

amax)
q
Note that this condition is dependent on the plant only and,

more specifically, the plant gain at frequenoy 1go
Remark 1. The controllability condition (eq 17) is ap-

|G(jw|_,1ao)| < %( (17)

proximate because it is based on a describing function analysis,

which is exact only for sinusoidal oscillations. Nevertheless,

Frequency (Pulse) Width Modulation. Let us consider, in
more detail, approaches (c) and (d). A system with restricted
(low) input resolution and no (average) steady-state offset is
bound to cycle (Theorem 1) and the amplitudeof the
oscillations is given by the process gain at the frequency of
oscillations (e.g., see eq 10). So far, we have let the system
cycle at its “natural” frequencyy, 1s0 as given by egs 11 and
16. However, because the gdi@(jw)| for most processes is
lower at high frequencies, an attractive alternative is forcing
the system to cycle at a higher frequency.

One approach, (d), uses a valve position controller that is
based on measuringg, as shown in Figure 6. Here, the

the results in the previous section indicates that the gain from controllerK sets the setpoings for the valve position (input),
the describing function analysis is surprisingly accurate. For a and the “internal” valve position controller (KI) adjusts the input
first-order plus delay process, the maximum deviation was only u signal such that the actual inpug matches the desired input

27% (for large values d¥/t). Thus, eq 17 is expected to provide
a tight controllability condition.

Remark 2. The controller has some effect on the condition,
becausev 1g0is the frequency where the sum of the phase lag

Us (at least on average). The valve position controller (KI) should
have integral action, or a sufficiently high proportional gain,
such that the internal loop cycles. The frequency of the cycling
is determined by the effective delay in the “internal” valve
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generating high-frequency oscillations. Alternatively, for an on/off valve, With valve positioner

a clock may be used to set the frequency while the controller sets the pulse : -

width. 0.03r 1 1111
. . . 0.02+ j

position loop, which generally is much smaller than the delay g% v
in the overall outer loop. The results is that the frequency of 0.01- :
the oscillations is much higher and the resulting amplitade .
of the output_is m_uch smaller. This i_s consistent with the % 20 40 60 30 100
recommendations in thinstrument Engineers’ Handbogk Without valve positioner
where it is noted that a positioner can reduce the dead band 0.03F g : ; , ]
of a valve/actuator combination from as much as 5% to ’ , . .

However, one may not have a measurement of the actual input = : _ .
Ug, and a valve position controller is, in fact, not necessary to 0.01F : : : 1
reduce the effect of low input resolution. A more general 0 ; ; ‘ ;
approach, (c), is to introduce forced pulsing by adding a 0 20 40 60 80 100
frequency modulatoF at the output of the controller. One Time

realization forF is an internal feedback loop, as depicted in Figure 8. Effect of using valve position control for the system in
. A - example 2.

Figure 7. This is similar to the valve positioner controller, except

that we need an internal quantizer, because there is no
measurement afi;. The modulator forces the system to cycle
at a higher frequency than that which follows “naturally”. For
example, forced pulsing is commonly used for on/off valves in
small-scale plants where the valve may open or close every

second and the controller sets the average pQ_S'tlon' Figure 9. Block diagram of a feedback control system with disturbance at
Example 3. Through the use of a valve position controller, the input of the plant.

as shown in Figure 6, the response of the system in eqs 12 and
13 is depicted in Figure 8. The valve dynamics is assumed to 7. Input (Load) Disturbance
be a delay of 0.1, and the remaining procd&3sl{as a delay of
0.9. As it can be seen, the output amplitude is drastically reduced
at the expense of h|gh—frquency input 050|Ila.1t|o.ns. . y(s) = G(9)U(s) + Gy()d(s) (19)
P-Control. Another potential approach to eliminate oscilla-
tions is to ug a P controller (with a sufficiently low controller  whereG is the plant modelGq the disturbance modey; the
gain). However, in practice, this approach is not acceptable, pjant outputu the manipulated variable, antthe disturbance
because it results in an unacceptable steady-state offset. Congfor simplicity, the Laplace variablgis often omitted). Without
sider a set-point changefor which the desired input to achieve  control, the effect of disturbances on the outpuf is Gy(s)d,
no offset isuss = r/G(0) (see eq 2). Assume thats such that  and the term “large” disturbances means that the procl
Uss is between two quantization levels for the input. For any s |arge, such that the output deviatityn will be large, unless
non-oscillating control system, including feedforward, we e apply control. In this section, input disturbances are mainly
then haveAu = |ug — Usd = /2 and the resulting offsetin the  considered, i.e.Gy = G. This case s illustrated in Figure 9,
output is whered = d, is the disturbance at the plant input.
Feedforward Control. As mentioned in the Introduction, a
= o < q large plant gain, especially at steady state, is a problem with
ly == 1G0) IUg — Usd = IG(O)|2 (18) feedforward control. As an example, consider a plant G(u
+ d), whered = d, is the input (load) disturbance. Clearly, if
From this observation, we conclude that the offget r| will |G| is large, thenu + d| must be small, to avoid a lardg|.
be large for a plant with a large steady-state gaB{0)|, so P With feedforward controly is adjusted based on measurihg
control is, in practice, not recommended as a method to mitigate First, an accurate measurementdds required and it must be
oscillations. possible to adjust such thafu — d| is small. The latter is not

Consider a plant model in deviation variables
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possible with restricted input resolution. For example, returning implications, in terms of the steady state, are discussed next by

to the example of Moofefrom the Introduction: ju — d| = considering a first-order with delay plant,
2% and|G| = 10 givesly| = 20%, all at steady state. o
Feedback Control.On the other hand, with feedback control, ke
G(s) = Gy(s) = (23)

“large” disturbances are not necessarily a problem, at least not
at steady state. Consider a single disturbahd&#ithout control, ) _ )
the steady-state sinusoidal response ftbimthe output is/(w) wherek = |G(0) is the steady-state gain of the plant. The high-
= Gq(jw)d(w), where phasor notation is used ddb)| denotes  frequency asymptote iS(jw)| ~ Ko = K/w, wherek' = k7
the magnitude of the disturbance at frequencyWe assume IS the initial slope of the step response. With~ 0.56, eq 22

s+1

that the magnitude is independent of the frequency,|d&u)| gives the controllability requirement:

= do, and we assume that the control objective is that the output

is less tharymaxat any given frequency, i.dy(w)| < Ymax From k_ K < ()_‘u.-,y”‘_ax (24)

this, one can immediately draw the conclusion that no control T o1d,|

is needed ifGq(jw)do| < Ymaxat all frequenciegin which case _ s _

the plant is said to be “self-regulating'lf |Ga(jew)do| > Ymax at Equation 24 may seem to |nd|catg .that a plant with a large

some frequency, then control is needed. With feedback control Steady-state gaikis fundamentally difficult to control (see case

(U = —Ky), we gety(s = S9Gu()d(s), where S is the 1 below). However, as discussed in case 2, this is not always

sensitivity function 8= (I + GK)~1). The requirementy(w)| true, because, according to eq 22, it is the gain at frequeRcy

< ymax then becomes that should be small and a process can have a large steady-

state gain while having a small gain at high frequency.

|S(jw)|* |G iw)|d(w)] < Ymax Do (20) Case 1.In some cases, a large steady-state gamplies a

large gain at high frequencies, resulting in not being able to
With integral action in the controllefs is zero at steady state;  satisfy the controllability requirement in eq 21. A physical
therefore, generally, it does not mattef@| is large at steady = example is a pH neutralization process, as studied in chapter 5
state (provided there is no problem with input saturation, but in the work of Skogestad and Postlethw&it€he component
this is mainly a design issue rather than a control issue). balance for the excess of agidjives the modetysy(s) = 1/e
However,|S increases with frequency and crosses a value of 1 u(s) — y(s). wherer, is the residence time andthe neutraliza-
at the bandwidth frequenays |Sjws)| = 1. At this frequency, tion flow. This is of the form of eq 23, witlk = 1/e andz =
the requirement described by eq 20 gives the controllability 7. The reason for the small value efis that the desired

requirement concentration in the tank/( can be on the order of $§@maller
than in the neutralization inflow. Because of the large high-
Gyl < Ymax 1) frequency gain, this plant is not controllable, according to eq
d |d(wg)| 22, and a design change is required, for example, where the

neutralization is done in several steps (tanks) rather than in a
Input Disturbance. However, the purpose of this paper is single step.
not to consider plants for whiclGg| is large, but rather plants Case 2.As an example of a case where a large steady-state
for which |G| is large (in practice, these are often related, gain does notimply control problems, consider a near-integrating
because all plants have disturbances at the input to the plant)process:
To this effect, we consider input (load) disturbandg®r which

Gq4(s) = G(9) (see Figure 9). Hence, eq 21 gives the following G(s) = (L)e*GS (25)
controllability bound on the allowed plant gain at frequency Ste
ws

This is of the form of eq 23, witlk = k'/e andt = 1/e. Thus,

ase — 0, the steady-state ga®(0) = k'/e approaches infinity,
(22) but the high-frequency slope of the gakh remains finite,
ldy(wgl because it is independent ef so eq 24 may not impose any
controllability limitation. A physical example is a liquid level
wheree represents the self-regulating effect. The mass balance
may be written asAV(S) = Adin — AQou, Where the linearized
is smaller at high frequency, so the bound is easier to satisfy if out%;ow is AQout = k'AZ((g) + GXQ/(S) aﬂﬁ]tz is the valve position.

wsis increased. However, for stability reasons, the valueof . _ g tor the case when the outflow is only dependent weakly
is limited, an“d a ty|_0|cal upp?r bound iss ~ 0.5, where onV. With y = AV, u = AZ, andd = Agy, this results in a
denotes t.he effective delay” around the feedba_ck [Bop. model of the form in eqs 25 and 23.

Input disturbances are very common, but what is the expected
value of |dy|? This is difficult to answer, because input 8. Di .

. . . Discussion
disturbances have many sources. For example, in many cases,
the input is a valve that receives its power from a hydraulic ~ We have derived expressions for the amplitude and period
system (e.g., the brakes of a car) or from pressured air (manyof oscillations that result with feedback control of a system with
process control applications). A change (disturbance) in the restricted input resolution (quantizer). Importantly, the amplitude
power system will then cause an input disturbance. The value and period were determined (under certain assumptions about
of |dy| will vary, depending on the application. If it is assumed the integral time) to be independent of the controller gain.
that the system has been scaled such that the largest expectedowever, note that the time before cycling actually starts may
input u is of magnitude 1, then it seems reasonable [tthatis be considerably longer than the periddof the oscillations,
at least 0.01, and that a typical value is 0.1 or larger. and that this start-up time is dependent on the controller gain.

Steady-State Implications.The condition described by eq By detuning the controller (reducing the controller gain),
22 provides a bound on the plant gain at frequeagy The generally a longer time is required for the oscillations to start.

ym ax

IG(jwg)| <

This bound is independent of the controller and, thus, provides
a fundamental controllability requirement. In most cagés,
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This is confirmed by the simulations in Figure 3 in McAvoy
and Braat? where a detuned controller gives no oscillations
with a simulation time of 80 s. However, it is easily confirmed
that oscillations do indeed develop if the simulation time is
extended to 95 s or more.

In this paper, we have considered the effect of input (valve)
inaccuracy and input load disturbances, with the following
corresponding controllability requirements:

6ol < 222) a7)
. ymaX
Gl < o @2)

Which condition is the more restrictive? There is no general
answer, but let us first consider two reasons for why the latter
(input disturbance) may be more restrictive. First, the input
disturbanced,| is normally larger than the quantization stgp

Second, the bound for input load disturbance occurs at a lower

frequencyws, where the gainG(jw)| is generally larger than
that at frequencw 150 Especially, assume that the magnitude
of the first-order plus delay plant in the high-frequency range
can be approximated B&(jw)| = kitw. Then, taking the typical
valuesws = 0.50 and w180 = 1.5/, we get

IGlwg| @i ag0 3
IG(wy 180 Wg

(26)

This leads to the conclusion that the output deviation caused

by an input disturbance is likely to be larger than the sustained
output variations caused by restricted input resolution. On the

q;

Cb)

¢ t T Time
0

Figure 10. Input to be applied to the system in eq 15.

resulting output variables are therefore smaller. We may also
introduce forced cycling or use valve position control to reduce
the output variation further.

9. Conclusion

In this paper, controllability requirements are derived for two
types of input errors, namely (i) restricted input resolution (e.g.,
that caused by valve inaccuracy) and (ii) input disturbances.

In regard to type i, limited input resolution with integral
feedback control (no steady-state offset) causes limit cycle
behavior (oscillations) (see Theorem 1). The magnitude of the
oscillations can be reduced by pulse-modulating the input signal
or using valve position control, but this assumes that frequent
input movements are acceptable. The controllability requirement
derived from an approximate describing function analysis,
assuming no forced oscillations, is

GG 1691 < %(%X) &)

whereL = GK and, typically,w 130 ~ 1.56 (where@ is the

other hand, we are less likely to accept sustained oscillationseffective delay in the loop). The variab#ax is the allowed

(amay than short-time deviationgi{ay), SO one could argue that
amax IS usually smaller thaymax (a typical value may b@max

= 0.2Ymay. In summary, it is not clear which is the more
restrictive.

McAvoy and Braat? have stated that, for control purposes,
the magnitude of the steady-state process dair (G(0)))
should not exceed 50. In this paper, we have derived control-
lability conditions, eqs 17 and 22, that limit the plant gain at
frequenciesy| 150 andws, respectively. These conditions have
some implications for the steady-state gain which, in special
cases, may provide some justification for the rule-of-thumb of
McAvoy and BraatZ. Specifically, the expression described by
eq 18 for steady-state offset with P control gikes (2|y —
r|)/q. For example, witlg = 0.02 andly — r|max = @max= 0.2,
this requiresk < 20. Thus, P control should only be used for

plants with a small steady-state gain. Furthermore, eq 22 may

be rewritten, as in eq 24, to get< 0.5yma(t/60|d,|). If we select
[Ymaxd = 1, |dy| = 0.1, ande/6 = 10 (similar to that used in the
simulation in McAvoy and Braat}, we then derive a bound of

k < 50. However, note that the bounds described by eqgs 18

magnitude for the resulting sustained output oscillations (limit
cycles). This expression agrees well (within 27%) with an exact
nonlinear analysis for a first-order plus delay process. With
forced oscillations (pulse modulating the input signal), we can
select the frequency to be much higher than the “natural”
cycling frequencyw 150 and the controllability limitations are
generally less restrictive.

In regard to type ii, for input (load) disturbances of magnitude
|dul, the controllability requirement is

Ymax

|dy(@9)]

whereymaxis the allowed magnitude of the resulting short-term
output deviation and, typicallyys ~ 0.5/6.

In summary, large gains at frequencies around the closed-
loop bandwidth ¢s, w180 may cause problems with feedback
control. There is no controllability condition that involves the
steady-state gaik = |G(0)| only, so a large steady-state gain
is not, by itself, a problem for feedback control.

IG(jog)l < (22)

and 24 do not imply that large steady-state gains are always a

problem for control. First, eq 24 is derived for a first-order with
delay model wher& andt are assumed independent, whereas

10. Appendix. Proof of Theorem 1

they often are coupled (e.g., see eq 25). Second, eq 18 applies Consider the first-order plus delay process in eq 12. Now,
to P control and the implication is that integral action must be assume this process is excited by a periodic and persistent input
added for control of such processes. (it is applied because> 0) of the form given by Figure 10. It

In the Introduction, we referred to a case by Mdobotieat represents the signal generated from a relay without hysteresis
seems to prove that a large steady-state gain (i.e., large gain ain which g; and g, are the limit valuest; is the time interval
zero frequency) gives large output variations (poor control) when whereug remains ingy, andT is the period of oscillationT =
we have restricted valve resolution. However, in practice, the t; + t3). This signal can be represented in the Laplace domain
system will not cycle at a low frequency, but rather at a higher as a series of steps delayed in time. Assume now, without a
frequency (. 180, where the process gain is smaller and the loss of generality, that, = 0 and g1 = g. The resulting



transformed signal is given by

_ 94 _ ts —Ts _ _—(t;+T)s
uq(s)—s(l e "te et +

e s —e ut2Ns 4 ) (27)

When this signal is applied to the process in eq 12, oscillations

result in the output.

The set of maximum (or minimum) values of these oscilla-

tions are such that= {tjt = t; + mT+ 6, Om €N} and the
minimum (or maximum) values are found in the set {t|t =
mT + 0, Om € N}.

The maximum (or minimum) & + T<t< 6 +t; + Tis

y(s) = (rs—'_‘H)e‘“(%)(l —ede ™ 28)
which, inverted to the time domain, gives
y(t) = kgl — e @O g 0TI 4 om0y (00
Thus, the maximum (or minimum) is
Yt + T+ 0 =kgl—e " +e ™ +e M (30)

Hence, the maximum (or minimum) amplitudgy, can be
extended to

S kq(l _ eftllr 4 e*T/‘[ _ o utTlt 4 e*ZT/‘[ _

) (31)

which can be written as

yeth: kq[(l _ e—tllr)(l 4 e—T/r 4 e—2T/r 4 e—ST/r 4 )]
(32)

The infinite sum in eq 32 is given by
n

. 1
imS§ (e")y=—— (33)
n—o & 1— e*T/T

where the fact that (€/")" converges to zero asapproaches

infinity is used.
Accordingly,

(34)

1— eftllr
1— e—T/r

yextl = kq(

The minimum (or maximum) af +t; + T <t < 0 + 2T,

Yext2 IS determined by following the same development process

used to derive/exu, i.€.,

—T/t —t,/1
e "1—-e)
Yextz = kq[ 1— e_-|-/I ] (35)
The amplitude is calculated By = Yexi1 — Yextz OF
_ atlt Tt _ —(T-t)ht
a= kQ(l ° :__e e 1" = ) (36)

The formula in eq 36 is dependent grand T, which must be
determined.
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From Figure 2,

u(s) = K(9)[r(s) — y(s)] 37)

whereK(s) is given by eq 13¢(s) is a step change in reference
(r(s) = rofs), andy(s) = K(s)G(s)uq(S), whereG(s) is given by
eq 12.

In the limit whent — oo, the quantizer behaves exactly as
the relay depicted in Figure 10 and, assuming thaand g,
are arbitrary values, the first three termsugfare

Uq(S) _ Q_SZ i a; ; 4z (eftls _ ef(t1+t2)5), (38)

where the fact thal = t; + t, is used.

Consider a PI controller. Substituting eq 38 into eq 37 and
inverting it to the time domain, the following equation faiit)
in the interval@ < t < tg + 0 is observed:

KC —(t—
() = —rolt + 1) — kepl(z — (1 — & ) + t— 6]}
| (39)

For the intervald + to <t < to + t; + 0, u(t) is given by

K —(t—
u(t) = f{ro(t + 1) — kg l(r, —7)(1 — e (t 0)/17) T
|

t— 0] — kg, — RI(r, — )L — e )+t —t, — 6]}
(40)

Similarly, for the intervald + to+ty <t <tp+t; +t, + 0,

Ke o
u(t) = —{ro(t + ) — kepl(r — 7)1 - e oy 4
|

t= 0]~ Ko~ G)l(r — )L —e ) +
=t = 0]+ Ky~ l(m — DA — e +
t-t -t =6} (41)

So far, no assumptions on the controller settifgsandz))
have been made. The expressions described by eg#139
become drastically simplified if the integral time is selected as
71 = 7, which is an appropriate setting for many plahts.

Furthermore, for a relay without hysteresis, its outpyt})
changes because its inpuit)) is equal to zero, and, because
the quantizer behaves as a relay whefr o, the following
equations give relations fdg andt.

Fort = to:
ro(ty + 7,) = kay(ty — 0) (42)
Fort =tg + tg:
o(ty +t, + 7)) = kap(ty + t; — 8) — k(a, — 9)(t; — 6)
(43)

Fort =1ty + t1 + to:

rO(tO +t,+t,+ ‘L’l) = qu(to +t,+t,— 0) —
k(dy — a)(ty +t, — 0) +k(a;, — gy)(t, — 0) (44)

Combining eqs 4244, the following expressions give the
period T of the oscillations:
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