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In this paper, we characterize the achievable input performance for linear time invariant
systems under feedback control. We provide analytical expressions for minimal input require-

ment for stabilization in both of the H2 and H1 optimal control frameworks. The achievable
input performance primarily depends on the joint controllability and observability of unstable
poles. These results are also extended to systems with time delay. It is shown that time delay

poses no serious limitations on the achievable input performance for systems with slow
instabilities and vice versa. The proposed results unify the available results on input perfor-
mance limitations and are useful for various purposes including selection of variables for

the stabilizing layer, process design and formulation of the optimal controller design problem.

1. Introduction

In this paper, we characterize the minimal control effort
required for stabilization of linear time invariant
systems under feedback control. This problem is impor-
tant in practice because input saturation is often the
main problem for system stabilization. In the H2 control
framework, the problem of control effort minimization
is the dual of the well studied minimum variance or
cheap control problem (Qiu and Davison 1993, Huang
and Shah 1999). It is known that the output perfor-
mance of the system is limited by its unstable zeros
and time delay. Similarly, the unstable poles and time
delays pose limitations on the minimal control effort
required for stabilization. Here, the minimal control
effort required for stabilization is referred as the
achievable input performance.
The broad area of fundamental performance limita-

tions has drawn a lot of interest in the past two decades.
An overview of the available results and some recent
developments in this area can be found in Skogestad

and Postlethwaite (1996), Seron et al. (1997), Chen and

Middleton (2003) and their references. Though the

focus has largely been on obtaining bounds on sensitivity

and complementary sensitivity functions, which primar-

ily address output performance issues, (see e.g. Chen

2000), some researchers have considered characterizing

achievable input performance directly or indirectly.
Glover (1984) studied the robust stability of systems

in the presence of unstructured additive uncertainty.

With this description of uncertainty, maximizing robust

stability is equivalent to minimizing the H1 norm of

the transfer matrix from disturbances to inputs.

Clearly, the results of Glover (1986) are relevant to the

problem considered here, but the disturbance model

and frequency dependent weight are assumed to be

minimum phase stable. Havre and Skogestad (2001)

relaxed the assumption of a minimum phase stable

disturbance model and frequency dependent weight,

and derived expressions for a lower bound on the achiev-

able input performance. Using a novel approach of pole

vectors, Havre and Skogestad (2003) provide exact

expressions for rational systems with a single unstable

pole driven by measurement noise. Chen et al. (2003)

studied the optimal regulation problem with input

usage penalized for rational unstable systems driven by

input disturbances in theH2 optimal control framework.
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These results can be related to the present problem
by an appropriate choice of weights.
It is clear from the previous discussion that, whereas

optimal and sub-optimal solutions for different
instances of the achievable input performance char-
acterization problem are available, the solution for the
general case is lacking. This motivates the present
work. In this paper, we characterize the minimal input
requirement for stabilization in both of the H2 and H1
optimal control frameworks. The system is considered
to be driven by output disturbances, where the distur-
bance model may share unstable poles with the system.
This representation is not limiting and the case of input
disturbances is easily handled by setting the disturbance
model same as the system. We further generalize these
results to systems with input–output time delay. It is
shown that time delay poses no serious limitations on
the achievable input performance for systems with
slow instabilities and vice versa. We consider both
single-input single-output (SISO) and multi-input
multi-output (MIMO) systems. Naturally, the results
presented for MIMO systems are also applicable to
SISO systems. The results presented here are useful
for (i) selection of input and output variables for
stabilization (Havre and Skogestad 2003); (ii) process
design considering achievable control performance and;
(iii) optimal controller synthesis problem formulation.
For a given system, the control effort required for

stabilization can easily be calculated using available
numerical techniques for optimal controller design.
A limitation of such a numerical approach is that it
does not provide any information regarding the factors
limiting the input performance. These insights are
useful for making appropriate design modifications,
when the system cannot be stabilized by constraining
the inputs of the system within their maximal allow-
able ranges. In some special cases, these insights can
also provide simple analytic methods for selection of
variables for the stabilizing layer (Havre and
Skogestad 2003).
The organization of the remaining discussion in this

paper is as follows: key results from linear systems
theory including optimal control are reviewed in x 2;
the problem of designing the optimal controller that
minimizes input usage for stabilization is formulated
and simplified in x 3; the achievable input performance
for SISO and MIMO systems is characterized in x 4
and x 5, respectively; x 6 concludes this paper.

2. Preliminaries

In this section, we standardize notation and collect some
general results from linear systems theory, which form
the basis for further development in this paper.

2.1. Notation

We represent matrices by boldface uppercase letters and
vectors by boldface lowercase letters. Given a matrix
A 2 C

m�n, A0 is its transpose and A� is its complex con-
jugate transpose. Ai denotes the ith column of the matrix
and accordingly A0i represents the ith row. A matrix
made of elements a11, . . . , a1n, . . . , amn is represented as
½aij�. The maximum and minimum eigenvalues (singular
values) are represented as ���ðAÞ and �ðAÞ ( ���ðAÞ and �ðAÞ)
respectively. �ðAÞ denotes the spectral radius of the
matrix. For A,B 2 C

m�n, A � B is the element-wise or
Hadamard product.

For a transfer matrix GðsÞ, uzi and yzi are called the
input and output zero directions, corresponding to the
zero zi, respectively if (Skogestad and Postlethwaite
1996)

GðziÞuzi ¼ 0 and GðsÞuzi 6¼ 0 8s 6¼ zi

and y�ziGðziÞ ¼ 0 and y�ziGðsÞ 6¼ 0 8s 6¼ zi:

With a slight abuse of terminology, the poles of GðsÞ
can be alternatively defined as the zeros of G�1ðsÞ.
Then upi and ypi are called the input and output pole
directions, corresponding to the pole pi, respectively
if (Skogestad and Postlethwaite 1996)

u�piG
�1
ðpiÞ ¼ 0 and u�piG

�1
ðsÞ 6¼ 0 8s 6¼ pi

and G�1ðpiÞypi ¼ 0 and G�1ðsÞypi 6¼ 0 8s 6¼ pi:

The set of all rational stable systems is denoted asRH1.
Let GðsÞ ¼ G1ðsÞ þG2ðsÞ such that G1ðsÞ 2 RH

?
1 and

G2ðsÞ 2 RH1. Then G1ðsÞ is the unstable projection of
GðsÞ represented as UðGðsÞÞ, where UðGðsÞÞ 2 RH?1.
The H2 and H1 norms of the transfer matrix
GðsÞ 2 RH1 are defined as

kGðsÞk22 ¼
1

2�

ð1
�1

tr Gð j!Þ�Gð j!Þð Þd!

kGðsÞk1 ¼ sup
ReðsÞ>0

���ðGðsÞÞ ¼ sup
!2R

���ðGð j!ÞÞ:

The symbol $ represents the minimal state space reali-
zation of a transfer matrix, e.g. GðsÞ $ ðA,B,C,DÞ.
Consider that for GðsÞ 2 RH1, there exists X,Y � 0
which solve the following Lyapunov equations

AXþ XA� þ BB� ¼ 0

A�Yþ YAþ C�C ¼ 0:

Then X,Y are called the controllability and observ-
ability gramians, respectively. Furthermore, �HiðGðsÞÞ ¼
�1=2i ðXYÞ are the Hankel singular values of GðsÞ
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(Glover 1984, Zhou and Doyle 1998), which are a
measure of joint controllability and observability of
the poles of the system. As before, the maximum and
minimum Hankel singular values are represented as
���HðGðsÞÞ and �HðGðsÞÞ respectively. The state space
realization of the transfer matrix is said to be balanced,
if the X and Y that solve the corresponding Lyapunov
equations are diagonal and equal. For notational conve-
nience, we drop the frequency argument for a transfer
matrix in the remaining discussion, i.e. GðsÞ is simply
represented as G.

2.2. All pass factorization

A linear system with right half plane (RHP) poles and
zeros can be factored into an all-pass factor and a mini-
mum phase or stable part. Such a factorization is useful
for manipulation and simplification of expressions
arising later in this paper. The two popular approaches
for all-pass factorization of linear systems are inner–
outer factorization and use of Blaschke products. For
SISO systems, both these approaches produce identical
results. For MIMO systems, use of Blaschke products
provides analytical expressions and is preferred over
inner–outer factorization in which solution of algebraic
Riccati equations (AREs) is required (Morari and
Zafiriou 1989). The idea of using Blaschke products
for factorization of RHP poles and zeros was introduced
by Wall et al. (1980) and has been earlier used for
characterization of achievable performance by Chen
(2000) and Havre and Skogestad (2001).
Let fzig, i ¼ 1, . . . , nz be the non-minimum phase or

RHP zeros of G. Then G can be factored as follows:

G ¼ G1
B1 B1 ¼ I�

2Reðz1Þ

sþ z�1
ûuz1 ûu

�
z1
; ð1Þ

where ûuz1 is the input zero direction of z1. With this
factorization, z1 is not a zero of G1. By repeated applica-
tion of (1) on Gi, i ¼ 1, . . . , nz � 1, G can be factored
into a minimum-phase part and an all pass filter as

G ¼ GmiBzi Bzi ¼
Ynz
i¼1

I�
2ReðziÞ

sþ z�i
ûuzi ûu

�
zi

� �
: ð2Þ

In (2), Gmi is minimum phase with the RHP zeros of G
mirrored across the imaginary axis and Bzi is an all pass
filter. Note that except for the direction associated with
the zero factored first, ûuzi differs from uzi , as it is calcu-
lated based on Gði�1Þ and not G. The RHP zeros can
be alternatively factored at system’s output similarly

G ¼ BzoGmo Bzo ¼
Y1
i¼nz

I�
2ReðziÞ

sþ z�i
ŷyzi ŷy

�
zi

� �
: ð3Þ

When G has RHP poles at fpig, i ¼ 1, . . . , np, these poles
can also be factored into a stable part and an all pass
filter on the input and output sides as follows:

G ¼ GsiB
�1
pi B

�1
pi ¼

Y1
i¼np

Iþ
2ReðpiÞ

s� pi
ûupi ûu

�
pi

� �
ð4Þ

G ¼ B�1po Gso B
�1
po ¼

Ynp
i¼1

Iþ
2ReðpiÞ

s� pi
ŷypi ŷy

�
pi

� �
: ð5Þ

For later development in this paper, we derive the
balanced state-space realization of the Blaschke product
B
�1
pi . For notational simplicity, we consider that the

number of unstable poles np ¼ 2 and similar results
can be derived for systems with np > 2 by induction.
A similar method has been used by Chen (2000) earlier
for finding the balanced realization of Bzi.

Let B�1pi ¼ B
�1
p2
B
�1
p1
. Using (4), the balanced realization

of B�1pi
is given as B�1pi

$ ðAi,Bi,Ci,DiÞ, where

A i ¼ pi Bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ReðpiÞ

p
ûu�pi Ci ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ReðpiÞ

p
ûupi Di ¼ I:

ð6Þ

Using (6), the balanced realization of B�1pi is given as
B
�1
pi $ ðA,B,C,DÞ, where

A ¼
A2 B2C1

0 A1

" #

¼
p2 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reðp1ÞReðp2Þ

p
ûu�p2 ûup1

0 p1

" #

B ¼
B2D1

B1

" #
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Reðp2Þ

p
ûu�p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Reðp1Þ
p

ûu�p1

2
4

3
5

C ¼ C2 D2C1

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Reðp2Þ

p
ûup2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Reðp1Þ

p
ûup1

h i
D ¼ D2D1 ¼ I:

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

ð7Þ

2.3. Optimal control

In this paper, we use a state-space approach for charac-
terization of achievable input performance. For this
purpose, we briefly review the pioneering results on H2

and H1 optimal control due to Doyle et al. (1989).
Further details can be found in many recently published
textbooks dealing with optimal control, e.g. Zhou and
Doyle (1998). In later sections, we show how these
general results simplify when input performance is
maximized.
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Let z and w denote the exogenous outputs and inputs
and, y and u be the measured and manipulated vari-
ables, respectively. The model of the generalized plant
from w to z has the following form

_xx ¼ Axþ Bwwþ Bu

y ¼ CxþD21w

z ¼ CzxþD12u:

ð8Þ

Assumption 1: System (8) is assumed to be in the
standard form (Doyle et al. 1989)

(a) ðA,BwÞ is stabilizable and ðA,CzÞ is detectable.
(b) ðA,BÞ is stabilizable and ðA,CÞ is detectable.
(c) D�12D12 ¼ I and D�21D21 ¼ I.
(d) D�12Cz ¼ 0 and D�21Bw ¼ 0.

In addition, the assumptions that D11 ¼ 0 and D22 ¼ 0
are implicit in the realization of the generalized
plant (8). The assumption that D22 ¼ 0 can be easily
satisfied by a linear fractional transformation on the
controller K (Zhou and Doyle 1998, p. 261). D11 ¼ 0 is
necessary for well-posedness of the H2 optimal control
problem. In general, this assumption can be relaxed
for the H1 optimal control problem, but this compli-
cates the formulae substantially. Some additional details
on physical interpretation of Assumption 1 and trans-
forming the problem to satisfy them can be found
in Skogestad and Postlethwaite (1996, p. 363).
It follows from Assumption 1(a)–(b) that there exist

X2,Y2 � 0, which solve the following AREs,

A�X2 þ X2A� X2BB
�X2 þ C�zCz ¼ 0

AY2 þ Y2A
�
� Y2C

�CY2 þ BwB
�
w ¼ 0:

Let Tzw be the closed loop transfer matrix from w to z.
The unique controller minimizing kTzwk2 is given
as (Doyle et al. 1989):

Kopt ¼
Aþ BF2 þ L2C �L2

F2 0

" #
; ð9Þ

where F2 ¼ �B
�X2, L2 ¼ �Y2C

� and optimal cost
is (Zhou and Doyle 1998),

I22 ¼ inf
K
kTzwk

2
2 ¼ trðB�wX2BwÞ þ trðF2Y2F

�
2Þ: ð10Þ

For the minimization of kTzwk1, let X1,Y1 � 0 solve
the following AREs,

A�X1 þ X1A� X1ð�
�2BwB

�
w � BB�ÞX1 þ C�zCz ¼ 0

ð11Þ

AY1 þ Y1A
�
� Y1ð�

�2C�zCz � C�CÞY1 þ BwB
�
w ¼ 0;

ð12Þ

where � > 0. The existence of X1,Y1 � 0 that solve the
AREs (11)–(12) is guaranteed, if Assumption 1 holds
and �ðX1Y1Þ < �2. A suboptimal controller achieving
kTzwk1 < � is (Doyle et al. 1989)

where F1 ¼ �B
�X1, L1 ¼ �Y1C

� and Z1 ¼

ðI� ��2�ðX1Y1ÞÞ
�1. The optimal cost is given as

I1 ¼ inf
K
kTzwk1 ¼ �

1=2ðX1Y1Þ ð14Þ

3. Problem formulation and simplification

In this section, we formulate an optimal controller
design problem that minimizes input usage for stabil-
ization. It is shown how the general results on optimal
control can be simplified when only input perfor-
mance is considered. This simplification in turn enables
us to explicitly characterize the achievable input
performance.

Consider the system shown in figure 1, where all
exogenous inputs have been collected in the block Gw.
The closed loop transfer matrix from disturbances to
inputs is given as

Tuw ¼WuK IþGKð Þ
�1Gw: ð15Þ

The objective is to characterize the minimal input
usage required for stabilization expressed in terms of

Ksub ¼
A1 ¼ Aþ ��2BwB

�X1 þ BF1 þ Z1L1C �Z1L1

F1 0

" #
; ð13Þ

Figure 1. Closed loop system for characterization of achiev-

able input performance. The effect of all exogenous inputs
including sensor noise, disturbances and set point changes is
collected in Gw.
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the norm of Tuw as

Ii ¼ kWuK IþGKð Þ
�1Gwki i ¼ 2,1: ð16Þ

Assumption 2: We make the following assumptions

(a) G is strictly proper.
(b) Wu is left invertible and (if unstable) has the same

unstable poles as G with the associated input pole
directions.

(c) Gw is right-invertible and (if unstable) has the same
unstable poles as G with the associated output pole
directions.

Assumption 2(a) is made for notational simplicity
and the extension to the general case is simple
(see Zhou and Doyle (1998, p. 261) for details). The
left and right invertibility of Wu and Gw, respectively,
ensures that the optimal controller design problem is
non-singular.
To illustrate the necessity of Wu and Gw having the

same unstable poles as G with the associated input
and output pole directions respectively, consider that
Wu ¼ I and Gw has a single unstable pole pw such
that G�1w ð pwÞypw ¼ 0. Let p1, . . . , pnp , Reð piÞ � 0 be the
unstable poles of G such that G�1ðpiÞypi ¼ 0. For
internal stability, the unstable poles of G and GK are
the same and

K�1G�1ð piÞypi ¼ 0

Iþ K�1G�1ð piÞ
� �

ypi ¼ ypi

GKð piÞ IþGKð piÞð Þ
�1ypi ¼ ypi

Kð piÞ IþGKð piÞð Þ
�1ypi ¼ G�1ð piÞypi ¼ 0: ð17Þ

Equation (17) is similar to the interpolation or analyti-
city constraints on sensitivity and complementary sensi-
tivity functions derived by Zames (1981). It follows
from (17) that the location and input zero directions
of K IþGKð Þ

�1 are same as the locations of RHP
poles and output pole directions of G. Defining the sen-
sitivity function as S ¼ IþGKð Þ

�1 and using the results
on Blaschke products (2) and (5),

KSGw ¼ ðKSÞmi BziðKSÞ B
�1
po ðGwÞ ðGwÞso

¼ ðKSÞmi BpoðGÞ B
�1
po ðGwÞ ðGwÞso:

If the controller is designed to stabilize KS, the stability
of Tuw depends on the stability of BpoðGÞ B

�1
po ðGwÞ. Since

the Blaschke products can be calculated for any permu-
tation of poles and zeros, BpoðGÞB

�1
po ðGwÞ is stable if and

only if pw ¼ pi and ypw ¼ ypi for some i, i ¼ 1, . . . , np.
Similar conclusions can be drawn when Gw has more
than one unstable pole or when Wu is also unstable.

With Assumption 2, let Wu and Gw be factorized as

Wu ¼ B
�1
po ðWuÞBzoðWuÞðWuÞsm

Gw ¼ ðGwÞsmB
�1
pi ðGwÞBziðGwÞ;

where ðWuÞsm and ðGwÞsm are the stable minimum-phase
parts of Wu and Gw, respectively. Define

ĜG ¼ ðGwÞ
�1
smGðWuÞ

�1
sm ð18Þ

K̂K ¼ ðWuÞsmKðGwÞsm;

where ĜG is an ny � nu dimensional transfer matrix.
It follows from (15) that

kTuwki ¼ kB
�1
po ðWuÞBzoðWuÞK̂KðIþ ĜGK̂KÞ�1B�1pi ðGwÞBziðGwÞki

¼ kK̂KðIþ ĜGK̂KÞ�1ki i¼ 2,1: ð19Þ

We point out that in (19), B�1po ðWuÞ and B
�1
pi ðGwÞ can be

factored out without jeopardizing the internal stability,
only when Assumptions 2(b)–(c) are satisfied. Now,
kTuwki, i ¼ 2,1 is minimized by designing an optimal
controller for ĜG, where the following are equivalent:
(a) K̂K stabilizes ĜG and (b) K stabilizes G. In the remain-
ing discussion, we treat ĜG as the system without loss
of generality. These manipulations further allows us to
represent the generalized plant as

_̂xx̂xx ¼ ÂAx̂xþ B̂Bu

y ¼ ĈCx̂xþ w

z ¼ u;

9>>=
>>; ð20Þ

where ĜG$ ðÂA, B̂B, ĈCÞ. Notice that we have transformed
a controller design problem where the closed loop
system is driven by disturbances filtered through an
arbitrary disturbance model to an equivalent problem,
in which the closed loop system is driven by measure-
ment noise only. The latter problem is much simpler
to solve, as demonstrated later in this section.

For the system (20), let X̂X2, ŶY2 and X̂X1, ŶY1 be the
solutions of corresponding AREs for the H2 and H1
optimal controller design problems, respectively (see
x 2.3). By comparing (20) with the standard form of
generalized plant (8), we notice that for the
system (20), the corresponding AREs for the H2 and
H1 optimal controller design problems are the
same. It follows that X̂X2 ¼ X̂X1 ¼ X̂X and ŶY2 ¼ ŶY1 ¼ ŶY.
This observation in turn implies that F̂F2 ¼ F̂F1 ¼ F̂F and
L̂L2 ¼ L̂L1 ¼ L̂L.

Let T be a state transformation matrix such that
T�1ÂAT ¼ diagðPs,PÞ, where Ps and P contain all the
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stable and unstable modes, respectively. Rearranging
and partitioning the states of the transformed system

_~xx~xx ¼ T�1ÂAT ~xxþ T�1B̂Bu ¼
Ps 0

0 P

" #
~xxþ

Bs

B

" #
u

y ¼ ĈCT ~xxþ w ¼ Cs C
� �

~xxþ w:

9>>>=
>>>;
ð21Þ

Let ~XX ¼ T�1X̂XT and ~YY ¼ T�1ŶYT solve the correspond-
ing AREs for the transformed system (21). Then, to be
non-negative definite, ~XX and ~YY must assume the form

~XX ¼
0 0

0 X

� 	
~YY ¼

0 0

0 Y

� 	
;

where X,Y 2 C
np�np � 0. Then it suffices to solve

XPþ P�X� XBB�X ¼ 0 ð22Þ

YP� þ PY� YC�CY ¼ 0: ð23Þ

Let ĜG ¼ ĜG1 þ ĜG2 such that ĜG1 ¼ UðĜGÞ and ĜG2 2 RH1.
Here UðĜGÞ denotes the unstable part of G. The triplet
ðP,B,CÞ can be seen as the realization of ĜG1 and
(22)–(23) as the corresponding AREs for ĜG1. Then, the
achievable input performance depends only on the
unstable part of the system. This is further illustrated
by defining K̂K ¼ K̂K1ðI� ĜG2K̂K1Þ

�1. With this parametri-

zation of K̂K,

K̂KðI� ĜGK̂KÞ�1 ¼ K̂K1ðI� ĜG1K̂K1Þ
�1:

Thus K̂K exactly cancels the stable part of the system.
The different transformations used in this section and
their equivalence are shown in figure 2.

For the transformed system (21), the state feedback
and the output injection matrices are given as

~FF ¼ F̂FT ¼ 0 F
� �

¼ 0 �B�X
� �

ð24Þ

~LL ¼ T�L̂L ¼ 0 L
� �0

¼ 0 �YC�
� �0

: ð25Þ

By substituting for ~XX, ~YY, ~FF and ~LL in (10) and (14), the
expressions for achievable input performance can be
simplified as

I22 ¼ trðFYF�Þ ¼ trðL�XLÞ ð26Þ

I1 ¼ �
1=2ðXYÞ: ð27Þ

The equations (22) and (23) form the cornerstone for
much of the remaining development in this paper. In
general, for H1 optimal control, the resulting AREs
are dependent on � and thus need to be solved itera-
tively. In contrast, the expressions (22)–(23) are indepen-
dent of � and can be solved directly. Further note that
when (22) and (23) are pre- and post-multiplied by
X�1 and Y�1, the resulting expressions are similar to
Lyapunov equations. When all of the unstable poles
of the system are distinct, closed form solutions
of (22)–(23) can be derived, which are expressed in
terms of the unstable poles and the matrices B and C

only, as shown next.
For a system with distinct unstable poles, we can

select the state transformation matrix T such that P is
diagonal and is given as P ¼ diagð p1, . . . , pnp Þ,

Figure 2. Simplifying transformations on the closed loop system.
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Reð piÞ > 0. Let the Hermitian matrix M 2 C
np�np be

defined as

½mij� ¼ 1=ð pi þ p�j Þ: ð28Þ

Lemma 1: For a system with distinct unstable poles, let
X,Y � 0 solve the AREs (22)–(23) and M be given by
(28). Then

X�1 ¼
Xnu
i¼1

diagðBiÞM diagðBiÞ
�

ð29Þ

Y�1 ¼
Xny
j¼1

diagðC0jÞ
�M0 diagðC0jÞ: ð30Þ

Proof: Pre- and post multiplying (22) by X�1 gives

PX�1 þ X�1P� ¼ BB�: ð31Þ

Then X�1 ¼M � BB�Þð (Horn and Johnson 1991).
Noting that BB� ¼

Pnu
i¼1 BiB

�
i ,

X�1 ¼
Xnu
i¼1

M � ðBiB
�
i Þ

and (29) follows. Equation (30) follows from a dual
argument. œ

4. SISO systems

In this section, we quantify achievable input perfor-
mance for SISO systems with and without time delay.
These results are generalized to MIMO systems in
the next section, which naturally also hold for SISO
systems. SISO systems are considered separately primar-
ily for two reasons: (i) under the minor assumption that
the unstable poles of the system are distinct, the expres-
sions for the achievable input performance can be
written in terms of the unstable poles and the matrices
B and C only, providing more insight and (ii) they
facilitate the derivation of some of the more involved
expressions for MIMO systems (particularly for time
delay systems).

4.1. Rational systems

We derive the expressions for achievable input perfor-
mance for rational SISO systems and demonstrate
their usefulness with a simple design example. These
results also form the basis for derivation of similar
expressions for SISO systems with time delay.

Lemma 2: For M defined by (28), let pi 6¼ pj for all
i, j ¼ 1, . . . , np. Then M�1 is given as

½M�1�ij ¼
4Reð piÞReð pjÞ

p�i þ pj

Ynp
k¼1
k 6¼i

ð p�i þ pkÞ

ð p�i � p�kÞ

0
B@

1
CA

�
Ynp
k¼1
k6¼j

ð pj þ p�kÞ

ð pj � pkÞ

0
B@

1
CA:

Lemma 2 is easily verified by evaluating MM�1 or
M�1M and the proof is omitted. Note for SISO systems,
b ¼ ½bi�, c ¼ ½cj�.

Proposition 1: For the rational SISO system ĝg in (18)
with distinct unstable poles, let UðĝgÞ $ ðP, b, cÞ such
that P ¼ diagðp1, . . . ; pnp Þ,ReðpiÞ > 0. Then

I22 ¼
q2i
bici

� 	
M

q2i
b�i c
�
i

� 	0
ð32Þ

I21 ¼ ��1ðdiagðb�i c
�
i ÞM

0diagðbiciÞMÞ


 

, ð33Þ

where M is defined by (28) and qi is the sum of ith
column of M�1 or q ¼ 10npM

�1:

Proof

(1) For (32), substituting for X and Y in the expression
for I2 (26) using Lemma 1,

I22 ¼ fYf� ¼ b�XYXb

¼ 10npM
�1ðdiagðbÞdiagðcÞÞ�1ðM0Þ�1

� ðdiagðb�Þdiagðc�ÞÞ�1M�11np : ð34Þ

Based on Lemma 2,

qi ¼
Xnp
j¼1

½M�1�ij ¼ 2ReðpiÞ
Ynp
k¼1
k 6¼i

ðpi þ p�kÞ

ðpi � pkÞ
; i ¼ 1, . . . , np

ð35Þ

and M�1 ¼ diagðq�ÞM0diagðqÞ. By substituting for
M�1 and q, (34) can be simplified as,

I22 ¼ qðdiagðbÞdiagðcÞÞ�1diagðqÞMdiagðq�Þ

� ðdiagðb�Þdiagðc�ÞÞ�1q�:

Equation (32) can be obtained by simplifying the
above expression.

(2) For (33),

I21 ¼ �ðXYÞ ¼ ��1ðY�1X�1Þ
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By substituting for X�1 and Y�1 using Lemma 1

I21 ¼ ��1 diagðc�ÞM0 diagðcÞdiagðbÞM diagðb�Þð Þ


 


¼ ��1ðdiagðb�Þdiagðc�ÞM0 diagðcÞdiagðbÞMÞ


 


¼ ��1ðdiagðb�i c

�
i ÞM

0diagðbiciÞMÞ


 

: œ

In the realization, UðĝgÞ $ ðP, b, cÞ, when ĝg has only real
unstable poles, diagðb�i c

�
i Þ ¼ diagðbiciÞ and M0 ¼M.

In this case, the expression for I1 (33) can be further
simplified as,

I21 ¼ ��1 ðdiagðbiciÞMÞ
2

� �

 


I1 ¼ ��1ðdiagðbiciÞMÞ



 

: ð36Þ

The expression for q in (35) appears to suggest that in
general, I2!1 as pi ! pj for some i, j, which is clearly
not true. Since bici ¼ ½ĝgðsÞðs� piÞ�s¼pi , bici !1, as
pi ! pj, which negates the effect of q. When the
system has an RHP zero close to RHP poles, bici fails
to increase monotonically and stabilization can be
difficult. For example, consider

ĝg ¼
ðs� pÞ

ðs� pþ �Þðs� p� �Þ
:

As �! 0, the RHP poles approach the RHP zero. Due
to near cancellation of the unstable pole by the unstable
zero, I2, I1 !1 as �! 0.

Example 1: In order to demonstrate the utility of
Proposition 1 for process design purposes, consider a
rational SISO system with two distinct unstable poles
p1, p2 2 R, p1 < p2 and a RHP zero z. The location of
z can be influenced by process or operating point
changes. Such a system can arise, when different systems
are connected in parallel. The objective is to choose z
in the range p1 < z < p2, such that input usage for
stabilization is minimal. A purely numerical approach
requires solving the following nested optimization
problem

min
z

inf
k
kkð1þ gkÞ�1ki i ¼ 2,1:

Using Proposition 1, the optimal value of z can be

characterized explicitly. As z! pi, the joint con-

trollability and observability of pi reduces monoton-

ically, increasing the input requirement. Using (32)

and (36),

The locally optimal value of z in the range p1 < z < p2
can be obtained by evaluating the stationary points of
(37) and (38),

zH2, opt ¼
p1p2ð3ðp1 þ p2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5p21 þ 5p22 þ 6p1p2

q
Þ

2ðp21 þ p22 þ 3p1p2Þ
ð39Þ

zH1, sub ¼
4p1p2ðp1 þ p2Þ

p21 þ p22 þ 6p1p2
: ð40Þ

As an example, for ĝg ¼ ðs� zÞ=ððs� p1Þðs� p2ÞÞ with
p1 ¼ 1 and p2 ¼ 2, the variation of I2 with z is shown
in figure 3. The locally optimal zero location in the
range 1 < z < 2 is zH2, opt ¼ 1:37, which can also be
confirmed using (39).

It is also noted that unlike the output performance,
unstable zeros do not limit the achievable input
performance, except when located close to unstable
poles resulting in near pole-zero cancellation. As an
example, consider two SISO systems g1 ¼ ðs� zÞ=
ððs� 1Þðs� 2ÞÞ and g2 ¼ ðsþ zÞ=ððs� 1Þðs� 2ÞÞ, z > 0.
Note that g1 and g2 have same unstable poles, but

I22 ¼
8ðp1 þ p2Þ

3 p21ðp2 � zÞ2 þ p22ðp1 � zÞ2 þ p1p2ð3z
2 � p1p2Þ

� �
ðp1 � zÞ2ðp2 � zÞ2

ð37Þ

I1 ¼
4p1p2ðp1 þ p2Þ

zðp1 þ p2Þ � p21ð2p2 � zÞ2 þ p22ð2p1 � zÞ2 þ 2p1p2ð3z2 � 2p1p2Þ
� �0:5 : ð38Þ
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Figure 3. Variation of I2 with z for ĝg ¼ ððs� zÞ=
ðs� p1Þðs� p2ÞÞ with p1 ¼ 1 and p2 ¼ 2. The locally optimal
zero location in the range p1 < z < p2 is zH2, opt ¼ 1:37.
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have zeros at z and �z, respectively. Using (37), it can
be shown that in the range, 0 	 z 	 0:25, the achievable
H2 optimal input performance for these two systems
is nearly the same (for example, I2 
 14:5 for z ¼ 0:25
in either case). When z approaches 1, however, the
input requirement for the non-minimum phase system
becomes much larger than its minimum-phase counter-
part due to near pole-zero cancellation.

4.2. Time delay systems

Many systems arising in practice contain time delay.
These irrational systems cannot be handled directly
in the optimal control framework discussed in x 2.3.
A common approach for optimal control for such
systems is to design the controller based on a rational
approximation (e.g. Pad �ee approximation) of the time
delay system. In this paper, we use this approach and
the achievable performance is characterized by letting
the order of approximation approach infinity in the
limit.
To extend Proposition 1 to systems with a finite

time delay, let ĝg in (18) be expressed as

ĝg ¼ ~gge��s; ð41Þ

where ~gg is the delay-free part of the system. If gw also
contains delay, the delay can be factored as an all-pass
factor and thus ĝg remains causal (cf. (18)).

Lemma 3: Consider H$ ðP,B,CÞ such that P¼

diagðp1, . . . , pnp Þ, Reð piÞ > 0, pi 6¼ pj. Let H1 2 RH1
with no zeros at pi. Then

UðH1HÞ ¼
Xnp
i¼1

1

s� pi
H1ð piÞCiB

0
i: ð42Þ

Proof: Using a dyadic expansion of H,

H ¼
Xnp
i¼1

1

s� pi
CiB

0
i:

Let UðH1HÞ $ ð ~PP, ~BB, ~CCÞ. Since H1 does not cancel
the RHP poles of H, ~PP ¼ P. Now, ~CCi

~BB0i ¼ ½H1H�

ðs� piÞ�s¼pi and (42) follows. œ

Note that the applicability of Lemma 3 is not limited
to the case where H only has unstable poles, since
UðH1HÞ ¼ UðH1UðHÞÞ.

Proposition 2: Let the SISO system expressed by
(41) have distinct unstable poles and Uð ~ggÞ $ ðP, ~bb, ~ccÞ
such that P ¼ diagð p1, . . . , pnp Þ, Reð piÞ > 0 and

! ¼ diagðe�p1 , . . . , e�pnp Þ. Then

I22 ¼
q2i
~bbi ~cci

� 	
!M!�

q2i
~bb�i ~cc�i

" #0
i ¼ 1, . . . , np ð43Þ

I21 ¼ ��1ð!��diagð ~bb�i ~cc�i ÞM
0!�1diagð ~bbi ~cciÞMÞ




 


, ð44Þ

where M is defined by (28) and q ¼ 10npM
�1:

Proof: Let fð�s, nÞ be the nth order rational approxima-
tion of e��s (e.g. Padè approximation). For any n, if a
RHP zero of fð�s, nÞ cancels a RHP pole of ~ggðsÞ, the
system is not stabilizable due to presence of hidden
unstable modes; however, as n!1, the magnitude
of RHP zeros of f(�s, n) approaches infinity. Thus,
for an FDLTI system with poles at finite locations,
such cancellation of RHP pole of ~ggðsÞ by an RHP
zero of fð�s, nÞ does not occur for all n�N for
sufficiently large N.

(1) For (43), using (42), bici 
 ~bbi ~cci fð�pi, nÞ, n � N and

I 22 ðnÞ ¼
q2i

~bbi ~cci fð�pi, nÞ

" #
M

q2i
~bb�i ~cc�i fð�pi, nÞ

" #0

¼
Xnp
i¼1

Xnp
j¼1

q2i
~bbi ~cci

q2j

~bbj ~ccj
mij f

�1ð�pi, nÞf
�1ð�pj, nÞ: ð45Þ

As n!1, the Padè approximation is convergent
(Parington 2004). Thus, limn!1 f �1ð�pi, nÞ ¼ e�pi

and limn!1 f �1ð�pi, nÞ f
�1ð�pj, nÞ ¼ e�pi e�pj . Noting

that except the bilinear term f �1ð�pi, nÞ f
�1ð�pj, n),

all other terms in (45) are independent of n, we
conclude that limn!1 I 22 ðnÞ exists and is given by (43).

(2) For (44), using similar arguments as before and
following the proof of Proposition 1,

I 21ðnÞ ¼ ��1ðdiagð fð�pi, nÞ
�
Þ
�1diagð ~bb�i ~cc�i ÞM

0




� diagð fð�pi, nÞÞ

�1diagð ~bbi ~cciÞMÞ





The eigenvalues are roots of a polynomial equation,
whose coefficients are functions of f �1ð�pi, nÞ. As
n!1, these coefficients and thus the roots
converge. Hence, limn!1 I21ðnÞ exists and is given
by (44). œ

Similar to (36), for a system with real unstable poles
only, (44) can be simplified to

I 21 ¼ ��1ð��1diagðbiciÞMÞ


 

:
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By differentiating (43) with respect to �,

dI 22
d�
¼
Xnp
i¼1

Xnp
j¼1

pipj
q2i
~bbi ~cci

q2j

~bbj ~ccj
mije

pi�epj� � min
i

p 2
i I

2
2 :

The last inequality follows since epi� > 1 for positive
pi and �. Thus, dI2=d� > 0 for all �. Similar conclusions
can be drawn by differentiating I1 with respect to �.
This shows that for SISO systems, the input usage
cannot be decreased by introducing additional lag in
the system. Surprisingly, for MIMO systems, such intui-
tive conclusion does not hold, as is shown later.

Corollary 1: Under same conditions as Proposition 2,
let gp $ ðP,!

�1 ~bb, ~ccÞ or ðP, ~bb, ~cc!�1Þ. Then I2ðĝgÞ ¼
I2ðgpÞ and I1ðĝgÞ ¼ I1ðgpÞ:
It follows from Corollary 1 that I2 and I1 for a time

delay system depend on its unstable projection, which is
rational.

Corollary 2: For a SISO system with a single real
unstable pole p,

I22 ¼
8p3e2p�

~bb2 ~cc2
I1 ¼

2pep�

 ~bb ~cc


 : ð46Þ

Corollary 2 can be shown to be true by considering (43)
and noting that in this case ~bb, ~cc are scalars and
M ¼ 1=2p. For delay-free systems, Havre and
Skogestad (2003) obtained expressions similar to (46).
Propositions 1 and 2 can be seen as the generalizations
of the results of Havre and Skogestad (2003) to SISO
systems with multiple unstable poles and time delay.
We point out that the expression for I1 in (46) can
alternatively be obtained using the approach of Havre
and Skogestad (2001).

Remark 1: The time-delay enters (43)–(44) assuming
the form e�pi and thus does not pose any serious
limitations on input performance for systems with
slow instabilities and vice versa. This happens as
e�pi 
 1þ �pi, when j�pij much smaller than 1 and thus
the achievable input performance is nearly the same
for time delay and delay-free systems. It follows from
Corollary 1 that time delay essentially reduces the
controllability (or observability) of poles and the
faster the instability, the weaker the controllability (or
observability) of the pole is, as compared to the
delay-free system.

Example 2: To illustrate the findings of this section,
consider

ĝg ¼
2 ðsþ 10Þ

ðs� 2Þ ðsþ 0:4Þ
e��s: ð47Þ

Here, ~bb ~cc ¼ ½ðs� 2Þg�s¼2 ¼ 10 and using (46),
I1 ¼ 0:4e2�. Thus, for �¼ 0, 0.05 and 0.5, I1 ¼ 0.4,
0.44 and 1.08, respectively. It should be noted that
the additional limitation on the achievable input
performance due to a small delay is minimal (see also
Remark 1).

For any practical system, the manipulated variables
are physically bounded and input saturation is a major
concern for stabilization. Input saturation is avoided
(juðtÞj < umax for all t), if kkð1þ gkÞ�1kL1 < umax,
where k:kL1 is the induced L1-norm. This implies that
stabilization without input saturation is not possible,
if I1 � umax, since k:k1 	 k:kL1 (see e.g. Zhou and
Doyle (1998)). Then, for g in (47) with �¼ 0.5, the
physical limits on u must be larger than 1.08 to avoid
input saturation.

The lower bound on the physical limits on u, as
derived above, inherently assumes that the inputs can
be manipulated arbitrarily fast and thus is somewhat
unrealistic. To take the finite bandwidth of real systems
into account, we consider the frequency-dependent
weight wu ¼ �þ s=!B, � > 0 where it is desired that
kwu kð1þ gkÞ�1k1 	 1. This weight requires that
jkð1þ gkÞ�1j 	 1=� for ! 2 f0, !Bg and then approaches
0 with a slope of �1 on a log–log plot, as !!1 . Here,
� is closely related to the allowable peak value of
input ðumax 
 1=�Þ and !B is the available bandwidth.
Though the weight is improper, the regularity assump-
tions can be easily satisfied by adding a stable pole at
high frequency. In the present case, we can treat w�1u g
as the generalized system and thus the requirement
kwu kð1þ gkÞ�1k1 	 1 implies 0:4e2� �þ 2=!Bð Þ 	 1.
A rearrangement of this expression reveals the trade-off
between !B and �

� 	 2:5e�2� � 2=!B: ð48Þ

For �¼ 0.5, (48) requires that umax 
 1=� � 1:39 and
1.92, when !B ¼ 10 and 5 rad/s, respectively. For
!B 	 2:175 rad/s, the inequality (48) becomes infeasible.
This is expected as unstable systems require fast control
and !B 
 p (Skogestad and Postlethwaite 1996) is the
lower limit on the required bandwidth for practical
stabilization, even when manipulated input are allowed
to have arbitrarily large variations.

5. MIMO systems

In this section, we generalize the results of the last
section to MIMO systems. It is shown that the achiev-
able input performance primarily depends on the joint
controllability and observability of the unstable poles
of the system. These results can be directly used for
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selection of the subset of controlled and manipulated
variables for stabilization.

5.1. Rational systems

Similar to SISO systems, the achievable input perfor-
mance is first characterized for rational systems. Later
in this section, these results are extended to MIMO
systems with time delay. To obtain expressions for I2
and I1 for MIMO systems, we relate X and Y solving
the AREs (11)–(12) to the Hankel singular values of
UðĜGÞ�. When ĜG has distinct unstable poles, the next
lemma also provides an alternate expression for the
Hankel singular values of UðĜGÞ�, which may also be
of independent interest.

Lemma 4: Let ĜG be a rational system and X,Y � 0 solve
the corresponding AREs (22)–(23). Then,

�2HiðUðĜGÞ
�
Þ ¼ �iðX

�1Y�1Þ i ¼ 1, . . . , np: ð49Þ

Further, if ĜG has distinct unstable poles, let UðĜGÞ $
ðP;B;CÞ, such that P ¼ diagð p1; . . . ; pnpÞ, Reð piÞ > 0.
Then �HiðUðĜGÞ

�
Þ is given as,

�HiðUðĜGÞ
�
Þ ¼ �1=2i

�
ðBB�Þ �M

��
ðC�CÞ �M0

�� �
; ð50Þ

where Uð�Þ denotes the unstable part and M is defined
by (28).

Proof: Pre- and post-multiplying (31) by T1 and T�1
respectively, where T1 is a state transformation matrix,

T1PX
�1T�1 þ T1X

�1P�T�1 ¼ T1BB
�T�1

, �PP �XX�1 þ �XX�1 �PP� ¼ �BB �BB�;
ð51Þ

where �PP ¼ T1PT
�1
1 , �BB ¼ T1B and �XX ¼ T��1 XT�11 .

Similarly, by setting �CC ¼ CT�11 and �YY ¼ T1YT
�
1,

�PP� �YY�1 þ �YY�1 �PP ¼ �CC� �CC: ð52Þ

Note that �YY�1 and �XX�1 are the controllability and
observability gramians of stable system UðĜGÞ� $

ð� �PP�; �CC�; �BB�Þ and (51)–(52) are the corresponding
Lyapunov equations. If T1 is chosen such that
ð� �PP�; �CC�; �BB�Þ is a balanced realization, then �XX�1 ¼
�YY�1 ¼ diagð�HiðUðĜGÞ

�
ÞÞ (Zhou and Doyle 1998) and

�2HiðUðĜGÞ
�
Þ ¼ �ið �XX

�1 �YY�1Þ ¼ �iðT
��
1 X�1Y�1T�1Þ

¼ �iðX
�1Y�1Þ:

When ĜG has distinct unstable poles, the alternate
expression for the Hankel singular values of UðĜGÞ�

(50) can be obtained by substituting for X�1 and Y�1

in (49) using Lemma 1. œ

Proposition 3: For the rational MIMO system ĜG in (18)
having np unstable poles, let ð �PP; �BB; �CCÞ be the balanced
realization of UðĜGÞ. Then

I22 ¼
Xnp
i¼1

2jReð �PPiiÞj

�2HiðUðĜGÞ
�
Þ

ð53Þ

I1 ¼ �
�1
H ðUðĜGÞ

�
Þ ð54Þ

Proof:

(1) For (53), based on the expression for I22 (26) ,

I22 ¼ trðB�XYXBÞ ¼ trð �BB� �XX �YY �XX �BBÞ ¼ trð �BB �BB� �XX �YY �XXÞ

Define DH ¼ diagð�HiðUðĜGÞ
�
ÞÞ. Since ð� �PP�, �CC�, �BB�Þ

is the balanced realization of UðĜGÞ�, using (51) and
setting �XX ¼ �YY ¼ D

�1
H ,

I22 ¼ tr ð �PPDH þ DH
�PP�ÞD�3H

� �
¼ trð �PPD�2H Þ þ trðD�2H

�PP�Þ ¼
Xnp
i¼1

j �PPii þ �PP�iij

�2HiðUðĜGÞ
�
Þ
,

where j �PPii þ �PP�iij ¼ 2jReð �PPiiÞj.
(2) For (54), based on (27) and (49)

I1 ¼ �
�1=2ðX�1Y�1Þ ¼ ��1H ðUðĜGÞ

�
Þ: œ

The expressions (53)–(54) show that I2 and I1 mainly
depend on �HiðUðĜGÞ

�
Þ, which is a measure of joint

controllability and observability of the unstable poles.
Glover (1986) studied the robust stability of systems

in the presence of additive unstructured uncertainty.
With the additive description of uncertainty, maximiz-
ing robust stability is equivalent to minimizing the H1
norm of transfer matrix from disturbances to inputs.
Thus, the results of Glover (1986) are also applicable
to the present case of minimization of input energy
required for stabilization. The expression for I1 as
derived here is as an alternative proof of the
similar result by Glover (1986), but is generalized to
the case where Wu and Gw can be minimum phase and
share common unstable poles with the system.

Remark 2: In general, the H2 and H1 norms of
a transfer matrix can be arbitrarily far apart.
Proposition 3 shows that when input norm is
minimized, the ratio I2=I1 is always bounded as

2
�2HðUðĜGÞ

�
Þ

���2HðUðĜGÞ
�
Þ

Xnp
i¼1

jReð �PPiiÞj 	
I22
I21
	 2

Xnp
i¼1

jReð �PPiiÞj; ð55Þ
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where �PP is the state matrix of the balanced realization
of UðĜGÞ. The closeness of I2 and I1 follows from
the fact that when input usage is minimized, the
corresponding AREs (22)–(23) for the H2 and H1
optimal controller design problems are the same.
The ratio 	H ¼ ���HðUðĜGÞ

�
Þ=�HðUðĜGÞ

�
Þ is the condition

number of UðĜGÞ� expressed in terms of Hankel singular
values and can be interpreted similar to the Euclidian
condition number. A system that has a large Euclidian
condition number has strong directionality and may be
difficult to control (Skogestad and Postlethwaite 1996).
Similarly, 	H can be large due to small �HðUðĜGÞ

�
Þ indi-

cating that the input requirement for stabilization is
large. When 	H ¼ 1, the upper and lower bounds on
I22=I

2
1 in (55) are the same with I22=I

2
1 ¼ 2

Pnp
i¼1 jReð �PPiiÞj.

In this paper, we assumed that the disturbances enter
the closed loop system through the output channels.
Proposition 3 can easily be applied to cases where
disturbances enter through the input channels by
setting Gw ¼ G (see figure 4). For minimum phase
systems affected by input disturbances, the expressions
for achievable input performance are much simplified,
as derived by Chen et al. (2003) for I2. The result
of Chen et al. (2003) is shown to be a special case of
Proposition 3 by the next Corollary.

Corollary 3: With reference to figure 4, let G be
minimum phase, right invertible and have np unstable
poles. Then,

I22 ¼ 2
Xnp
i¼1

Reð piÞ; I1 ¼ 1: ð56Þ

Proof Let G¼GsB
�1
pi such that Gs is stable. With

Gw¼G and using (15),

kTuwk ¼ kðIþ KGsB
�1
pi Þ
�1KGsB

�1
pi k

¼ kðIþ K̂KB�1pi Þ
�1K̂Kk;

where K̂K ¼ KGs. Letð �PP, �BB, �CC, �DDÞ be the balanced realiza-
tion of B��pi . Since B��pi is all-pass and stable,
�HiðB

��
pi Þ ¼ 1 (Glover 1984). Then, using Proposition 3,

I1 ¼ 1 and I22 ¼
Pnp

i¼1 2jReð �PPiiÞj. The expression for I2
follows by noting that �PPii ¼ pi (cf. (7)). œ

5.2. Time delay systems

In extending Proposition 2 to MIMO systems, we use
a similar method as used for SISO systems, i.e. by
using a rational approximation of the time delay
system and then letting the order of approximation
approach infinity. We consider systems that can be
expressed as

ĜG ¼ ðGwÞ
�1
smGðWuÞ

�1
sm ¼

~GG �?; ? ¼ e��ijs
� �

, ð57Þ

where ~GG is the delay-free part of the system. A system as
ĜG in (57) with delay associated with individual elements
of the transfer matrix, which cannot be separated at
inputs or outputs, is sometimes referred to as a multiple
delay system in the literature. It is pointed out that (57)
does not represent the most general case and in practice
is satisfied only when the Wu and Gw are diagonal.
The remaining discussion in this section is limited to
the cases where ny � nu and similar expressions for
ny < nu can be obtained with minor modifications.

Lemma 5: Consider H$ ðP,B,CÞ such that P ¼

diagð p1, . . . , pnpÞ, Reð piÞ > 0, pi 6¼ pj. Let H1 2 RH1
with no zeros at pi. Then

UðH1 �HÞ ¼
Xnp
i¼1

1

s� pi
H1ð piÞ � ðCiB

0
iÞ: ð58Þ

The proof of Lemma 5 is similar to the proof of
Lemma 3 and is omitted. We make the following
additional technical assumption:

Asumption 3: Let Uð ~GGÞ $ ðP, ~BB, ~CCÞ. Then the matrix
ð ~CCi

~BB0iÞ �?ð piÞ has full column rank for all i ¼ 1, . . . , np.

Proposition 4: Consider that the MIMO system
expressed by (57) has distinct poles and the system
satisfies Assumption 3. Let Uð ~GGÞ $ ðP, ~BB, ~CCÞ such that
P ¼ diagð p1, . . . , pnp Þ, Reð piÞ > 0. If Gp $ ðAp,Bp,CpÞ,
where

Ap ¼ diagð p1Inu , . . . , pnpInu Þ; Bp ¼ Inu , . . . , Inu
� �0

Cp ¼ ð ~CC1
~BB01Þ �?ð p1Þ, . . . , ð ~CCnp

~BB0np Þ �?ð pnp Þ
h i

I2ðĜGÞ ¼ I2ðGpÞ, I1ðĜGÞ ¼ I1ðGpÞ.

Proof: Let? be approximated by an nth order rational
function as before. As n!1, using Lemma 5 and the
same arguments as used in the proof of Proposition 5,

UðĜGÞ ¼
Xnp
i¼1

1

s� pi
ð ~CCi

~BB0iÞ �?ð piÞ: ð59Þ

Due to Assumption 3, ð1=ðs� piÞÞ?ð piÞ � ðCiB
0
iÞ $

ð piInu , Inu ,?ð piÞ � ðCiB
0
iÞÞ. Then the result follows by

considering the aggregation of these subsystems. œ
Figure 4. Closed loop system with disturbances entering
through input channels.
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It is interesting to note that when ? is unstructured
(delays cannot be separated at inputs or outputs),
stabilization of the irrational system with np unstable
poles is equivalent to stabilizing a rational system with
np � nu unstable poles. For systems not satisfying
Assumption 3, the triplet ðAp,Bp,CpÞ is not necessarily
a minimal realization. This assumption can be relaxed
for generalization purposes, but this makes the expres-
sions difficult and complex. A practical case, where
Assumption 3 is always violated, occurs when the
delays are associated with the sensors or actuators of
the system. Systems with delay associated with sensors
are handled next and the expressions for systems
with delay associated with actuators can be obtained
analogously.

Corollary 4: Let ĜG ¼ diagðe��isÞ ~GG and Uð ~GGÞ $
ðP, ~BB, ~CCÞ such that P ¼ diagð p1, . . . , pnpÞ, Reð piÞ > 0.
Let Gp $ ðP, ~BB,CpÞ, where

Cp ¼ diagðe��ip1 Þ ~CC1, . . . , diagðe��ipnp Þ ~CCnp

h i

Then, I2ðĜGÞ ¼ I2ðGpÞ and I1ðĜGÞ ¼ I1ðGpÞ.

The proof of Corollary 4 follows by considering
the dyadic expansion of ĜG in (59) and noting that
ð ~CCi

~BB0iÞ �?ð piÞ ¼ diagðe��ipi Þ ~CCi
~BB0i. It was shown earlier

that for SISO systems, I2 and I1 are non-increasing
functions of �, but this does not hold for MIMO
systems.

Example 3: Consider the system G ¼ ~GG �?, where

~GG ¼

0:2 0 2 3

0 0:5 1 4

3 2 0 0

5 3 0 0

2
6664

3
7775; ? ¼

e��1s e��2s

e��2s e��1s

� 	
:

The variation of I1 with �1,�2 is shown in figure 5,
which leads to the counter intuitive conclusion that the
input requirement for stabilization of MIMO systems
can decrease when the delay in some of the elements
of the system increases. When �1 6¼ �2, by virtue of
Proposition 4, the unstable projection of the irrational
system has 4 unstable poles (2 poles each at 0:2
and 0:5). When �1 ¼ �2 ¼ �, G can be expressed
as G ¼ ~GGe�s. Then, using Corollary 4, the unstable
projection of the irrational system has only 2 unstable
poles.
With slight abuse of terminology, the case of

�1 ¼ �2 ¼ � can be interpreted as the system having
4 unstable poles and 2 unstable zeros at 0:2 and 0:5.
Thus, when �1 6¼ �2, these RHP zeros differ from their
nominal values of 0:2 and 0:5 and effectively reduce
the joint controllability and observability of the

unstable poles. Keeping �1 (or �2) constant and
increasing �2 (or �1), these RHP zeros recede away
from the unstable poles reducing the input requirement
for stabilization. It is also worth pointing out that
similar to input performance, an increase in time delay
can also improve the output performance (Skogestad
and Postlethwaite 1996, p. 220).

When the system has a single unstable pole, the
expressions for I2 and I1 simplify considerably, as
shown next.

Corollary 5: Consider a MIMO system ĜG that is
expressed by (57) and satisfies Assumption 3. If ĜG has
a single real unstable pole p,

I 22 ¼
8p3Pnu

i¼1 �
2
i ðð

~CC ~BB0Þ �?ð pÞÞ
I1 ¼

2p

�ðð ~CC ~BB0Þ �?ð pÞÞ
,

ð60Þ

where Uð ~GGÞ $ ð p, ~BB, ~CCÞ.

Proof: Define Gp $ ð pInu , Inu , ð
~CC ~BB0Þ �?ð pÞÞ. Now,

similar to the proof of Proposition 4, it can be shown
that I2ðĜGÞ ¼ I2ðGpÞ, I1ðĜGÞ ¼ I1ðGpÞ. Since Gp has a
single pole repeated nu times, M ¼ ð1=2pÞ½1nu , . . . , 1nu �.
Using the alternate expression for the Hankel singular
values (50),

�HiðG
�
pÞ ¼

1

2p

� �
�1=2i

�
ð ~CC ~BB0Þ �?ð pÞ

���
ð ~CC ~BB0Þ �?ð pÞ

�h i

¼
1

2p

� �
�i ð ~CC ~BB0Þ �?ð pÞ
h i

: ð61Þ

Now, (60) is obtained by substituting (61) in the
expressions for I2 and I1 (53)–(54). œ
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Figure 5. Variation of I1 with �1 and �2. This counter-
example shows that the input requirement for stabilization
can decrease with increase in time delay for MIMO systems.
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For a system that is delay free and has a single unstable
pole, M ¼ 1=2p, BB� ¼ kBk22 and C�C ¼ kCk22. Then,
using the alternate expression for Hankel singular
values (50),

I 22 ¼
8p3

kBk22kCk
2
2

I1 ¼
2p

kBk2kCk2
: ð62Þ

The expression for I1 in (62) was earlier obtained
by Havre and Skogestad (2003). Propositions 3 and 4
can be seen as the generalization of the results of
Havre and Skogestad (2003) to systems with multiple
unstable poles and time delay.
Further, note that for a system with distinct unstable

poles, the rows of B and columns of C matrices of
the state-space realization with diagonal state matrix
are the same as the input and output pole vectors, respec-
tively (see e.g. Skogestad and Postlethwaite (1996) for
definition of pole vectors). Then, it follows from (62)
that for a rational system with single unstable pole, the
input requirement for stabilization is minimized by
selecting the input and output variables corresponding
to largest entries in input and output pole vectors, respec-
tively (Havre and Skogestad 2003). This simple ‘‘pole-
vector’’ approach avoids the problem of combinatorial
complexity, but cannot provide the optimal solution for
systems with multiple unstable poles. In the general
case, the optimal subset can be found by evaluating the
expressions for achievable input performance presented
in this paper for different subsets of input and output
variables, but such an approach can be computationally
intractable. Sequential approaches that provide sub-
optimal solutions in reasonable time are discussed in
Havre and Skogestad (2003) and Kariwala (2004).

6. Conclusions

We used a state-space framework to obtain analytic
expressions for achievable input performance for SISO
and MIMO systems with and without time delay.
Regarding the factors affecting achievable input perfor-
mance, the following general conclusions are drawn:

(1) The input performance primarily depends on the
joint controllability and observability of unstable
poles.

(2) Plant’s unstable zeros do not limit the achievable
input performance, except when located close to
plant’s unstable poles resulting in near pole-zero
cancellation.

(3) Time delay poses no serious limitation on the
achievable input performance for a system with
slow instabilities and vice versa.

(4) The input performance of a MIMO system, where
the delays cannot be separated at the inputs or

outputs, can be much worse as compared to a
system with delays that can be factored at the
inputs or outputs.

(5) In contrast to the SISO systems, the achievable
input performance may decrease for MIMO systems
with an increase in time delay in some elements
of the transfer matrix relating controlled and
manipulated variables.

In this paper, we focussed on characterizing the achiev-
able value of the H2 and H1 norms of the transfer
matrix from disturbances to input, WuKSGw. In turn,
these results provide the minimal control effort required
for system stabilization. For system stabilization, input
saturation is one of the primary concerns. When the
achievable bound on kWuKSGwk1 exceeds the allow-
able bounds on the inputs, system stabilization without
input saturation is not possible, but the converse is not
necessarily true. The issue of input saturation is
best handled in the L1-optimal control framework and
this problem can be numerically solved using the linear
programming approach of Dahleh and Diaz-Bobillo
(1995). Explicit expressions for the achievable input
performance in the L1-optimal control framework can
provide additional insights regarding the limiting factors
and is an open area for research.

In conjunction with the achievable bounds on the
(weighted) sensitivity and complementary functions
(Chen 2000), the proposed results on input performance
are useful for input–output controllability analysis.
The available results, however, consider only one
closed-loop transfer matrix of interest at a time and
thus may be misleading, for example, for minimum
phase stable systems, the achievable bounds on indivi-
dual closed-loop transfer matrices is zero indicating no
limitations. A better approach is to consider the input
and output performances together or establish bounds
on the achievable output performance with bounded
inputs. This problem is somewhat more involved and
the results of Pérez et al. (2002) and Chen et al. (2003)
can be seen as good starting points for further research.
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