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Abstract

This paper considers optimal indirect control. It generalizes the work of Haggblom and
Waller (1990), but is itself a special case of the work of Halvorsen et al. (2003) and Alstad and
Skogestad (2002, 2003) on self-optimizing control.

1 Introduction

Indirect control (Skogestad and Postlethwaite 1996) is when we can not control the “primary” outputs
y1 (e.g., because they are not measured online), and instead we aim at indirectly controlling 3; by
controlling the “secondary” variables ¢ (Skogestad and Postlethwaite 1996)! More precisely,

Indirect control is when we aim at (indirectly) keeping the primary variables y; close
to their setpoints ¥4, by controlling the secondary variables ¢ at constant setpoints c;.

Indirect control is discussed in some detail in Skogestad and Postlethwaite (1996)[page 406-407,
page 422-423]. An simple example of indirect control is control of temperature (c) in a distillation
column, in order to indirectly achieve composition control (y;).

A less obvious example of indirect control, is the selection of control configurations in distillation
columns. Here one aims, by keeping selected flows or flow ratios constant, at reducing the effect
of disturbances on the primary outputs (product compositions). The clearest example of this is
the “disturbance rejecting and decoupling” (DRD) structure of Haggblom and Waller (1990), which
actually motivated the results presented below.

In general, we have a set of measurements y which are “candidate” variables for indirect control.
In this paper we aim at selecting as “secondary” controlled variables ¢ the “best” linear combination

of the measurements y,
Ac= HAy (1)
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! The use of the terms primary and secondary controlled variables is relative and depends on at which layer you are
in the control hiearchy. As seen from the top of the control system, the objective may be to control the (unmeasured)
“primary” outputs y; and the selected controlled variables ¢ (which are the focus of this paper) are then “secondary”
outputs. However, to control ¢ we may generally make use of the setpoints to a lower-level control system, and viewed
from here, the ¢’s are the primary outputs and the lower+level controlled variables are the secondary outputs.




In other words, we want to find matrix H. In the simplest case the variables ¢ are directly measured
and the matrix H consistis of zeros and ones. However, more generally we allow be combinations
(functions) of the available measurements y, and H is a “full” matrix. In the paper we show that if we
has as many independent measurements as there are independent variables (inputs plus disturbances),
then we can always “perfect indirect control” with perfect disturbance rejection and a decoupled
response from the setpoints ¢; (the “new” inputs) to the primary variables y;.

Indirect control may be viewed as a special case of “self-optimizing control” (Halvorsen et al.
2003). This is clear from the definition:

Self-optimizing control (Skogestad 2000) is when we can achieve acceptable (economic)
loss with constant setpoint values for the controlled variables ¢ (without the need to
reoptimize when disturbances occur).

In most cases the “loss” is an economic loss, but for indirect control it is the setpoint deviation,
i.e. L =|y1 — y15||. The implications og viewing indirect control as a special case of self-optimizing
control are discussed later in the paper.

Another related idea is inferential control (Weber and Brosilow 1972). However, in inferential
control the basic idea is to use the measurements y to estimate the primary variables y,, whereas the
objective of indirect control is to directly control a combination of the measurements y.

In the paper we only consider the steady-state behavior. The notation in this paper large follows
that used by Halvorsen et al. (2003).

2 Perfect indirect control

Consider a setpoint problem where the objective is to keep the “primary” controlled variables y; at
their setpoints ;.

Inputs (independent variables available for control of y;): u

Disturbances: d

Available measurements: y

Problem definition: Find a set of (secondary) controlled variables ¢ = h(y) such that a constant
setpoint policy (¢ = ¢,) indirectly results in acceptable control of the primary outputs (y;).

We assume that the number of controlled variables is equal to the number of inputs (#c¢ = #u)
such that it always is possible to adjust u to get ¢ = c;.

Further assumptions: Local behavior (Linearized models). Steady-state only. Will neglect the
control error (including measurement noise), that is, we assume that we achieve ¢ = ¢;. We assume
that the nominal operating point (u*,d*) is optimal, i.e. at the nominal point (where d = d* and
¢ = ¢s) we have yf = yis.

The linear models relating the variables are

Ay = GYAu + GYAd (2)
Ayl = GlAu + GdlAd (3)
Ac = GAu+ G4Ad (4)

where Au = u — u*, etc. Solving (4) with respect to Au yields

Au=G'Ac— GG Ad



which upon substitution into (3) yields

Ay = G1G Ac+ (Gg — G1G™'Gq) Ad (5)
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The “partial disturbance gain” P, gives the effect of disturbances on y; with closed-loop (“partial”)
control of the variables ¢, and P, gives the effect on y; of changes in ¢ (e.g.., due to setpoint changes
in ¢, or control error).

Ideally, we would like to find a set of controlled variables such that P; = 0. Somewhat surprisingly,
it turns out that this is always possible provided we have enough measurements y, and that we in fact
have additional degrees of freedom left which we may use, for example, to specify P.. For example,
it may be desirable to have P, = I, because this (at least at steady state) gives a decoupled response
from ¢, (which are our “new inputs”) to the primary controlled variables y;.

Refined problem definition (“perfect indirect control”): Find an linear measurement com-
bination, Ac = HAy, such that at steady state P, = 0 and P, = P,, where P, is a
constant specified matrix.

We make the following additional assumptions:

1. The number of (independent) controlled variables, primary variables and independent variables
(inputs) is equal (#c = #y; = #u), and P, is invertible.

2. The number of (independent) measurements is equal to the number of inputs plus disturbances
(#y = #u + #d).
Solution to refined problem definition: We have that
G=HG®, G,=HGY,

and we look for an H such that P; = 0. This generally has an infinite number of solutions in H. We
therefore have additional degrees of freedom which may use to specify P,. This gives the additional
contraint G;G~! = P,y, or equivalently

G=HGY=P,y'G, (6)
The requirement P; = 0 then becomes G4 — P,zGy = 0 or equivalently
Gq=HGY = Py'Ga (7
Combining (6) and (7) gives ) )
HGY = P5'Gy (8)
where 3 5
Gi=(G1 Ga), Gv=(G' Gy) (9)

represent the combined effect of u and d on the primary outputs y;, and the measurements vy,
respectively. By assumption, we have as many independent measurements as there inputs and
disturbances, so G¥ is invertible. Solving (8) then gives the following unique optimal choice for H
that gives Py = 0:
H=Py'G,Gv " (10)
which is the solution to the refined problem definition.
More generally, we may specify P; = Py (where Py is given and may be nonzero) and the
resulting choice for H is
H=Pg'G,Gv" (11)
where X B
Gl=(G1 Gdl_PdO):Gl_(O PdO) (12)



3 Application to distillation

The results of Haggblom and Waller (1990) on “control structures for disturbance rejection and
decoupling of distillation” provide an interesting special case of the above results, and actually
motivated their derivation. Haggblom and Waller (1990) showed that one could derived a DRD
control configuration that achieved

1. Perfect disturbance rejection (with the new loops closed)

2. Decoupled response from the new manipulators to the primary outputs

Haggblom and Waller (1990) derived this for distillation column models, and made no attempt of
generalizing their results. However, they can be shown to be a special case of the above results with
the following choice of variables

y1=(gg> y = (13)
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Comments:

1. The primary outputs y; are the product compositions (bottoms and distillate product)

2. The measured variables are y = uy where ug = (L VD B)" (fows) are the dynamic
inputs for the distillation column.

3. The inputs u (a subset of ug) are the remaining two inputs after satisfying the steady-state
constraints of constant Mp and Mp (reboiler and condenser level have no steady-state effect).
In this case we use u = (L V)T, but it actually does not matter which variables we choose
to include in u, as long as the resulting matrices are well-defined.

4. The disturbances are feed flowrate and feed composition.

Note that we only allow flows as measurements, ¥y = ug. This implies that we want to achieve indirect
control by keeping flow combinations at constant values. It also requires that the feed composition
zr has an effect on at least one of the flowrates. This will generally be satisfied in practice where we
U represents mass or volumetric flows.?

With this choice of variables, the use of (10) gives two controlled variables Ac = HAy. This may
be written in more detail as

ACl = hllAL + hlgAV + hlgAD + h14AB

ACQ = thAL + hQQAV + h23AD + h24AB

which is identical to that of the DRD-configuration in Haggblom and Waller (1990). As a specific
example, consider the model of a 15-plate pilot-plant ethanol-water distillation column studied by
Higgblom and Waller (1990). The steady-state model for the LV-structure (with u = (L V)") is

Ayp\ . (AL AF
(AxB> _Gl(Av>+G‘“(AzF>

2The feed composition will not effect the flows in the common academic case with the “constant molar flows” and
the use of molar flows as inputs (ug). Here the “constant molar flows” assumption (simplified energy balance) is
reasonable in many cases, but the assumption of “molar input variables” is unrealistic because we cannot in practice
mesure molar flows.
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AD AV Azp
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where (Haggblom and Waller 1990)
—0.045 0.048 —0.001 0.004
G = ( —0.23  0.55 ) G = ( —0.16 —0.65) (14)
1 0 0 0
0 1 0 0
/R Yy __
G'=1 _061 135 Ga=|0.056 1.08 (15)
0.61 —1.35 0.944 —1.08

From (10) we derive that the following variable combination gives perfect disturbances rejection and
decoupling (DRD):

—0.5971 1.3625 —0.7281 —0.1263 (16)

which is identical with the DRD-structure found in Higgblom and Waller (1990).
We note that the derivation is much simpler with the approach proposed in our paper. In addition,
our results generalize the results in Higgblom and Waller (1990) in two ways:

H_<—0.0427 0.0430  0.0025 —0.0012)

1. The results are generalized to other measurements than the choice y = wuy. For example,
it is possible to derive a DRD-configuration based on two keeping two combinations of four
temperature measurements constant.

2. The results are generalized to other processes than distillation.

4 Discussion: Implementation error (noise)

Above we neglected the effect of measurement error (noise) and control error, by assuming that we can
achieve perfect control of ¢ with ¢ = ¢,. In practice, there will be an implementation error n® = ¢—c;
which will result in a corresponding change Ay; = P.(c—c¢s) in the primary controlled variables. If we
assume that we have integral action in the controller used for controlling ¢, then the implementation
error (nonzero n¢) must be caused by measurement error. The effect of a measurement error n? in
the measurements y on the controlled variables c is n® = HnY, and the resulting effect on the primary

variables is
Ay, = P.HnY (17)

From this it is clear that in order to minimize the effect of measurement error we need to minimize
the norm of the matrix P.H. For the case with “perfect indirect control” (DRD) we have from (10)
that o

P.H = GGY (18)

Interstlingly, we note that the choice of P, has no effect on the sensitivity to measurement noise.
Also, note that the choice of measurements does not influences the matrix G';. However, the choice
of measurements does affect the matrix G¥, and if we have extra measurements then we should select
them such that the effect of measurement noise is minimized. To choose the best measurements we
first need to scale the measured variables:



e Each measured variable y is scaled such that its associated measurement error n¥ is of magnitude
1.

The induced 2-norm or maximum singular value of a matrix, o, provides the worst-case amplica-
tion in terms of the two norm, that is, we have from (17) and (18) that

max_[[Aylls = 5(G1Gv ) <5(G)a(Gr ) = 5(G1) /e (GY) (19)

lInv]]2<1
This has the folliwing implications:

1. (Optimal) In order to minimize the worst-case value of ||Ay;||s for all ||n¥|| < 1, select mea-
surements such that 5(C~¥1C5y_1) is minimized.

2. (Suboptimal) From the inequality in (19) it follows that the effect of the measurement error n¥
will be small when g(G¥) (the minimum singular value of G¥) is large. It is therefore reasonable
to select measurements y such that o(GY) is maximized.

We have above assumed that we use as many measurements as there are inputs and disturbances

(#y = #u + #4d).

Use all measurements: If we use more (all) measurements then we have from (8) that
HGY, = Py'Gh (20)

which for #y > #u + #d has an infinite number of solutions for H. The solution with the smallest
2-norm of H is obtained by making use of the pseudo inverse:

H= Pcﬁlél(jgu)r (21)

With this choice and the effect of measurement noise is

5 ot
PCH - GlGZH
For the common case with P, = I the solution in (21) minimizes the effect of the measurement noise
on the primary outputs, that is, it minimizes ||P.H||2 = || H||2-
Question 1: What about general P.? Probably easy to find some weighted pseudo inverse.
Question2 : Is this always better 7?7 For sure we have that

o(Gan) > o(G)

so it is alays better in terms of the second (suboptimal) test. However, I am a bit uncertain with
regards the first (optimal) test.

In conclusion, select measurements such that...

VIDAR: Merk at resultatene over har en del interssante implikasjoner for deg.

1. Valg av Pc har ikke noe si for sensitivitet til mlesty - bekrefter at de ekstra frihetsgradene
ikke kan brukes til redusere mlesty dersom vi krever Pd=0 (dvs. Md=0).

2. Valg av mlinger: Bekrefter regelen vr om velge mlinger slik at min.singulrverdi maksimeres.

3. Ekstra mlinger: Se mer p (bde i dette tilfellet og ditt tilfelle)



5 Discussion: Link to previous work on inferential control

If we choose P,y = I, then we find, not unexpectedly, that (10) is the same as Brosilow’s static
inferential estimator; see eq. (2.4) in Weber and Brosilow (1972). The advantage with the derivation
in our paper is that it provides a link to control configurations, regulatory control, cascade control,
indirect control and self-optimizing control, and also provides the generalization (11).

... That’s good, but why do we then need our paper...?

6 Discussion: Link to previous results on self-optimizing
control

The results in this paper om perfect indirect control, provide a nice generalization of the distillation
results of Haggblom and Waller (1990), but are themselves a special case of the work of Alstad and
Skogestad (2003) on self-optimizing control with prefect disturbance rejection.

Definition of self-optimizing control. J, L, ¢ = Hy. y includes uy and all other measurements.
Ayops = FAd.

If #c¢ = #u + #d then we can always get zero loss for disurbances, i.e. My = 0 (results of Alstad
and Skogestad). This is done by selecting H such that HF = 0.

This may be written on the form considered above by defining

1 1
J = 5(91 —y1s) (Y1 — 1s) = §€1T€1 (22)
Differentiation gives
Ju = (G1Au+ GuAd)' Gy, Jy = G1 Gy, Jua =Gl Ga (23)

and we can compute the matrix M in the exact method (??) and search for the optimal measurement
combination. Note in particular that the term (J,.1.J,q — G 'Gy) in My is equal to (G1Gq — G 1Gy)
where

Gl = (GTG)'GT (24)

is the pseudo (left) inverse of Gy. From this it is clear that M, = 0 for the ideal (“uninteresting”)

case with ¢ = y; (as expected). The goal of indirect control is to search for other (“interesting”)

choices for the controlled variables ¢ (measurement combinations) with My small or even zero.
Some facts:

e P; = 0 (“perfect control” with zero sensitivity to disturbances) implies My = 0 (zero loss for
disturbances). To prove this postmuliply P, by G and note that G{Gy = I since GI is a left
inverse.

e However, unless #y; < #u we do not have GlGJ{Gl = I, so My = 0 (zero loss) does not
generally imply P; = 0 (zero sensitivity). This is easily explained: We can only perfectly
control as many outputs (y1) as we have independent inputs (u).

e We have above assumed #y; = #c¢ = #u. In this case My = 0 is equaivalent to P; = 0, and
P, is square and invertible.

The rest can be short, but here is something:
We want to find controlled variables (find H) such that the loss with respect to disturbances is
zero (M, = 0). From the above general results we know this is always possible provided the number

7



of independent measurements is equal to the number of inputs plus disturbances, i.e. #y = #u-+ #d.
In fact, there are generally infinite solutions for H (the measurement combination). We therefore
have additional degrees of freedom which may use to specify P, where we assume that P, is invertible.
Alternative derivation. Require HF' = 0.

From the above results and (23) we get

F=—GYJ u +GY = —GYGIGq + G
Any H satisfying HF' = 0 will give zero loss. The requirement HF = 0 then gives

etc.. (25)

7 Conclusion
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