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Abstract. The topic of this paper is how to implement optimal decisions in an uncertain world. A study of how this
is done in real systems - from the nationwide optimization of the economy by the Central Bank to the optimal use
of resources in a single cell - shows that a common approach is to use feedback strategies where selected controlled
variables are kept at constant values. For example, in order to optimize the wealth of a country (overall objective),
the Central Bank may to attempt to keep the inflation constant (selected controlled variable). by adjusting the interest
rate (independent input variable). The underlying idea is that the system behavior is indirectly optimized by keeping
selected controlled variables at given constant values (setpoints). In the paper this idea of “self-optimizing control” is
explained and illustrated on a large number of examples.
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1 Introduction

Consider the national economy, the government, companies and businesses, consumers, chemical process
plants, biological systems, and so on. For all these systems we have available degrees of freedom (decisions)
u that we want to use in order to optimize the operation (system behavior). We are here not concerned with
the optimization of these systems (which is certainly very interesting), but rather on how the decisions are
implemented.

A major problem in making and implementing the right decision is that the world changes and is un-
certain. These changes and uncertainties, which we can not affect, are here denoted disturbances d. They
include changes in exogenous variables (such as the outdoor temperature), parameter variations in the sys-
tem (e.g., aging of system components), as well as uncertainty in our model (if any) of the system.

One approach for adapting or correcting for disturbances, is to use any new information about the
system behavior and the disturbances to reoptimize the decision variables (“on-line optimization”). A
simpler strategy is to implement some simple rule such that the system somehow *“optimizes itself” without
the need for actually performing on-line optimization. We here consider the strategy of “self-optimizing
control” (Skogestad 2000) where the rule is to keep some “magic” controlled variable at a constant value
(setpoint). The idea is extremely simple, but it may nevertheless be difficult to grasp. The objective of this
paper is twofold: 1) Provide some simple examples that illustrate the concept of self-optimizing control. 2)
Show that the concept is universal and may be applied for a wide range of systems.

The idea of self-optimizing control is explained in more detail in the next section. In the rest of this
introduction we consider optimal operation and discuss the difficulty in achieving it in practice.



Assume that optimal operation of the system can be quantified in terms of a scalar cost function (per-
formance index) J, which is to be minimized with respect to the available degrees of freedom (manipulated
variables; inputs) u,,

min J(z, u,, d) 1)

subject to the constraints
gl(xauoad) = 07 92($au07d) S 0 (2)

Here d represents the exogenous disturbances that affect the system, including the effect of changes in the
model (typically represented by changes in the function ¢;), changes in the specifications (constraints),
and changes in the parameters (prices) that enter in the cost function (and possibly in the constraints). x
represents the internal states. \We have available measurements y = f,(z, u,, d) that give information about
the actual system behavior during operation. Note that y may include measured values of the disturbances
d, as well as known or measured values of the independent variables u,. For simplicity, we assume pseudo
steady-state behavior and do not in this paper include time as a variable. The equality constraints (g; = 0)
include the model equations, which give the relationship between the independent variables (u, and d) and
the states (x). The system must generally satisfy several inequality constraints (go < 0), for example, we
usually require that selected variables are positive. The cost function .J is in many cases a simple linear
function of the independent variables with prices as parameters. In many cases it is more natural formulate
the optimization problem as a maximization of the profit P, which may formulated as a minimization
problem by selecting J = —P.

In most cases some subset g4, of inequality constraints g, are active (i.e. g5 = 0 at the optimal solution).
Implementation to achieve this is usually simple: We adjust a corresponding number of degrees of freedom
u, such that these active constraints are satisfied (the possible errors in enforcing the constraints should
be included as additional disturbances). For example, consider short-distance (e.g. 100 m) running where
the objective is minimize the running time (J = T) and the independent variable v, is the energy input
(or something similar). For a reasonable well-trained runner the optimal solution lies on the constraint
of maximum energy. Implementation is then easy; the runner simply runs at maximum speed (applies
maximum energy input) throughout the race.

In many cases the active constraints consumes all the available degrees of freedom. For example, if
the original problem is linear (linear cost function with linear constraints g; and gs), then it is well known
from Linear Programming theory that there will be no remaining unconstrained variables. For nonlinear
problems (e.g. the model g is nonlinear), the optimal solution may be unconstrained, and such problems
are the focus of this paper. For example, consider long-distance (e.g. marathon) running where the objective
is minimize the running time (J = T') and the independent variable u, is the energy input. In this case the
optimal solution does not lie on the constraint of maximum energy, at least not at the beginning of the race,
and the runner has to select an appropriate energy input in order to optimize the behavior. How should this
be done in practice?

From this example it is clear the selection of an appropriate operational policy may be a difficult issue
for problems with unconstrained degrees of freedom. Such problems are therefore the focus of the rest of
this paper. We assume in the following that the active constraints are fulfilled (implemented), and we write,
for simplicity, the remaining unconstrained problem in reduced space in the form

min J (u,d) ©)

where u represents the remaining unconstrained degrees of freedom, and where we have also eliminated
the states = = z(u, d) by making use of the model equations g;. For any value of the disturbances d we can
then solve the (remaining) unconstrained optimization problem (3) and obtain .y (d) for which

min J (u, d) = J (uopt(d), d) E Jops (d)
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The solution of such problems has been studied extensively, and is not the issue of this paper. In this paper
the issue is implementation, and how to handle variations (known or unknown) in d in a simple manner.

In the following we let d* denote the nominal value of the disturbances. Let us first assume that the
disturbance variables are constant, i.e., d = d*. In this case implementation is simple: We keep u constant
at us = uept(d*) (here u, is the “setpoint” or desired value for u), and we will have optimal operation.
However, there are two problems with this policy. First, it is usually not possible in practice to get exactly
u = u, due to an implementation error n = u — u, (Skogestad 2000). Second, the disturbance d changes, so
Uopt (d*) is no longer optimal. What value should we select for u, in this case? Two “obvious” approaches
are:

1. If we do not have any information on how the system behaves during actual operation (no measure-
ment y), or if it is not possible to adjust » once it has been selected, then the optimal policy is to
find the best “average” value u, for the expected disturbances, which would involve “backing off”
from the nominally optimal setpoints by selecting u, different from wp.(d*). The solution to this
problem is quite complex, and depends on the expected disturbance scenario. For example, we may
use stochastic optimization (Birge and Louveaux 1997). In any case, operation may generally be far
from optimal for a given disturbance d.

2. In this paper we assume that the unconstrained degrees of freedom v may be adjusted freely and
that we have information (measurements y = f,(u, d)) about the actual operation. If we then have
a model of the system, we may image using these measurements to estimate the actual disturbance
d, and based on this perform a reoptimization to compute a new optimal value uopt(cZ), which is
subsequently implemented, u = uopt(ci).

Both of these “obvious” approaches are complex and require a detailed model of the system, and are not
likely to be used in practice, except in special cases. Is there any simpler approach that may work?

2 Implementation of optimal operation: Self-optimizing control
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Figure 1: Implementation of optimal operation with separate layers for optimization and control. Self-
optimizing control is when near-optimal operation can be achieved with ¢, constant, in spite of disturbances
d and implementation error n.

Generally, we find that the decision making and implementation in real systems is done in a hierarchical
manner (Findeisen et al. 1980) with setpoints for selected controlled variables being send from one layer to
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the one below. This corresponds to a simple feedback strategy where the degrees of freedom (manipulated
variables; inputs) u are adjusted to keep selected controlled variables ¢ at constant values ¢, (“setpoints”);
see Figure 1. Here c is a selected subset or combination of the available measurements y The idea is to
get “self-optimizing control” where “near-optimal operation” is indirectly achieved, without the need for
continuously solving the above optimization problem.

Example 1. Central Bank. Consider the role of the Central Bank in a country, which has available one
degree of freedom, namely the interest rate (u). The measurements y may in this case include the inflation
rate (y;), the unemployment rate (1), the consumer spending (y3) and the investment rate (y,). In addition,
we also know the chosen interest rate (y5 = ). The simplest policy would be to do nothing, that is, to keep
the interest rate constant (corresponds to the choice ¢ = y5 = u). A more common policy today is for the
Central Bank to adjust the interest rate (u) in an attempt to keep the inflation rate constant (corresponds to
the choice ¢ = ;). A typical desired value (setpoint) for the inflation rate is ¢, = 2.5%.

What is the motivation behind attempting to keep ¢ constant at ¢,? Obviously, the idea must be that the
optimal value of ¢, denoted ¢, (d), depends only weakly on the disturbances d, such that by keeping ¢
at this value, we indirectly obtain optimal, or at least near-optimal, operation (Morari et al. 1980). More
precisely, we may define the loss L as the difference between the actual value of the cost function obtained
with a specific control strategy, e.g. adjusting u to keep ¢ = c¢,, and the truly optimal value of the cost
function, i.e.

L(u,d) = J(u,d) — Jopt(d) 4)

Self-optimizing control (Skogestad 2000) is when we can achieve an acceptable loss with
constant setpoint values for the controlled variables (without the need to reoptimize when dis-
turbances occur)

Let us summarize how the optimal operation may be implemented in practice:

1. A subset of the degrees of freedom in u, are adjusted in order to satisfy the optimally active con-
straints.

2. The remaining unconstrained degrees of freedom in u, (denoted u) are adjusted in order to keep
selected controlled variables ¢ at constant desired values (setpoints) c,.

Ideally, this results in “self-optimizing control” where no further optimization is required, but in practice
some infrequent update of the setpoints ¢, may be required. If the set of active constraints changes, then one
generally has to change the set of controlled variables ¢, or at least change their setpoints, since the optimal
values generally change in a discontinuous manner when the set of active constraints change.

It is usually straightforward to select variables corresponding to the optimally active constraints. For
example, if we want to drive a car from A to B along a straight road in the shortest possible time, subject to
the constraint of staying below the speed limit, then speed should be selected as the controlled variable (c)
and its setpoint (c,) should be the given speed limit.

As mentioned, the difficult issue is to select controlled variables for the unconstrained degrees of free-
dom u. For example, if we want to drive a car from A to B along a very winding road in the shortest
possible time, then most likely we must drive slower than the speed limit in order to stay on the road (“re-
main feasible). A possible constant setpoint strategy in this case could be, for example, to keep the speed
at a constant value ¢, = k+/s where s is the straight line path ahead and % is a constant. The reason behind
this policy could be that the distance for stopping the car increases with the square of the speed.

We next present some simple examples to illustrate the above ideas.

Example 2. Cake baking. Let us consider the final process in cake baking, which is to bake it in an oven.
Here there are two independent variables, the heat input (v = @) and the baking time (u, = t). Itisa
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bit more difficult to define exactly what J is, but it could be quantified as the average rating of a test panel
(where 1 is the best and 10 the worst). One disturbance will be the room temperature. A more important
disturbance is probably uncertainty with respect to the actual heat input, for example, due to varying gas
pressure for a gas stove, or difficulty in maintaining a constant firing rate for a wooden stove. In practice,
this seemingly complex optimization problem, is solved by using a thermostat that keeps a constant oven
temperature (e.g., keep ¢; = Ty, at 200°C). and keeping the cake in the oven for a given time (e.g., choose
co = uy = 20 min). This feedback strategy, based on measuring the oven temperature c;, gives a self-
optimizing solution where the heat input (u;) is adjusted to correct for disturbances and uncertainty. The
optimal value for the controlled variables (c; and ¢;) are obtained from a cook book. An improved strategy
may be to measure also the temperature inside the cake, and take out the cake when a given temperature is
reached (i.e., up = t is adjusted to get a given value of co = T gke)-

Example 3. Long distance running. Consider a runner who is participating in a long-distance race, for
example a marathon. The cost function to be minimized is the total running time, J = T'. The independent
variable w is the energy input (or something similar). Of course, the runner may perform some “on-line”
optimization of his/her body, but this is not easy (especially if the runner is alone), and a constant setpoint
policy may probably be more efficient. Does there exist any “magic” self-optimizing variable ¢ that may be
kept constant?

A common and simple strategy is to run at the same speed as the other runners (e.g. ¢ = y; = distance
to best runner, with ¢, = 1m). However, this may give infeasibility if one is no longer able to maintain this
speed. Also, it does not work if the runner is alone.

Another strategy is to keep constant speed (¢ = y, = speed). However, this policy is not good if the
terrain is hilly (d = slope of terrain), where it is clearly optimal to adjust the speed. This policy, as well as
the previous one, may also give infeasability, since the runner may not able to maintain the desired speed
in the terrain is uphill.

A better self-optimizing strategy for a lone runner may be to keep a constant heart rate (¢ = y3 = heart
rate) or a constant lactate concentration in the muscles (¢ = y4 = lactate level). In these case, a constant
setpoint strategy seems more reasonable, as the speed will be reduced while running uphill.

Example 4. Biology. Biological systems, for example a single cell, contain very complex chemical and
biochemical reaction networks, of which significant parts have the function of a feedback control systems
(Savageau 1976) (Doyle and Csete 2002). Indeed, Doyle (lecture, Santa Barbara, Feb. 2002) speculates
that many of the supposedly unimportant genes in biological systems are related to control, and compares
this with an airplane (or a chemical plant) where the majority of the number of the parts of the system
are related to control. Biological systems at the cell level are obviously not capable of performing any
“on-line” optimization of its overall behavior. Thus, it seems safe to assume that biological systems by
natural selection through millions of years must have developed simple self-optimizing control strategies
of the kind discussed in this paper. For biologists it is a challenge is to find out how these complex systems
work and what the controlled variables are. Also, if one can identify the controlled variables, then one can
imagine performing “reverse engineering” in an attempt to identify the cost function .J, that nature has been
attempting to minimize.

Example 5. Portfolio management. Assume that we want to want to decide what fraction of our savings
should be in stocks and what fraction should be in the bank or in bonds. In this case we want to maximize
the future value of the savings, and the manipulated input is the buying (or selling) of stocks. One constant
setpoint strategy is to rebalance the portfolio such that we always have a fixed mix (e.g. ¢; = 50%) of our
capital in stocks and the rest in bonds or bank savings (Fleten et al. 2002)(AF. and WF. 1988). This means
that we will sell stocks when their value increases and buy stocks when their value goes down.

Example 6. Business systems and KPIs. Business systems are very complex with a large number of
degrees of freedom (u’s), measurements, disturbances and constraints. The overall objective of the system
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is usually to maximize the profit (or more specifically, the net present value of the future profit, J =
—NPV) (although, businesses are often criticized for using other shorter-term objectives, like maximizing
the present share value, but we will leave that discussion). In any case, it is clear that few managers base
their decisions on performing a careful optimization of their overall operation Instead, managers often make
decisions about “company policy”, which in many cases involved keeping selected controlled variables (¢’s)
at constant values. For example, the recently very popular approach of identifying “value metrics” or key
performance indicators (KPIs) for the business (e.g.,Koppel (2001)), may be viewed as the selection of
appropriate controlled variables, that is ¢ = K PI. Some examples of KPIs may be

e Energy consumption per unit produced
e Number of accidents per unit produced

e Number of employees per unit produced

e Research spending per unit produced

e Size of administration relative to production staff

e Time for the business to respond to an order from a customer
e Fraction of manual control loops in the plant

One may think that the value of the above KPI’s should be minimized, but this is not the case since it would
imply non-optimal operation with “overspending”. The optimal value for the KPIs are typically obtained
by comparing oneself with other successful businesses. This is done by “benchmarking” to find the “best
business practice”. However, it is less obvious what variables to select as KPIs? In theory, the results in
the next section may be used to find the optimal set of KPIs. This assumes that we have knowledge about
the sensitivity matrix F' for how the measurements depend on the disturbances d, and that we disregard the
implementation error.

3 Sdection of controlled variables

What should we control? As mentioned, we should generally control variables corresponding to the op-
timally active constraints. We here consider the remaining unconstrained variables (if any) for which the
selection of controlled variables is a difficult issue.

see file figself2.pdf

Figure 2: Feedback implementation of unconstrained optimum.

To answer this question quantitatively we need to evaluate the loss imposed by keeping the selected
controlled variables at constant setpoints. The loss L is defined as L = J — J,(d), where J is the cost
obtained when the controlled variables c are kept constant and J,,. (d) is the lowest achievable cost with the
given disturbance. However, this loss evaluation requires a model of the system, so we will first consider
some more qualitative rules for selecting controlled variables.

3.1 Qualitativerules

To approach the problem in a systematic manner, it is useful to consider the reasons why a constant setpoint
policy may not be optimal. Generally, there are two reasons, namely the presence of (1) disturbances d and
(2) implementation errors n. This is illustrated in Figure 2 where we see that the actual value ¢ = ¢; — n
of the controlled variable should ideally correspond to the optimal value cp(d) where .J has its minimum.
This has the following implications for the choice of controlled variables c:
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e In order to minimize the effect of disturbances d, we obviously want the optimal value of ¢ to remain
constant. That is, the sensitivity of ¢, (d) to changes in d should be as small as possible.

e In order to minimize the effect of implementation errors n, the sensitivity of ¢ to changes in the
independent variable u should be as large as possible. This is maybe not so obvious, but it can be
quite easily understood from Figure 2: A large sensitivity corresponds to a steep slope of the c-curve
and then a given n will only weakly increase the cost J. (Equivalently, the relationship between ¢ and
J should be as “flat” as possible (Skogestad 2000).)

From this Skogestad (2000) formulated the following rules for selecting controlled variables c:
1. The optimal value of ¢ should be insensitive to disturbances.
2. ¢ should be easy to measure and control accurately.

3. cshould be sensitive to changes in the (steady-state) degrees of freedom (Equivalently, the cost J as a
function of ¢ should be flat).

4. For cases with more than one unconstrained degrees of freedom, the selected controlled variables
should be independent.

The first rule minimizes the effect of disturbances d. The second rule reduces the magnitude of n. The
last two rules minimize the effect of the implementation error n. The four rules may be summarized by the
following single rule (Skogestad and Postlethwaite 1996):

Select controlled variables ¢ for which the controllable range is large compared to the sum of
optimal variation and control error.

Here the “controllable range” is the range ¢ may reach by varying the inputs (degrees of freedom) u, the
“optimal variation” is the expected variation in ¢, due to disturbance, and the “control error” is the imple-
mentation error n.

3.2 Minimum singular valuerule

The above rules may be quantified in terms of the minimum singular value rule (Skogestad and Postlethwaite
1996):

Select controlled variables ¢ that maximize the minimum singular value ¢(G) of the appropri-
ately scaled steady-state gain matrix G from inputs u to c.

By inputs u is here meant the unconstrained steady-state degrees of freedom. Note that appropriate scaling
is important:

e Scale the candidate variables ¢ such that their expected variation is similar. Specifically, dividing each
variable by its optimal variation + implementation error gives each variable an expected variation of
magnitude 1.

e Scale the inputs u such that they have similar effect on the cost .J (only necessary if we have two or
more unconstrained degrees of freedom).



A detailed derivation of the minimum singular value is given in Halvorsen et al. (2003). It is shown that for
small disturbances (local behavior) and with the scaling mentioned above, the expected worst-case 10ss is
bounded by
d(Jw) 1

2 a(G)?

From this we see that the expected loss is inversely proportional to the square of g(G). The matrix Jy, is
the second derivative (Hessian) of the cost function with respect to the inputs u, and is thus independent
of ¢. The bound is tight for the scalar case, and usually tight also for cases with more than one input. A
more serious limitation is usually that the above bound holds only locally, that is, in the range where J,,,, is
constant. This is often not the case, for example, the optimum may be close to infeasibility (in some other
variable or close to “the edge of a cliff”).

L <

3.3 Direct evaluation of loss

A direct evaluation of the loss for the expected disturbances and implementation errors avoids the above-
mentioned problems with local behavior and infeasibility. The method requires a model of the system and
involves the following steps (Skogestad 2000):

Step 1. Determine the degrees of freedom for optimization

Step 2. Define optimal operation in terms of a cost function J and operational constraints
Step 3. Identify the important disturbances

Step 4. Use the model to find the optimal operation (nominally and with disturbances)
Step 5. Identify active constraints (and control these)

Step 6. For the remaining unconstrained degrees of freedom: Evaluate the loss with constant setpoints for
alternative controlled variables

Step 7. Evaluate more carefully the alternatives with a small loss, including controllability analysis

The procedure has been applied to a large number of process case studies, including the optimal operation
of distillation columns (Skogestad 2000), the Tennesee Eastman challenge process (Larsson et al. 2001)
and the reactor-recycle process (Larsson et al. 2003).

One disadvantage with this “brute force” method is that it is requires a lot of computations, especially
since there is no limit on the possible candidate controlled variables that may be evaluated (in step 6). It
may therefore be important to limit the number of alternatives to evaluate in detail, and methods for this
are discussed in detail by Larsson et al. (2001). One effective method is to eliminate choices with a small
minimum singular value.

Note that we have assumed that the cost depends only on the steady-state behavior. This is reasonable
in most cases. The dynamic (control) behavior comes only in to step 7, and if the control properties are not
acceptable, then one needs to go back and evaluate more candidates.



3.4 Optimal measurement combination

Let y denote the available measurements (online information about the system behavior), e.g. temperature,
inflation rate or energy consumption. We make the simplifying (but very reasonable) assumption that the
number of controlled variables (s’s) is equal to the number of unconstrained degrees of freedom (u’s).
In most cases the controlled variables ¢ are selected simply as a subset of the measurements ¥, but more
generally we may allow for variable combinations and write ¢ = h(y) where the function h(y) is free to
choose.

One important disadvantage with the two above methods (singular value rule and direct loss evaluation)
is that they can only be used to check given choices for ¢. If the loss is acceptable then we have “self-
optimizing control” and it does not really matter of there exists an even better choice. However, if the
loss is not acceptable, then we have no way of knowing if there simply does not exist any self-optimizing
scheme or if we have overlooked some “magic” controlled variable ¢ = h(y). Unfortunately, there exists
no general method for finding the optimal (“magic”) controlled variable, and thus knowing what the best
achievable loss is.

The situation is better if we consider the local behavior where it is sufficient to consider linear measure-
ment combinations

Deltac = Hy 5)

where the constant matrix H is free to choose. This is discussed next.

With implementation error. It is possible to find the locally optimal linear measurement combination
H as proposed by Halvorsen et al. (2003). The local-behavior assumption makes it possible to use the
maximum singular value of a matrix M to effectively evaluate the loss for all expected disturbances and
implementations error. However, a numerical search to find the best linear combination is still required. In
addition to being computationally demanding the method also provides little insight into how to combine
the measurements in order to get a small loss.

Without implementation error. The simple method of Alstad and Skogestad (2002). requires much
less computations and gives more insight into how to select good controlled variables. The main restriction,
besides being a local method, is that the implementation error is not considered.

Interestingly, Alstad and Skogestad (2002) show that with no implementation error it is always possible
to find a measurement combination with zero loss, provided we have enough measurements. More precisely,
we need as many measurements as there are independent variables (inputs plus disturbances).

The derivation is surprisingly simple: In general, the optimal value of the y’s depend on the disturbances
d, and we may write this dependency as yopt(d). For “small” disturbance changes we may linearize this
relationship to get

Ayopt (d) = FAd (6)

where the sensitivity F' = dyqp(d)/dd is a constant matrix. We would like to find a variable combination
Ac = HAy such that Acopy = 0. We get Acopy = HAyope = HFAd = 0. This should be satisfied for any
value of Ad, so we must require that H is selected such that

HF =0 (7)

i.e. H must be in the left null space of F. This is always possible provided we have at least as many
(independent) measurements y as we have independent variables (u’s and d’s), i.e. #y = #u + #d (Alstad
and Skogestad 2002).

Example 1. Central Bank (continued). For this problem we have = interest rate and J = — National
Product. A constraint in this problem is v > 0 (because a negative interest rate will result in an unstable
situation), but in most cases this constraint will not be active, so we have an unconstrained optimization



problem with one degree of freedom. The measurements y may include the inflation rate (y,), the unem-
ployment rate (1), the consumer spending (y3) and the investment rate (y,). There are many disturbances,
for example, d; ="“the mood” of the consumers, d, = global politics, including possible wars, d; = oil
prices, d, = weather, ds = technology changes, etc. As mentioned earlier, a common policy is to attempt
to keep the inflation rate constant, i.e. ¢ = y;. However, recall from the requirement H F' = 0 for zero loss,
that we need an extra measurement for every disturbances, so with the large number of disturbances it is
unlikely that this choice, based on a single measurement, is always self-optimizing. Even if we assume that
there is only a single major disturbance (e.g. d;=consumer mood), then from the results presented above
we need to combine at least two measurements (#y = #u + #d = 1+ 1 = 2). This could, for example, be
a corrected inflation goal based on using the interest rate, ¢ = h1y; + hou, but more generally we could use
additional measurements, ¢ = hyy; +hoys + hsys +hays+hsu. The parameters for such a corrected inflation
goal could be obtained by reoptimizing the model for the national economy with alternatives disturbances,
using the approach just outlined.

3.5 Summary: Selection of controlled variables

There are broadly three classes of systems when it comes to the use of self-optimizing control.

Class A. Systems for which we have no model, and where on-line optimization is therefore not possible.
This class of problems is ideally suited for self-optimizing control, but since there is no model we
cannot obtain the controlled variables in a systematic manner. An example is long-distance running.
In such cases the self-optimizing controlled variables, if they exist, must be obtained by trying alter-
native choices on the real system, for example, through evolution.

ClassB. Systems that can be modelled, but where on-line optimization is impractical or costly. Self-
optimizing control is also well suited for such problems, and the controlled variables may be obtained
using the methods mentioned above. A generic model usually suffices because the selection of con-
trolled variables is a structural issue which usually does not depend strongly on the specific parameter
values.

Class C. Simple systems that are easy to model and optimize on-line (like the blending case considered
in the next section). In this case it may be better to use on-line optimization, rather than using a
large effort to find self-optimizing controlled variables, if they exist. In particular, this is the case for
problems where the active constraints change with time.

Finally, it is stressed again that we in this section have assumed that the set of active constraints remains
constant. If the active constraints change, then generally the best set of “unconstrained” controlled variable
(and setpoints) will also change.

4 Example 7. Optimal blending of gasoline

The following example is included for illustrative purposes, as an online model-based approach is simple
and would probably be preferred for this process. Nevertheless, we here assume that we want to use
a constant setpoint strategy. The example then illustrates clearly the importance of selecting the right
controlled variables, and illustrates nicely of the nullspace method of Alstad and Skogestad (2002) for
selecting optimal measurement combinations.

Problem statement. We want to make 1 kg/s of gasoline with at least 98 octane and not more than 1
weight-% benzene, by mixing the following four streams
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Stream 1: 99 octane, 0% benzene, price p; = (0.1 + my) $/kg.
Stream 2: 105 octane, 0% benzene, price p, = 0.200 $/kg.
Stream 3: 95 octane, 0% benzene, price p3 = 0.12 $/kg.
Stream 4: 99 octane, 2% benzene, price p, = 0.185 $/kg.

The maximum amount of stream 1 is 0.4 kg/s. The disturbance (d) is the octane contents in stream 3 which
may vary from 95 (its nominal value) and up to 97. We want to obtain a self-optimizing strategy that
“automatically” corrects for this disturbance.

Solution. The degrees of freedom for this problem are

T
Uy =(my my ms my)

where m; [kg/s] represents the mass flows of the individual streams. The optimization problem is to mini-
mize the cost of the raw material

J(uo) =Y pim; = (0.1 4+ mq)my + 0.2my + 0.12m3 + 0.185my4

subject to 1 equality constraint (given product rate) and 7 inequality constraints:
mp + Mg + Mg+ my = 1

my 2 0;mg 2> 0;mg > 0;my 2> 0
mp <04
99 mq + 105 mo + d m3 + 99 my > 98
2my <1

At the nominal operating point (where the octane number in stream 3 is d* = 95) the optimal solution is to
have
Ugopt (d* = 95) = (0.26 0.196 0.544 0)"

which gives Jop(d*) = 0.13724 $. We find that three constraints are active (the product rate equality
constraint, the non-negative flowrate for m, and the octane constraint). The same three constraints remain
active when we change the octane number in stream 3 from 95 to 97, where the optimal solution is to have

Ugopt(d = 97) = (0.20 0.075 0.725 0)"

which corresponds to Jopi(d = 97) = 0.126 $.
The proposed control strategy is then to use three of the degrees of freedom in u, to control the following
variables (active constraint control):

1. Keep the product rate at 1 kg/s
2. Keep the octane number at 98
3. Keepmy =0

This leaves one unconstrained degree of freedom. We would like to achieve self-optimizing control. To
this effect, we now evaluate the loss imposed by keeping alternative single controlled variables ¢ constant
at their nominal optimal values, ¢; = ¢, (d*). The measurements available are in this case a subset of u,,
namely
T
y=(m my my)

Here we have excluded my since it is kept constant at 0, and thus is independent of d and u. Let us first
consider keeping individual flows constant (and the three others adjusted to satisfy the active constraints on
product rate, octane number and zero flow for m,). We find when d is changed from 95 to 97:
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e ¢ =my constantat 0.26: J = 0.12636 corresponding to loss L = 0.12636 — 0.126 = 0.00036
e ¢ = my constant at 0.196: Infeasible (requires a negative mj to satisfy the octane constraint)
e ¢ = mg constant at 0.544: J = 0.13182 corresponding to loss L = 0.13182 — 0.126 = 0.00582

Let us now obtain the optimal variable combination that gives zero loss. We consider a linear variable
combination of the measurements v,

Ac = HAy = hlAml + thmg + h3Am3

The relationship between the optimal value of y and the disturbance is exactly linear in this case and we
have

0.20 — 0.26 Ad —0.0300
Ayopt = FAd = | 0.075 — 0.196 > = —0.0605 | Ad
0.725 — 0.544 0.0905
F

(we divide by 2 because the disturbance is 2 octane number units). To get a variable combination with zero
loss we must have HF = 0 or

—0.0305h, — 0.0605h2 + 0.0905h3 = 0

In this case we have 1 unconstrained degree of freedom (u) and 1 disturbance (), so we need to combine at
least 2 measurements to get a variable combination with zero loss. This is confirmed by the above equation
which may always be satisfied by selecting one element i H equal to zero. We therefore have an infinite
number of possible combinations of variables with zero loss. For example, the following three combinations
of two variables give zero loss:

1. ¢ =my — 0.496m, constant at 0.162: Zero loss (derived by setting 3 = 0 and choosing h; = 1)
2. ¢ = 3.02m, + mg3 constant at 1.328: Zero loss (derived by setting h, = 0 and choosing hs = 1)
3. ¢ = 1.496m4 + m3 constant at 0.837: Zero loss (derived by setting A, = 0 and choosing h; = 1)

see file blending.jpg

Figure 3: Possible implementation of optimal blending with ¢ = m; — 0.496m, as the “self-optimizing”
controlled variable

A possible implementation of optimal blending with single-loop controllers and ¢ = m; — 0.496m, as
the “self-optimizing” controlled variable is shown in Figure 3. Pairings of inputs and outputs, for example
the largest flow is used to control the total flowrate, have been included for illustration. However, note that
the choice of pairings does not influence the steady-state costs as long as the controllers have integral action.
This control structure is steady-state optimal as long as the active constraints do not change. Disturbances
in the feed octane in stream 3 are detected by the octane controller (OC) which adjusts m,, and m; is then
adjusted to keep c at its setpoint ¢, = 0.162. Price changes may be included as a correction on the setpoint
¢, (see discussion).

As mentioned, there are an infinite number of variable combinations ¢ of the 3 measurements (m., mo, m3)
with zero disturbance loss. However, if we also were to include the implementation error, then there would
be a single optimal combination of the 3 measurements in terms of the overall expected loss (Halvorsen et
al. 2003) (see discussion).
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5 Discussion

5.1 Changein prices

By “prices” we mean the parameters or weights that enter in the cost function.

In the above example, the prices were assumed constant, but from simple considerations it is clear that,
unless the active constraints change, price changes will not affect the selection of controlled variables. The
reason is that prices appear only in the optimization part of the block diagram in Figure 1 and do not effect
the measurements y and also not the controlled variable ¢ = h(y). In other words, no matter which variables
¢ we choose to control, there will be no “self-correction” to price changes.

However, prices changes will of course influence the optimal value of the variables, and since prices
are generally known, we would like to include some “price correction”. This may be done in two different
ways:

1. Make the setpoint ¢, a function of the prices p (this is probably the simplest and most obvious ap-
proach). Specifically, for a price change Ap = p — p*, the corrected setpoint is

cs = cs(p*) + HF,Ap

where the matrix F, = dy,mop:/dp is the optimal sensitivity of the measurements to prices (see
example below).

2. Keep constant setpoints, and instead include the (known) prices as extra “measured disturbances”
d (see the “extended version” of the PSE’2003 paper which is available at the home page of S.
Skogestad).

Example 7 (continued). Let us return to the blending example, and consider the case where the price
of stream 2 may vary. Specifically, changing the price p, from 0.2 to 0.21 gives the same set of active
constraints and the following new optimal flows

Upopt (P2 = 0.21,d = 95) = (0.28 0.188 0.532 O)T
The sensitivity to price changes is then
AYopt = (2.0 —0.8 —1.2)" Ap,

If we, for example, select ¢ = m; — 0.496m3 = y; — 0.496y3 as the controlled variable, then the price-
corrected setpoint is ¢; = 0.162 + (2 — 0.496 - (—0.8))Ap, = 0.162 + 2.40Aps.

Note that the above discussion assumes that the price changes are sufficiently small such that the active
constraints do not change. Larger price changes are likely to change the set of active constraints, and
through this strongly affect the choice of controlled variables. In other words, there is usually not a single
set of controlled variables that will be the best for all prices.

5.2 Implementation error

One issue which we have not discussed so far is the implementation error n, which is the difference be-
tween the actual controlled variable ¢ and its desired value (n = ¢; — ¢). In some cases there may be no
implementation error, but this is relatively rare.

Example 1 (continued). Let us again consider the Central Bank. A simple policy would be to do nothing,
that is keep the interest rate constant (i.e. select ¢ = u). In this case there would be no implementation error.
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However, a more common policy is to attempt to keep the inflation rate constant (¢ = 1), and in this case
there will generally be a difference n between the actual inflation rate (¢) and its desired value (c;), because
of (i) poor dynamic control, and (ii) an incorrect measurement of the inflation rate.

bf Remark. In this special case (Example 1) there is no implementation error when using the “no-
control” (open-loop) policy with ¢ = wu, but this is not at all a general rule. For example, in a wood-fired
pizza oven (Example 2) our inability to keep the heat input (u;) at a constant desired value, may be a key
reason for avoiding the open-loop policy (¢; = u;).

In any case, the implementation error n generally needs to be taken into account, and it will affect the
optimal choice for the controlled variables. Specifically, with implementation error it is no longer possible to
find a set of controlled variables that give zero loss. One way of seeing this is to consider the implementation
error n as a special case of a disturbance d. Recall that to achieve zero loss, we need to add one extra
measurement y for each disturbance. However, no measurement is perfect, so this extra measurement will
also have an associated error (“noise”), which may again be considered as an additional disturbance, and so
on.

Unfortunately, the implementation error makes it much more difficult to find the optimal measurement
combination, ¢ = h(y), to use as controlled variables. As mentioned earlier, numerical approaches may be
used, at least locally (Halvorsen et al. 2003), but these are quite complicated.

Finally, it should be noted that Figure 1 is a bit misleading as it (i) only includes the contribution to n
from the measurement error, and (ii) gives the impression that we directly measure ¢, whereas we in reality
measure y, i.e. n in Figure 1 represents the combined effect on ¢ of the measurement errors for y.

5.3 Mode uncertainty

Model uncertainty, the differences between the actual system and its model, is usually not very important
when implementing a “self-optimizing” constant setpoint policy. This follows since the model is not ex-
plicitly used in a constant setpoint policy, but rather we are using a feedback implementation based on
measurements from the actual plant. It may be desirable to use the model to obtain the optimal setpoints
c,, but alternatively we may attempt to obtain ¢, by observing the actual behavior. A model is needed when
using the above procedure to select the best controlled variable (with minimum loss), but since we are using
this model to make structural rather than parametric decisions, it is obviously not critical if there is some
mismatch between the system and the model, as long as its structural properties are correct.

6 Conclusion

Most real systems are operated by keeping selected “controlled variables” at given values (“setpoints”). The
goal is to have “self-optimizing control” which is when near-to-optimal operation is achieved with constant
setpoints (or infrequent updates). Many real examples have been presented in this paper.

There are broadly three classes of problems when it comes to the use of self-optimizing control. A) A
self-optimizing constant setpoint strategy is obviously ideally suited for systems that are difficult to model,
and thus cannot be optimized on-line. An example is long-distance running. However, in such cases the
self-optimizing controlled variables, if they exist, must be obtained by trial and error. B) Self-optimizing
control is also well suited for systems that can be modelled, but where on-line optimization is impractical
or costly. In such cases, controlled variables may be obtained using the methods mentioned in this paper
based on a “generic” model of the system. C) For simple systems that are easy to model and optimize, like
the blending case, it is probably better to use on-line optimization.

For class B, where a model is available, the controlled variables may be obtained in a systematic manner.
The first step is to quantify the operational objectives through a scalar cost function J to be minimized.
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Next, the system is optimized with respect to its degrees of freedom u,. From this we identify the “active
constraints” which are implemented as such. Finally, if there remains unconstrained degrees of freedom
u, We must identify appropriate controlled variables ¢ to keep at constant setpoints. Several methods exist
for this, including the minimum singular value rule, “brute force” loss evaluation and optimal measurement
combination. These methods have not been discussed in detail, as the main objective of this paper has been
to give the reader an understanding of the idea of self-optimizing control.
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