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Selection of Controlled Variables and Robust Setpoints
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Optimal operation of chemical plants is usually accomplished by first finding the optimal steady
state using the present (nominal) set of disturbances. This is usually implemented by sending
constant setpoints for selected variables to the control system. The setpoints are then the
nominally optimal values. However, because of disturbances this may result in feasibility
problems, which we here try to avoid by adjusting the setpoints (“backoff”). First, we need to
avoid infeasibility in the active constraints (“constraint backoff”). Second, we need to adjust the
setpoints of the unconstrained controlled variables. This may be done by offline computation of
robust setpoints (“optimal backoff”) or by online feasibility correction (“flexible backoff”). As a
case study, we consider a reactor—separator—recycle process. For this process, the control
structures based on Luyben’s rule (“fix a flow in every recycle loop”) are infeasible if we use the
nominal setpoints but are feasible with reasonable loss if we use robust setpoints.

1. Introduction

This paper is concerned with the implementation of
an optimal operation policy. We consider a strategy
where the optimization layer sends setpoints for the
controlled variables to be implemented by the control
layer, see Figure 1.

There are two classes of problems: (1) Constrained—
At the optimal solution, all the optimization degrees of
freedom are used to satisfy active constraints for all
expected disturbances. (2) Unconstrained or partially
constrained (the focus of this paper)—One or more of
the optimization degrees of freedom are unconstrained
for all or some expected disturbances.

Two important decisions are to be made: (1) Selection
of controlled variables (e)—This is a structural decision,
which is made offline before implementing the control
strategy. (2) Selection of setpoints (¢g) for the controlled
variables—This is a parametric decision, which is done
offline or online.

For the constrained variables, active constraint con-
trol should be used, and the variables lying on the
optimally active constraints should be controlled.? To
remain feasible, it may be necessary to back off from
the optimal value of the constraints, for example, when
the constraints are difficult to measure or difficult to
control due to poor dynamics. This is here called
“(simple) constraint backoff” and is thoroughly discussed
by Perkins and co-workers.!3~7 Tracking optimally
active constraints, which are moving due to distur-
bances, is discussed by Arkun and Stephanopoulos.® An
exception to the rule of using active constraint control
is when the optimally active constraints may move, and
to avoid reconfiguration we choose to control uncon-
strained variables with good self-optimizing properties.

For unconstrained or partly unconstrained problems,
the selection of what to control (decision 1) is crucial.
Morari et al.? state that the objective is “to find a
function ¢ of the process variables which when held
constant, leads automatically to the optimal adjust-
ments of the manipulated variables, and with it, the
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Figure 1. A typical optimization system incorporating local
feedback. The process is disturbed (d), and the control system tries
to keep the controlled variables (c) at their setpoints (cs). Steady-
state optimization based on process measurements (ym) is per-
formed at regular intervals to track the optimum by updating the
setpoints.

optimal operating conditions”. Skogestadl® presents a
method for selecting “self-optimizing” variables based
on minimizing the steady-state loss with constant
nominal setpoints. However, in many cases the results
are sensitive to the magnitude of the disturbances, and
we may get infeasibility for large disturbances and
implementation errors. This may result in unstable
operation. To avoid infeasibility, it may be necessary to
back off from the nominal optimum (decision 2), for
example, by using robust optimization.!! In this case
the effect of the “uncertainty” (disturbances and imple-
mentation errors) is reduced through the selection of
both controlled variables and their setpoints.

2. Some Definitions

All further considerations are based on a steady-state
analysis, unless stated otherwise. All variables are
vectors, unless stated otherwise. An element in a vector
is denoted with a subscriptj. A given operating point is
denoted with a subscript i.

2.1. Degrees of Freedom. The number of dynamic
degrees of freedom is equal the number of manipulated
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variables. The number of steady-state degrees of freedom
can be found by counting the manipulated variables,
subtracting the number of variables that need to be
controlled but have no steady-state effect on the re-
maining process (e.g., liquid level in a distillation
column), and subtracting the number of manipulated
variables with no steady-state effect. The number of
degrees of freedom for steady-state optimization (here
denoted u) is equal to the number of steady-state
degrees of freedom. The number of unconstrained
steady-state degrees of freedom is equal the number of
steady-state degrees of freedom minus the number of
active constraints at the optimum.

2.2, Optimal Operation. The optimal operation for
a given disturbance (d) can be found by solving the
following problem:

min J(x,u,d)

fx,ud) =0
gx,ud) <0
X e Rdimx’ uc Rdimu’ d c Rdimd (1)

The scalar objective function J describes the cost (qual-
ity) of operation, f represents the process model, g is
the equality and inequality constraints related to opera-
tion, u is the independent variables (manipulated vari-
ables or inputs) that we can affect, d is the independent
variables (disturbances) that we cannot affect, and x is
the internal variables (states). The inequality con-
straints typically include upper and lower bounds on the
input and output variables. In addition to the external
disturbances d, we must also during actual implemen-
tation consider the “implementation” disturbances (imple-
mentation errors d. and dg, see later), but these are not
included in the above “open-loop” optimization problem.

2.3. Constraints. We distinguish between transient
and steady-state constraints. This is similar to batch
processes where it is common to distinguish between
path and endpoint/terminal constraints, see, for ex-
ample, Loeblein et al.!2 Steady-state constraints may be
violated during transients but not at steady state or in
average; for example, this could be a product purity
constraint. Transient constraints must be violated nei-
ther in transients nor at steady state; for example, this
could be a maximum pressure constraint.

We also distinguish between active constraints and
inactive constraints. For a given operating point i an
active constraint j satisfies g;; = 0, whereas an inactive
constraint j satisfies g;; < 0. Note here that “optimally
active constraints” are usually called simply “active
constraints”.

In most cases, we identify a single measured (or
estimated) variable y related to each constraint and
write (depending on whether g corresponds to a mini-
mum or maximum constraint)

€=Y = Ymax (2)
or
8= Ymin — Y 3

2.4. Controlled Variables. We here define the
controlled variables ¢ as the variables that are specified
(kept constant by the control system at steady state).
The controlled variables may consist of manipulated

variables, measurements, or combinations of measure-
ments and manipulated variables. The number of
selected controlled variables is here assumed equal to
the number of steady-state degrees of freedom.

We distinguish between constrained controlled vari-
ables and unconstrained controlled variables. A con-
strained controlled variable is kept constant at an active
constraint by the control system.

2.5. Uncertainties. Uncertainties in the operation
are related to external disturbances (d) and implemen-
tation errors (d., dy). Implementation errors may be
related to poor control or to errors in the measurements
of the controlled variables and constraints.

2.5.1. Disturbances. Disturbances d are independent
variables that we cannot affect and that are not related
to the control system implementation. These variables
may also include uncertainties in the model parameters.

2.5.2. Implementation Errors. The implementation
error in the controlled variable, d. (sometimes denoted
n), is the difference between the actual value of the
controlled variable ¢ and its setpoint cg:

d.=c—c, (4)

The implementation error d. may be written as the sum
of the measurement error (¢ — ¢,,) and the control error
(em — ©y), see also Figure 1. With integral action in the
controller, we may consider disregarding the control
error. However, even with integral action, we may not
be able to reach the steady state within the time period
of interest, and we then need to include the control
error. For controlled variables related to transient
constraints, we must also include the worst-case dy-
namic control error (see the work of Perkins et al.l).

Implementation errors in the constraints dy should
be included for the constraints that are measured (gp,)
and used by the control system. The implementation
error in the constraint, dg, is the difference between the
actual value of the constraint g and the measured or
estimated value of the constraint gpy:

d,=g- g, (5)

If we have a single measured (or estimated) variable
that identifies the constraint (see eq 2 or 3), then

Ay =Y~ Ym, (6)

For a constrained controlled variable, the implementa-
tion error in the constraint is equal the implementation
error in the controlled variable (d.; = dg; for a maximum
constraint and d.; = —dg; for a minimum constraint).

2.5.3. Expected Disturbance and Implementa-
tion Error Region. A disturbance d can be expressed
as the sum of its nominal value dy and some variation
Ad € Dd,

d=d,+ Ad; AdeD, (7

Similarly, an implementation error in the controlled
variables d. can be expressed as the sum of its nominal
implementation error d.o (usually zero) and some
variation Ad. € D,

d,=d,,+Ad; Ad, eD, (8)

and an implementation error in the constraints d, can
be expressed as the sum of its nominal implementation
error dgo (usually zero) and some variation Adg € Dy,



d,=d,,+Ad,; Ad,eD, 9

The nominal point is given by the nominal disturbance
(do) and the nominal implementation errors (dc, dg,0).

The expected disturbance and implementation error
region, Dacg = {Dg, D¢, Dg} consists of these expected
variations. Note that “the expected disturbance and
implementation error region” is here often simply called
“the expected disturbances and implementation errors”.
The magnitude of Dy, depends on the considered period.
It is largest when the process overall lifetime is consid-
ered. Use of online optimization reduces the period to
be considered and thereby f)dcg. Note that when online
optimization is used the nominal point (do, d, dg o) Will
change.

The maximum expected implementation error for a
controlled variable j is

d max |Ad ;| +d.,; (10)

c,max,j
B AdejeDe;

and the maximum expected implementation error for a
constraint j is

d max |Adgj| + dg,(),j 11)

smaxy Adg €Dy,

The maximum expected implementation error in the
constrained controlled variables, d .., is equal to the
maximum expected implementation error in each con-
strained controlled variable (see eq 10) and equal to zero
for each unconstrained controlled variable. The maxi-
mum expected implementation error in the active con-
straints, dj .., is similarly defined for active and
inactive constraints.

2.6. Feasibility. For a set of disturbance variations,
Ad € Dy, operation is feasible if there exist inputs u

(and corresponding states x) such that the following
constraints are fulfilled for all disturbances:

fx,u,d) =0
gxud) <0
d=d,+ Ad
OAd € Dy (12)

The set Dy includes the nominal disturbance (Ad = 0).

The total feasibility region (Dg’tal) is the disturbance
region where at least one u fulfills the constraints f and
g. Note that the feasibility region is defined as a
deviation region that refers to a given nominal distur-
bance d,. Dﬁftal is larger than Dq (D4 C Dg‘)tal) if we
have feasibility.

2.6.1. Feasibility of a Specific Constant Setpoint
Policy. For a given set of controlled variables ¢ with
setpoints ¢, a constant setpoint policy is feasible if the
following constraints are fulfilled for all expected dis-
turbances and implementation errors:
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fxu,d) =0
gxud) <0
cx,u,d) =c, +d,
d=d,+ Ad
d.=d.,+ Ad,
0OAd € D;, Ad, <€D, (13)

Note that the implementation errors in the active
constraints are included in d., so we do not need to
explicitly include implementation errors in the con-
straints (dg).

The specific constant setpoint policy feasibility region,
D§, = {D, D}, is the disturbance and implementation
error region where the constraints f and g are fulfilled
for a specific constant setpoint policy. A specific constant
setpoint policy is feasible when the expected disturbance
and implementation error region (Dg.) is a subset of
Dj,, that is, D¢, C D§,. Note that using online optimi-
zation reduces Dy, and thereby increases the possibility
for achieving feasibility of a specific constant setpoint
policy. The specific constant setpoint policy feasibility
region for a given implementation error d. ({D§./Ad.})
is always a subset of the total feasibility region D™
for all expected implementation errors d., that is,
{DS|Ad} c DY DAd.. This is illustrated in Figure 2
for a specific example.

2.7. Active Constraint Control. We normally use
active constraint control.? This implies that if a con-
straint becomes optimally active, we select the corre-
sponding measurement or estimate y; of the constraint
as a controlled variable (¢; = y;). For steady-state con-
straints, we must include the measurement (or estima-
tion) error for the constraint. For transient constraints,
we must also include the control error (which has been
studied in detail by Perkins and co-workers). To ensure
feasibility such that the constraints are never violated,
the following setpoints for the active constraint con-
trolled variables are used for a minimum constraint

cs,j = ymin,j + dg,max,j (14)
or for a maximum constraint
cs,j = ymax,j - dg,max,j (15)

2.8. Loss. For a given choice of controlled variables,
the loss for a given disturbance (d), implementation
error (d.), and setpoint ¢; is!°

Ldd,e) = J (e td,d) —J, d)  (16)

where J(cs+d.,d) = J(x(cs+d.,d),u(cs+d.,d),d). Figures
3 and 4 show the loss as function of the disturbance and
implementation error for different sets of controlled
variables for a specific example. Note that the losses
depend strongly on the selected controlled variables.

The percentage loss, L (%), for a given disturbance (d)
and implementation error (d.) with constant setpoint
(es) is

JleAd,d) —J,(d)
Jopt(d)

Ld,d,c,) (%) = x 100% (17)

For a set of disturbances and implementation errors
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Figure 2. Total feasible region (DY) (—), feasible region for a
constant setpoint policy (D3) (— — —), and expected disturbance
region (Dg) (— + —).
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Figure 3. Cost as a function of the disturbance with (i) reopti-
mized setpoint (lower curve) and (ii) two alternative constant
setpoint policies (¢; and eg). The loss is negligible with c2 as a
controlled variable.
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(operating points) i, the maximum loss (in percent) is
defined as

c,i?

x 100%
(18)

and the average loss or weighted loss (in percent) is
defined as

L ddetdy,d) —Jyd)
max mlax Jopt(di)

cw Joptw
L, = J— x 100% (19)

opt,w

where Jc,w = ziwiJc(cs+dc,i,di) and Jopt,w = ziWiJopt(di)-
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Figure 5. Cost (J) as function of the controlled variable (¢) at
nominal point (do, lower curve) and with disturbance (d;, upper
curve).

2.9. Self-Optimizing Control. A set of controlled
variables has self-optimizing properties if a constant
setpoint policy yields an acceptable loss L for the
expected variation in disturbances and implementation
errors.10

2.10. Backoff. Backoff is a setpoint adjustment,
which is primarily used to avoid infeasibility; also see
Figure 5. More precisely, we define the backoff (b) as
the difference between the actual setpoints and some
reference values for the setpoints:

b = cs - cs,ref (20)

3. Optimization Problems

3.1.Ideal Optimization. For a given disturbance (d),
the optimal operation (uep; with corresponding Xopt) is
found by solving the following problem:

min J(x,u,d)

fxud) =0
gxud) <0 (21)

The corresponding solution is denoted uopi(d) and xqp-
(d), and we have

Jopi(d) = J(x,(d),u,,(d),d) (22)

For the nominal case with d = dy, the corresponding
optimal setpoints are

cs,opt(d()) = c(xopt(do)’uopt(do)’dﬂ) (23)

If we try to implement these setpoints, we will get
infeasibility if there are implementation errors (uncer-
tainties) in the (optimally) active constraints. To avoid
infeasibility, we need to include uncertainty in the
optimization as is discussed in the following. Note that
we write the minimization problem as min, J(x,u,d) in-
stead of the equivalent problem miny , J(u,x,d) to show
more clearly that u represents the degrees of freedom.
Similar notation is used in eqs 24, 27, 28, and 29.
3.2. Optimization with Constraint Backoff (Ad-
justed). The first step in including uncertainties (dis-
turbances and implementation errors) is to introduce
constraint backoff (dj ,,,) to avoid infeasibility caused
by implementation error in the constraints that are
active at the optimum. The “adjusted” optimal operation



(uy,(d) with corresponding x; (d)) for a given distur-
bance (d) is found by solving the following problem:

min J(x,u,d)

f(x,u,d) =0
gix,u,d) + d:;max <0 (24)

*

The corresponding solution is denoted x; ,(d) and ug;

(d), and we have
ijt(d) = J(X:pt(d),uzpt(d),d) (25)

For example, assume that we have maximum pressure
constraint p < 10 bar (i.e., g = p — 10) and that the
implementation (measurement) error for pressure is
+0.2 bar (dj ., = 0.2). To guarantee that the actual
pressure remains less than 10 bar (feasibility), we must
then back off and require p < 9.8 bar where p is the
model pressure. Note that the implementation error
may have been accounted for when formulating the
constraints and should then not be counted twice. Also,
for input constraints the implementation error is often
zero (dg ., = 0). For example, we are often able to
implement exactly the requirement of a closed valve
(zero flow) or a fully open valve (maximum flow). The
constraint backoff results in an unavoidable additional
loss at the nominal operating point.

For the nominal case with d = dy, the corresponding
“adjusted” nominally optimal setpoints for the controlled
variables can be computed by

€y = Cip(dy) = ey (do)uly(dp)dy)  (26)

These are hereafter called the nominal setpoints.

3.3. Robust Optimization. The above nominal op-
timization problem (eq 24 with d = dy) resulting in ¢
in eq 26 is relatively easy to solve and is what we
normally would recommend for computing the setpoints
for practical implementations. However, these nominal
setpoints are not generally optimal. The “truly optimal”
constant setpoints may be obtained by including all
expected uncertainties (all expected disturbances (d)
and implementation errors (d.)) and evaluating the
appropriate average cost.

Let us first consider the simpler problem without
implementation errors. This can be regarded as a
stochastic optimization problem [Kall and Wallace focus
on stochastic optimization problems with recourse to
achieve feasibility when the uncertain parameters are
known. The recourse problem is not considered here.
Feasibility is required for all expected uncertainties
(disturbances and implementation errors), while “rare”
uncertainties (disturbances or implementation errors)
are assumed to be handled by the safety system.]:13

min J(x,u,d)
f(x,u,d) =0
gix,u,d) <0
d=d,+ Ad (27)

where Ad is a random vector varying over the set Dg.
We here extend this stochastic optimization problem
to consider the constant setpoint problem and also
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include the uncertainty related to implementing the
optimal solution. Instead of stochastic optimization, we
here consider the very similar deterministic problem
where we minimize some “mean” weighted cost while
fulfilling the constraints over all expected disturbances
(d) and implementation errors (d.). The problem is
infinite dimensional, but we here simplify it by consid-
ering a discrete number of operating points i. The
corresponding robust optimization problem was intro-
duced by Glemmestad et al.l! to find robust setpoints

Cs,robust:

min ZwiJ (x;,u,,d;)

Cg 7

f(x;,u,d,) =0
gx;,u,d) <0
c(x;u;,d) =c,+d;

d,=d, + Ad,
dc,i = dc,O + Adc,i
Ad; e D;, Ad,; €D, (28)

Implementation errors d; on the active constraints are
included in the variables d., and the constraint backoff
is “automatically” included when we obtain ¢s. Note also
that we need to solve the optimization problem for each
candidate set of controlled variables.

3.4. Online Feasibility Correction. A constant
setpoint policy may not be feasible, that is, there may
not exist any solution to the robust optimization prob-
lem. Alternatively, a constant setpoint policy may be
too conservative. Also, the computation load for the
robust setpoints may be too heavy. An alternative
strategy may be to adjust the setpoints online. In
practice, this may be handled by the steady-state
optimization layer in model predictive control (MPC),14
so implementation is straightforward if we have MPC
software in place. The main point here is not to present
a new method or algorithm but to evaluate the resulting
operation.

For our “offline” analysis of this scheme, we use the
nonlinear model. For the analysis, we also need to
include the implementation errors. We may use hard
prioritizing among the controlled variables. For ex-
ample, variables at active constraints should be kept
constant, if possible. The set of controlled variables ¢ is
then divided in two subsets e; and e: ¢r is controlled
variables for which no backoff is allowed, if possible
(variables with high priority). Often these are selected
as variables at active constraints. ¢y is controlled
variables for which backoff is allowed (variables with
low priority).

The resulting optimization problem becomes

. T
min (cH,ﬂex - cH,s) Q(cII,ﬂex - cII,s)
CI[ flex

f(x,ud) =0
gx,u,d) + dg,max — dg <0
cx,u,d) = cq,, +d,

cI,ﬂex = cI,s (29)

and the resulting cost is Jpex(€nextdc,d,dg). In practice,
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one may start with a small set e;; and increase it if
feasibility is not achieved. The priority within the set
¢y can be adjusted through the weight Q. If there is no
feasible solution to eq 29, we need to remove constraints.
This is not considered here. Since measurements of all
constraints (including uncontrolled constraints) are used
in the implementation, implementation errors in the
constraints (dg) need to be explicitly included. The online
adjusted setpoints, labeled flexible setpoints, cgex, achieve
feasible operation, but the resulting loss may be large.
Note that using eq 29 with a nonlinear model to
evaluate the steady-state performance for a linear MPC
is usually acceptable since there are online measure-
ments of the controlled variables and constraints, and
through feedback the model or disturbances are updated
such that the computed controlled variables are equal
to the measured values and the computed constraints
are equal to the measured constraints.

Figure 5 shows the optimal backoff and flexible
backoff for a disturbance. With the setpoint fixed at the
nominal optimum (cs = ¢sp), we get infeasibility with
disturbance d;. With optimal backoff (csrobust = €50 +
bopt), we get feasibility and close to optimal operation
in both cases (dy, d;). With flexible backoff, the setpoint
i8S Csflex = Cso at the nominal point (dy) and changes to
Csflex — Cso + brex with disturbance d;. This gives
feasibility but far from optimal operation. If the average
cost is primarily determined by operation at or close to
the nominal point, the use of flexible backoff may give
a small loss. The backoff is then just done for ensuring
feasibility in some “extreme” points. However, flexible
backoff adjusts the setpoints without considering the
actual cost function, so the loss may in some cases be
very large as illustrated in Figure 5. The selection of
controlled variables and corresponding setpoints with
good self-optimizing properties therefore remains im-
portant also with online feasibility correction.

4. Example: Reactor, Separator and Recycle
Process

We now apply the above ideas to a case study. To
select the controlled variables and their setpoints, we
use an extension of the method of Skogestad,!? consist-
ing of the following steps: (1) initial system analysis—
identify the number of degrees of freedom, define
objective function and constraints, identify main dis-
turbances and measurements, optimize at nominal and
expected disturbances, see eq 21; (2) identify sets of
candidate controlled variables—use active constraint
control, eliminate variables with no steady-state effect,
eliminate variables with large losses by using short-cut
loss evaluation, eliminate variables based on process
insight; (3) evaluate the loss for different sets of
controlled variables, using (a) constant nominal set-
points, ¢, see eq 26, (b) constant robust setpoints,
Csrobust, S€€ eq 28, and (c) nominal setpoints with online
feasibility correction, cqe (flexible setpoints), see eq 29;
(4) final evaluation and selection of control structure—
stabilization, controllability analysis, selection of control
configuration, and simulation of proposed control struc-
tures. The process consists of a reactor, a distillation
column, and a liquid recycle!® and is shown in Figure
6. We use the model parameters from Wu and Yu.16
There is no inert in the feed, so no purge is required.
Larsson et al.l” consider the control structure selection
with emphasis on identifying promising sets of con-

Figure 6. Reactor/separator process with liquid recycle.

trolled variables when using constant nominal setpoints.
We here consider a given feedrate (case I in Larsson et
al.17).

4.1. Initial System Analysis. The process has five
manipulated variables (valves):

uj, = [LVBDF]

However, for stabilization we need to control two
variables (the reboiler holdup (M};) and condenser
holdup (My)), which have no steady-state effect. We are
then left with three degrees of freedom at steady state.
These may be selected as the reactor holdup (M),
product composition (xg), and recycle composition (xp),
that is, uT = [M, xg xp]. The economic objective is to
maximize the profit (the value of the products minus
the cost of the utilities and raw materials). Since Fy is
given and there is no purge, it follows that B is given.
Furthermore, L depends directly on V, so the economic
objective can be simplified to minimize the boilup (J =
V). The reactor volume (M) and boilup flowrate (V) are
constrained, and there is a product purity specification
(x): The reactor volume constraint (0 < M, < 2800)
and boilup flowrate constraint (V < V. = 5000) are
transient constraints, whereas the product specification
constraint (xg < 0.0105) is a steady-state constraint. The
main disturbances are feedrate () and feed composi-
tion (xo):

d" = [F, x,] = [460 + 92 kmol/h 0.90 +
0.05 mol-A/mol]

We consider the following 20 candidate controlled
variables (9 manipulated variables and measurements
and 11 flow ratios):

c'=

LVDBFM, x xyxy 2 VBEDVBDBDBF

Of these we want to control three. We will not consider
in this paper the use of other variable combinations than
the ratios listed here. The implementation errors are
initially assumed to be +£10% for the flowrates, +0.25%
(absolute) for the compositions, and +1% for the hold-
ups. The implementation error for the reactor holdup
is the sum of expected measurement error and expected
(dynamic) control error since the reactor holdup con-
straint is transient. The implementation error for the



product composition is in practice the sum of expected
measurement error and steady-state control error.
Steady-state optimizations for the nominal point and
the corner points with the expected disturbance varia-
tion [we expect that only one disturbance d; is perturbed
from the nominal value at the same time], see eq 21,
show that the product composition (xg) and the reactor
holdup (M,) are always at their constraints.

4.2. Identify Sets of Candidate Controlled Vari-
ables. There are 20 candidate controlled variables and
three steady-state degrees of freedom. This gives (20 x
19 x 18)/(3 x 2 x 1) = 1140 alternative sets of three
controlled variables. As a first step, we want to reduce
the number of candidate sets. We have already elimi-
nated the condenser (Mp) and the reboiler holdup (Mp),
which have no steady-state effect. In addition, to
nominally optimize the operation, we choose to control
the two (optimally) active constraints (c; = product
composition and cg = reactor holdup). We are then left
with 18 candidate controlled variables and 1 steady-
state degree of freedom, which give 18 possible sets.

Initial screening is performed by considering the
steady-state gain (o(G(0)) = |G(0)]) from the remaining
unconstrained degree of freedom to the alternative
controlled variables (c), which according to the singular
value rule!® should be maximized to achieve self-
optimizing control. The gain matrix G(0) is obtained
with the active constraints kept constant. The candidate
controlled variables are scaled with respect to variation
in optimal values (absolute value of maximum deviation
in the optimal value from the nominally optimal value,
Ac; = maxp |copt,i(d) — copt,i(do)]) and implementation
errors. xp and L/F are the most promising controlled
variables. We note that four candidate variables have
a zero gain: B/V, V, x;, and B. This is easy to explain.1”

4.3. Loss Evaluation. For the remaining 14 alterna-
tive sets, we have evaluated the economic loss imposed
by using constant setpoints instead of reoptimization.
We have also evaluated seven alternatives, discussed
in the literature, which are not nominally optimal since
they do not control the reactor holdup at its constraint.
These include the balanced structure (BS) with control
of xp, x. and xp (Balanced Structure I in Larsson et al.1?)
and the Luyben structure (LSS) with control of xg, F', and
xp. Note that our definitions of Luyben structure (LS)
and balanced structure (BS) are not equal to the
definition of Luyben structure (free Fy) and proposed
balanced structures (xg, F/Fy, xg or xp, F/Fy, xp) in Wu
and Yu.'® However, LS and BS used in this paper
demonstrate the effect of controlling a flowrate in the
recycle (Luyben) and controlling compositions instead
of the reactor holdup (balanced). The nominal point and
corner points for expected disturbances and implemen-
tation errors are included as operating points with equal
weights (w;). We assume that only one disturbance dj;
or implementation error d.; is perturbed from its
nominal value at the same time.

We select to study the following alternatives in more
detail: xp or L/F with good self-optimizing properties
according to Larsson et al.,!7 also the two best in initial
screening; F or D, which follows Luybens rule by “fixing
a flow in every recycle loop”!® (but which seem poor from
initial screening); LS or BS with no control of reactor
holdup (not nominally active).

Figures 9 and 10 show the loss as a function of the
disturbances and implementation errors with constant
nominal setpoints, constant robust setpoints, and flex-
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ible setpoints for these alternatives. We also compare
with adjusted optimal operation with constraint backoff
(adjusted optimal).

4.3.1. Loss Evaluation with Nominal Setpoints.
The average and maximum percentage losses with
constant nominal setpoints based on constraint backoff
(see eq 26) are listed in Table 1. Considering the average
loss gives the following ranking: control of xp (Figure
7) is best, closely followed by L/F (Figure 8), D/L, and
D/V, see also Larsson et al.;17 control of F or D, which
follows Luybens rule gives infeasibility; none of the
seven alternatives without control of reactor holdup
(“below the line” in Table 1) yield feasible operation for
all disturbances.

From Figures 9 and 10, we find the following: The
implementation error in the product composition (d.,1)
gives a significant loss for all alternatives. This is
because over-purifying the product increases the boilup
rate (energy). Reducing this implementation error (d. 1)
will give a significant reduction in loss but will not alter
the ranking. Control of F' or D (Luybens rule) gives large
losses for disturbances in the feedrate (Fy). We even get
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Figure 9. Loss as a function of disturbances (Fy, xo) and implementation errors (d. 1, dc2, dc3) for the “good” controlled variables with (1)
constant nominal setpoints (left column), (2) constant robust setpoints (middle column), and (3) flexible setpoints (right column).

infeasibility with feedrates (Fy) larger than 485 for F
and 505 for D. Structures LS (Luyben structure) or BS
(balanced structure) give large losses with small Fy and
infeasibility with large F.

4.3.2. Loss Evaluation with Robust Setpoints.
Use of constant nominal setpoints may exclude con-
trolled variables that are workable. We therefore con-
sider the use of constant robust setpoints, see eq 28. The
average and maximum percentage losses and the back-
off in the unconstrained variable with constant robust
setpoints, are also shown in Table 1: in this case, there
is no backoff'in the constrained controlled variables; for

alternatives that were feasible with constant nominal
setpoints, there are only minor changes; all alternatives
are now feasible, but the loss may be large, especially
for the cases “below the line” in Table 1, where we do
not control reactor holdup. However, control of F' or D
(Luybens rule), which was infeasible with constant
nominal setpoints, is now a feasible structure and gives
acceptable losses.

These findings are confirmed by Figures 9 and 10.
Note that the backoff to achieve feasibility for alterna-
tives that are infeasible with nominal setpoints (e.g.,
F, D, LS, and BS) results in a significant extra loss at
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Figure 10. Loss as function of disturbances (Fy, xo) and implementation errors (dc 1, dc2, dc;3) with “poor” controlled variables with (1)
constant nominal setpoints (left column), (2) constant robust setpoints (middle column), and (3) flexible setpoints (right column).

the nominal point, but nevertheless, the weighted
average loss may be acceptable.

4.3.3. Loss Evaluation with Flexible Setpoints.
We will now consider the use of online feasibility
correction based on nominal setpoints. We assume hard
ranking of the controlled variables (see eq 29). The
constrained controlled variables have high priority, and
the unconstrained controlled variables have low priority;
for example, c; = [xg M,]T and cy; = [F] for alternative
F. The weight matrix Q is selected as diagonal matrices
with one over the expected implementation errors on
the diagonal (1/d.;). No implementation error is included
for constraints that are not controlled (e.g., M, for LS

and BS). From Table 1, we see that there is no backoff
(bgex = 0) for controlled variable alternatives that are
feasible with nominal setpoints, all considered alterna-
tives are feasible with flexible backoff but the operation
is far from optimal in some cases (much worse than with
optimal backoff), and there are cases where flexible
backoff is better than “optimal” backoff. This is not
surprising since optimal backoff uses constant setpoints.

These findings are confirmed by considering Figures
9 and 10: (1) When controlling F or D with flexible
backoff, we avoid infeasibility when the column reaches
maximum boilup rate at large feedrates (Fy > 485 for
structure F and Fy > 505 for structure D). This corre-
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Table 1. Average and Maximum Percentage Loss (Ly, Lmax) with Constant Nominal Setpoints, Constant Robust
Setpoints, and Flexible Setpoints for Alternative Sets of Controlled Variables®

nominal setpoints

robust setpoints

flexible setpoints

C1,C2,C3 C3s Lw (%) Lmax (%) b3,opt Lw (%) Lmax (%) bfg:x ¢ bx;a)e(x ¢ bg}rﬁx ¢ Lw (%) Lmax (%)
adj. opt.® copt(d) 5.16 11.03 5.16 11.03 4.97 11.03
xB,Mr,xD 0.825 5.22 11.04 0.005 5.21 11.03 0 0 0 5.22 11.04
xB,My,LIF 0.871 5.39 11.24 —0.021 5.35 11.34 0 0 0 5.39 11.24
xB,M:,D/L 0.600 5.40 11.15 0.047 5.34 11.35 0 0 0 5.40 11.15
xB,M:,DIV 0.375 5.60 11.15 0.026 5.49 11.46 0 0 0 5.60 11.15
xg,M:,VIF 1.392 6.05 11.37 —0.037 5.93 11.67 0 0 0 6.05 11.37
x8,M:,B/L 0.549 6.31 13.70 0.054 6.05 12.60 0 0 0 6.31 13.70
xB,M:,L 837.4 6.68 22.95 —64 6.46 15.87 0 0 0 6.68 22.95
xB,M,,VIL 1.600 8.64 41.31 0.206 5.89 12.19 0 0 0 8.64 41.31
xB,M.,B/D 0.916 11.2 47.77 —0.140 6.00 11.68 0 0 0 11.2 47.77
x8,M+,FIFy 2.091 d d 0.289 6.22 12.15 0 0 0.1280 36.82 291.78
xB,M:,BIF 0.478 d d —0.056 6.36 12.08 0 0 0.0145 36.87 291.78
xg,M:,DIF 0.522 d d 0.061 6.50 12.24 0 0 0.0242 36.89 291.78
xB,M+,D 502.0 d d 191 6.79 12.82 0 0 91 26.63 165.24
x, M, F 962.0 d d 286 7.51 13.90 0 0 183 26.90 165.24
xB,F/Fo,VIB d d 25.87 54.38 0 0.4341 0.6718 9.40 20.28
xB,F/Fo,xp d d 25.91 54.38 0 0.5971 0.0001 8.24 24.36
xB,XD,XR(BS) d d 26.08 54.38 0 0.0868 ~0 6.36 16.24
xB,M./F,LID d d 26.11 54.38 0 0.7455 ~0 7.36 27.08
xB,F/Fo,L/ID d d 33.13 63.59 0 0.4646 0.0001 10.06 26.59
x8,F,xp(LS) d d 43.10 94.37 0 183 0.1735 30.84 165.24
VIB,F/Fo,xp d d 45.74 78.75 0.6719 0.4870 0.0321 8.95 28.28

@ Constrained variables are c¢15 = xps = 0.008 and c2s = M,s = 2772. ® Adjusted optimization with constraint backoff, see eq 24.

¢ 7,max
Jflex

= max; |bj fex,i|- ¢ Infeasible operation.

sponds to online reconfiguration and controlling V
(=Vmax) at large feedrates. However, the loss is large.
(2) When controlling BS, we avoid violating the maxi-
mum reactor holdup constraints at large feedrates (F
> 460) and large reactant feed fraction (xo > 0.9) by
increasing the setpoint F. Alternatively, we may re-
configure online and control the reactor holdup M,
instead of x,. This corresponds to controlling xp, which
gives small losses. Switching the priority of xp and x,
has no effect, since x, is given when M, and xp are given.
(3) When controlling LS, we avoid violating the maxi-
mum reactor holdup constraint at large feedrates (F
> 460), large reactant feed fractions (xo > 0.9) and with
implementation error in F' (d.2 < 0) by increasing the
setpoint xps. Alternatively, we may reconfigure online
and control the reactor holdup (M,) instead of the top
composition xp. This corresponds to structure F, which
gives large losses at large feedrates F. To avoid violat-
ing the maximum holdup rate at large feedrates (Fy >
520), we switch to controlling V (=V,.x) instead of F.
By choosing a better weight matrix Q, we would avoid
violating the maximum reactor holdup constraint by
switching to controlling the reactor holdup M, instead
of F. This corresponds to structure xp, which gives small
losses.

Anyway, the conclusion has not changed. The loss is
smaller and control is simpler if we keep xp or L/F at
constant nominal setpoints rather than controlling D
or F at constant robust setpoints or controlling BS or
LS at flexible setpoints.

4.4. Final Evaluation and Selection of Control
Structure. The control properties of the two alterna-
tives with the smallest losses (xp and L/F), the two
alternatives that follow Luyben’s rule (¥ and D), and
the two alternatives that do not control the reactor
holdup (LS and BS) are checked by performing dynamic
simulations. With constant nominal controlling, F' gives
instability in xp and the Luyben scheme (LS) gives
instability in M, with nominal setpoints. This is ex-
pected because of the infeasibility mentioned earlier. F

gives the fastest control and xp the slowest control with
constant robust setpoints. Note that the control devia-
tions are significantly smaller than the allowed (ex-
pected) implementation errors. However, the “expected”
implementation error also includes the measurement
error, which is not included in the simulations.

5. Conclusion

We have introduced several alternative methods for
computing setpoints. The simplest is to use constant
nominal setpoints, but this may give large loss in some
cases or infeasible operation. One alternative is to find
the best constant setpoint (optimal backoff) by solving
a quite complex robust optimization problem. Another
alternative is to allow for online adjustments of the
nominal setpoints such that we achieve feasibility (MPC
adjustment) (flexible backoff).

As a case study, we have used a reactor, separator
and recycle process. Control of xp and L/F show the best
self-optimizing control properties. Alternatives that
follow Luyben’s rule (¥ and D) require robust setpoints
and give larger losses than xp and L/F. Alternatives with
variable reactor holdup (e.g., Luyben structure and
balanced structure) require flexible setpoints and give
significantly larger loss than xp and L/F.

Although the feasibility region and the loss for a
specific constant setpoint policy can be reduced by use
of logic, model predictive control, or online optimization
or a combination of these, a good choice of controlled
variables will nevertheless reduce the need for these
remedies and give a simpler and cheaper system. Note
that the required backoff and the corresponding eco-
nomic loss depend on the selected controlled variables.
Thus, the primary issue is to select the right control
structure (variables), whereas the backoff is just a
setpoint adjustment to deal with nonlinearities and
infeasibility.
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