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Abstract— This paper deals with input performance limita-  manipulated variable selection for stabilization (c) optimal
tions of feedback control. The achievable input performance controller synthesis problem formulation.

depends on the joint controllability and observability of The notation used in this paper is fairly standard. Given
unstable poles and is exactly quantified for single input single matrix A cmxn A s its tran nAA* i
output (SISO) and multi input multi output (MIMO) systems a ma € ! S IS transpose a S

with and without time delay. We also present a modification of  ItS Conju_gate transpos_e&,; Qenotes thei"" column of
p-interaction measure to assess the feasibility of decentralized the matrix and accordinghA; represents thé!” row. A

stabilization with independent designs of loops. The results are  matrix made of elements;; - - - a1y, - - - G IS represented

useful for various purposes including designs of the process, 54 la;;]. The set of all rational stable systemsRH..

control structure and optimal controller synthesis. Let G(s) = G (s) + Ga(s) such thatG (s) € R’Hio and
|. INTRODUCTION G2(s) € RHoo- ThenGy(s) is the unstable projection of

In this paper, we study intrinsic limitations on input &(5) represented a&(G(s)). The symbol« represents

performance for linear systems under feedback controthe minimal state space realization of a transfer matrig,
The broad area of fundamental performance limitations hag(s) < (4,B,C,D). For G(S)_fhe RHoo, UHi(G(S).)’.
drawn a lot of interest in the past two decades [1] [Z]VH(G(S)) andgH(G(S)) are thei™, maximum and mini-
However, the focus has largely been on obtaining bounds um Hankel smgular values [7] respectivelya (G(s)) is
sensitivity and complementary sensitivity functions. Havréhe stru_ctured singular value [7], whetk represents the
and Skogestad derived expressions for lower bound gificertainty st_ructure. Thet, and Ho, norms of G(s) €
achievable input performance for unstable systems [3] aﬂ&H“ are defined as

extended t_heir_results to get exact expressions for rational IGs)|2 = 1 /OO tr (G(jw)* G (jw)) dw
systems with single unstable pole [4]. Chem al. [5] have 21 J_ oo

studied the optimal regulation problem with input usage ||G(s)[|lcc = sup &(G(s)) =supa(G(jw))
penalized for rational unstable systems driven by input Re(s)>0 weR
disturbances in thé{, control framework. These results I|l. PROBLEM FORMULATION AND SIMPLIFICATION

can be related to the present problem by appropriate choice|n this section, we collect some general results from
of weights. In this paper, we focus on unstable systemsptimal control theory and show how they simplify when

driven by output disturbances and characterize the minimge input performance is maximized. These results form
input requirement for stabilization. Clearly, the achievablghe basis for further development in this paper. Consider

input performance is zero for stable systems. These resuffinite-dimensional, linear time invariant (FDLTI) system
generalize the previous results of Havre and Skogestad [#] the standard form [8]:

to systems with multiple unstable poles and time delay. .
The p-interaction measure [6] is a useful method to X

assess the feasibility of decentralized stabilization through y = Cx+Daw

independent designs of loops. The requirement that the z = C,x+Dju (1)

individual loops be designed based on the block diagonalhere is the exo0enous outout and is the exoaenous
elements, which should have the same RHP poles as fieerez 9 P 9

system, limits the applicability ofi-IM to open loop stable nput. W'.th (A’B) sta_\bmzable andA, C) _detectable, let
S .the Hamiltonian matrice¥1, andJ, be defined as
systems. We show that this difficulty can be overcome with
a minor modification and present bounds on achievabﬁ2 _ { A -BB* ] Jy = { A” -C*C }
input performance, when the performance of individual -CIC. -—-A -B,B, -A
loops is maximized. The results presented here are usefulLet X, andY, solve the corresponding Riccati equations
for different purposes including: (a) process design corer X, = Ric(Hz) and Y, = Ric(J3). Let T,, be
sidering achievable control performance (b) controlled anthe closed loop transfer matrix from to z. The unique

] ) ) o controller minimizing||T..,(s)||2 is given as [8]:
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z4 iW treatG(s) as the system without loss of generality. These

w, G, manipulations further allows us to represent the generalized
plant as
-’_’{ K }_UT_< G }JTy x = Ax+Bu
y = Cx+w
Fig. 1. Closed loop system zZ = u (7)

where G(s) < (A,B,C). For the system (7), leH,,J>
and H..,J.. be the corresponding Hamiltonian matrices.

For the minimization of|T..,(s)| ., similarly define By companing (7) with (1), it follows thafk — HL.. and

H.o - { A v?B,B}, — BB* } J2 = Joo, which in turn implies thatX2 = X, = X,
oo —C:C, —A* Y=Y, =Y, F,=F,=FandL, =L, =L.
A* 72C:C, — C*C Under Assumption 1, there exists a transformation matrix
Joo = { -B,B* _A } T such thafT "' AT is diagonal and'* T = I. Rearranging
Y and partitioning the states of the transformed system
wherey > 0. If X, = Ric(Hy) >0, Yo = Ric(Jo) >
0 and p(XYx) < 72 then a suboptimal controller ¥ — T~ 'AT%+ T 'Bu= [ P, 0 }5(4_ [ B, }u
achieving||T..,(s)[ls < is [8]: A o P B
. - Aoo‘*zooLoo . y = CTx+d—[CS C]x+d (8)
sun(s) = Fo| O ) whereP, and P € C™*"» are diagonal matrices, which
A, = A++v?B,B X, +BF, +Z,L,C contain all the stable and unstable modes respectively.

Clearly, #(G(s)) < (P,B,C). Let X = T~!XT and
whereF,, = -B*X,, Lo, = - Y, C* andZ,, = (I- Y = T YT solve the correspondlng Riccati equations

“2p(Xs Y )) L. The optimal cost is given as, for the transformed system (8). Then, to be non-negative
1 definite, X and’Y must assume the form,
Ioo = Inf [|T.0(5)[[oc = p? (Xc Yoo) )
K(s) > [0 0} . {0 0}
) i = Y =

To relate these results to the problem in hand, consider 0 X 0Y
the system shown in Figure 1, where all exogenous inpUghere X, Y € Cm»*"» > 0. Then, it suffices to solve
have been collected in the blo€k,, (s). . .

Assumptionl: We make the following assumptions: XP+P'X-XBB'X = 0 ©)

1) G.(s) is stable and right-invertible. YP"+PY -YC'CY = 0 (10)

2) G(s) is strictly proper and has distinct poles. For the transformed system (8), the state feedback and

3) Wy(s)=1 the output injection matrices are given as,

In general, G,,(s) can share common unstable poles . . .
with G(s), but this case is not considered here. The right- F = FT=[0 F|=[0 -BX] 1)

invertibility of G, (s) is necessary for the existence of a L = Ti=[0 L ] —[0 -YC ] (12)
stabilizing controller. Other assumptions simplify algebraic

manipulation and notation and the extension to the generalUsing (3), (5)
case is S|mple With _these assump_tlons Fhe 'closed loop 2 = t(FYF*) = tr(L*XL) (13)
transfer matrix from disturbances to inputs is given as, L. = p%(XY) (14)

-1
Tuw(s) = K(s) T+ G(5)K(s)) " Gu(s) (6) The Riccati equations (9)-(10) have a special structure
Let G, (s) be factorized aG,(s) = Gum(s)Gua(s), @nd are much easier to solve as compared to the general

and regular algebraic manipulations,

where G, (s) is minimum-phase andx,,(s) is an all- Ccase. Consider thd = diag(pi,--- ,pn,), Re(p;) > 0.
pass factor. Deﬁn&;(s) — Gwm.( )G(S) and K(S) — Let the Hermitian matriXM € C™*»*"» be defined as
K(s)Gwm(s),_ where G(s) is an n, x n, dimensional [mi;] = 1/(pi + ;) (15)
transfer matrix. It follows from (6) that
) . R . Lemmal: LetX,Y > 0 solve the Riccati equations (9)-
[Tuw(s)] = [[K(s)T+ G(s)K(s))" Guals)|l (10) andM be given by (15). Then
= KT+ G(s)K(s)) Ly | .
X = M 1

Then || Ty (s)|| is minimized by designing an optimal ; iag(B;)Mdiag(B:)" (16)
controller for G(s). Due to the stability ofG,(s), the ny
following are equivalent: (a)K(s) stabilizes G(s), (b) Y1 = Zdlag(c;.) Mdiag(C,) (17)

K(s) stabilizes G(s). With these observations, we can =1



Proof: Pre- and post multiplying (9) bX ! gives To extend proposition 1 to systems with a finite time
delay, letG(s) be expressed as,

i G(s) = G(s)e % (21)
Then [9], X! = M o (BB*), whereo is the Hadamard .
or element wise product. Noting thB&B* = >"7* B, B, whereG is the delay-free part of the system.df,(s) also
=" Mo (B;B}) and (16) follows. The proof of contains delay, it can be factored as an all-pass factor and

PX !+ X 'P* = BB* (18)

(17) follows from duality. m  thusG(s) remains causal.
Lemma3: ConsiderH(s) « (P,B, C) such thatP =
Il. SISO SrsTEMS diag(p1 - -~ pn,), Re(p;) > 0. Let Hy(s) € RHo With no
In this section, we quantify achievable input performanc@eros atp;. Then
of SISO systems with and without time delay. "o
Lemma2: For M defined by (15)M~! is given as UM, (s)H(s)) = Z —H,(p;)C;B,; (22)
§—Di
M-, = (pi + pi)(pj +Pj) ﬁ (Pi + Pr) ﬁ (pj + Pr) Proof Using dyadlc expansion, H(s ) =
Y Di +Dj v (i = pr) it (pj — Pr) P p —-C;B;. Let U(H(s)H(s)) « (P,B,C).
kit k7 SinceH; (s) does not cancel RHP poles B(s), P = P.

Lemma 2 is easily verified by evaluatingIM~' or Y
N B, = [Hi(s)H
M~'M. Note forn, =n, =1, B =[], C = [¢;]. ow, C:B; = [H. (s)H(s)(
Proposition1: For a rational SISO systent(s), let
U(G(s)) <« (P,B,C) such thatP = diag(pi---pn,),

s — pi)]s=p;, and (22) follows.
[ |
Note that in Lemma 3, there is no loss of generality
in assuming that all modes dfi(s) are unstable, since

Re(ps) > 0. Then U(H, ()H(s)) = U(H, (s)U(H(5)).
) a2 a2 ' Proposition2: For the SISO system expressed by (21),
I = [ e } M {b*c*] i=1--n, (19) letU(G(s)) < (P,B,C) such thatP = diag(p1 - pn,),
_icl ; i Re(p;) > 0 andT' = diag(efPr - - - e%7»). Then
L. = o (diag(B)diag(C)M) (20) ,
whereM is defined by (15) and; = 1, M~". B = [qqu} TMT* qiq;k] i=1--n, (23)
Proof: (1) For (19), based on (11), (13) and Lemma 1, bic; bjc;
I3 =FYF* = B*XYXB and ol X -1
Lo = |o(P'B.CaM)] (24)

13 = 1, M~ (diag(B)diag(C)) "M !

— 1
(diag(B*)diag(C*))_lM_llnp whereM is defined by (15) and; = 1 M

Proof: Let e=% = f(fs,n) + O(n ) Wheref(Hs,n)

Based on Lemma 2, is ann'" order rational approximation af~* (e.g. Pade
(pi + Pv) approximation). For anyn, if an RHP zero off(fs,n)
¢ = (pi + Di) H s i=1-my, cancels an RHP pole @&(s), the system is not stabilizable
k=1,k#i (pi = pr) due to presence of hidden unstable mode. However for an

FDLTI system, this situation does not occur for all>> N
for sufficiently largeN, since the magnitude of RHP zeros
of f(6s,n) approaches infinity ag — oc.
(1) For (23), using (22);¢; = b;¢; f (0p;,m), n > N and
I%2 = p(diag(B*)"*M~'diag(B) ! /
diag(C) ™M~ diag(C*) ! 20~ 99y 99y
4(C) £(C) B ~ {Bm(mn)} M [Bmmw)] 25)
Then, the result follows by noting that for any matu,
p(A*A) =52(A) and5(A) = o~ 1(A). ™ Now, lim, .., f(fp;;n) = e %, as the exponential
Though in (19)-(20),7, and I, depend only on the function is uniformly convergent in the entire complex
unstable poles, the stable part of the system also affedtane. Noting thajf ' (6p;,n) appears as a bilinear term in
the input usage. This happensza(sé(s) ) depends on the (25), which is itself an exponential function, we conclude
unstable as well as stable poles of the system. thatlim,, . I3 exists and is given by (23).
Remark 1: The expression foq appears to suggest that  (2) For (24) using similar arguments as before
in general,l, — oo asp; — p; for somei, j < n,, which is 1 N . _ ~ =
clearly not true. Sincé;c; = [G(s)(5—p;)]smp;» bici — 00, Ixn) ~ @ (dlag(f(ep“ n))BdCdM)
asp; — p;, which negates the effect @f. But when the  The singular values are roots of a polynomial equation,
system has an RHP zero close to RHP polgs; fails to  whose coefficients are function of(0p;,n). As n —
increase monotonically and stabilization can be diffiely, o, these coefficients and thus the roots converge. Hence,

if G(s) = %, Iy, Ic — o0, @se — 0. lim,, o Io(n) exists and is given by (24). [ ]

Now, (19) can be obtained by noting thal—! =
diag(q*)M diag(q) andq;q} = |q;|*.
(2) For (20), based on (14) and Lemma 1,




By differentiating (23)-(24) with respect § dI/df > 0

where|P;; + P%| = 2|Re(Py;)|.

anddl./df > 0 for all . This shows that the input usage (2) For (30), based on (14) and (26)

cannot be decreased by introducing additional lag in the
system, which also follows from physical considerations.
Corollary 1: Under same conditions as Proposition 2,

let G,(s) < Then

I(G(s)) = I»(Gy(s)) and [ (G

(P,T'B,C) or (P,B,CI1).
(5)) = 1o (G (5)).

Lo = AEXTY ) =05 (G(s))
[ ]
The expressions (29)-(30) show thatand I, primarily

depend onv (G (s)), which is a measure of joint con-

Remark2: Time-delay enters (23)-(24) assuming theyollability and observability of the unstable poles. Using
form e and thus do not pose serious limitations on iNpUt16) and (17).01:(G1(s)) is also expressed as,

performance for systems with slow instabilities awvide

versa It follows from Corollary 1 that time delay essentially

ot (Gi(s) = A7 [(BB) o

M)((C*C)eM)]  (31)

reduces the controllability (or observability) of poles and the

faster the instability, the less controllable (or observable) th(F1

pole is, as compared to the delay-free system.

IV. MIMO SYSTEMS

Glover [10] studied the robust stability of systems in
e presence of additive unstructured uncertainty. With this
description of uncertainty, maximizing robust stability is
equivalent to minimizing thé{., norm of transfer matrix

In this section, we extend the results of the last sectiofiom disturbances to inputs. Thus, the results of Glover [10]

to MIMO systems.
Lemma4: Let G, = U(G) and X, Y > 0 solve the
Riccati equations (9)-(10). Then,
o2 (Gi(s)) = N(XY ) i=1,---n, (26)
Proof: Pre and post-multiplying (18) b§{l'; and T3
respectively, wherd'; is a state transformation matrix,
T, PX 'T; + T} X 'P*T] =
PX '+ X'P* (27)
whereP = T, PT;', B=T,B andX = (T})'XT;".
Similarly, by settingC = CT; ' andY = T, YT},

c*C

T,BB*T
BB*

PY l4Y P 28)

Now Y~! and X! are the controllability and observ-

ability gramians ofG#(s) — (—P* C*,B*) and (27)-
(28) are the corresponding Lyapunov equationsTIf is

chosen such that-P*, C*, B*) is a balanced realization,

thenX 1 =Y~
o:(Gi(s)) =

= diag(ow:(Gi(s))) [7] and

AXTY H = AaXTY ) i=1-0m,

[ |
Proposition3: For the rational MIMO syste_m?. having
n, unstable poles, leGz; = U(G) and (—P*,C*,B*) be

the balanced realization &&;. Then
s 2|Re I_)ii
I = 272' ( ) (29)
=1 01 (Gi(s))
Lo = oy'(Gi(s)) (30)

Proof: (1) For (29), based on (13),
I2 = tr(B*XYXB) = tr(B*XYXB) = tr(BB*XYX)
Define £y = diag(oi(G7(s))). Since(—P*, C*,B*)
is the balanced realization @ (s), using (27)

I3 = tr[(-PSy —2uP)Zy’]

- P, +P
= tr(-PX;?) +tr(—X;2P*) = Z [P + (“)')
S

= laHz

are also applicable to the present case. The expression for
I, as derived here is as an alternative proof of the same.
Remark3: In general,H, and H,, norms of a transfer
matrix can be arbitrarily apart. Proposition 3 shows when
input norm is minimized[, /I, is always bounded as
n | <

JH G* Z| —12 <QZ|R6 ii)

The closeness dfz and/., partially foIIows from the fact
that the related Riccati equations (9)-(10) for tHg and
Ho, cases are the same. To extend proposition 2 to MIMO
systems, we consider systems which can be expressed as

G(s) = G(s) 0 O(s); O(s) = [e7 7] (32)

whereG is the delay-free part of the system. It is pointed
that (32) does not represent the general case and in practice
is satisfied only wheitz,,(s) is diagonal. The discussion is
limited to the cases where, > n,, and similar expressions
for n, < n, can be obtained with minor modifications.
Lemmab: ConsiderH(s) < (P,B,C) such thatP =
diag(p1 - - pn, ), Re(p;) > 0. Let Hy(s) € RHoo with no
zeros atp;. Then

“H, (p;) o (C;B;)

1
:Zs_pz

The proof of Lemmalﬁlis similar to the proof of Lemma 3
and is omitted.

Assumption2: Let U(G(s)) < (P,B,C) such that
P = diag(pi---pn,), Re(ps) > 0. Then the matrix
(CiB;) 0 ©(p;) has full column rank for ali = 1---n,

Proposition4: For the MIMO system expressed by (32),
which satisfies assumption 2, let(G(s)) < (P,B,C)
such thatP = diag(p1 - - - pn, ), Re(pi) > 0. Let G(s) <
(Ap, By, Cp), where

U(H, (s) o H(s)) 33)

[Inu . Inu]
B',np) o ®(pnp)

Io(G(8)) = Lo(Gy(s)).

A, = diag(pil, - -pn,In,); Bp=

(CiB})o®(p1)--(Cy,

(s)) = L (Gyp(s)),

C, =

ThenI,(G



Proof: Let ©(s) be approximated by amn'" order ~ Proposition5: Let G(S)A be partitioned asG(s) =
rational function as before. As — oo, using Lemma 5 and Gya(s) + Gr(s) such thatGya(s) is block diagonal with
the same arguments as used in the proof of Proposition 2yery block being square and has same RHP pol€s(as.

o Defir'1.e.de§s) = (I+ de'(ls)Kbd(s)?_l. Then Kyy(s)
UG(s)) = Z po— (C;B)) 0 O(p;) (34) stabilizing Gyq(s) also stabilizes(s) if
= Kpa(5)Sa(5) oo < pa' (Gi(s)) (35)

. 1 ) n’ ~
Due to assumption /2,5,_1)7,@(;02) o (CB,) « where A has same structure &;,(s).
(Piln,, In,, ©(pi) o (C;B;)). Then the result follows by Proof:  Since Guq(s) and G(s) has same RHP
considering the aggregation of these subsystems. B ojeg Ky ,(s) stabilizing Gua(s) also stabilizesG(s) if
For systems not satisfying Assumption 2, the triple 1Kba(5)Sha(s) o < |IG1(s)]|=! [10]. Since stability is

(Ap,Bp,.Cp) is not necessarily a minim.al rgalization. Thisscaling invariant, closed loop system is stable if
assumption can be relaxed for generalization purposes, but

this makes the expressions difficult and complex. A practical  |IDKya(5)Ssa(s)D ' ||oo < [DG(s)D 7' (36)
case, where Assumption 2 is always violated, occurs wh ereD is a scaling matrix. LeD be restricted to the
the delays are associated with the sensors or actuatorssg D — {diag(d; - In,),di € R}, where the dimen-
the system. Systems with delay associated with sensors ¥6ns of individual blotclés Ofébd(s,) is m; x m;. As

handled next and the expressions for systems with del%Kbd(s)de(s)D’1 _ Kbd(S)ébd(S), the conservativeness
associated with actuators can be obtained analogously. of (36) can be reduced by choosi such that the

. _ : —0;s\
Corollary 2: Let  G(s) = diag(e™"*)G(s) right hand side of (36) is maximized. Then the sufficient
and  Gy(s) U (dlag.(pilngg?,B’ Cp),  where .o jition for the stability of closed loop system is
C, = |[diag(e™%P)Cy---diag(e " P"»)C,,]. Then, R X A R
I(G(5)) = I2(Gp(s)) and Lo (G(s)) = Ioo(Gp(s)). [Kba(s)Sna(s)lloc < sup DG (5D < pa (Gi(s))
The proof of Corollary 2 follows by considering (34)
and noting that(C;B)) o ©(p;) = diag(e %*)C;B,. .

It is interesting to note that whe®(s) is unstructured, Corollary 3: Consider that all other conditions of Propo-

stabilization of original irrational system with, unstable Sition 5 holds, butKy.(s) is designed to maximize the
poles is equivalent to stabilizing a rational system witPerformance of individual loops. Then the closed loop

n, x n, unstable poles. system is stable it (U(Ga(s))*) > pa(Gi(s)), where
A has same structure &,,(s).
V. DECENTRALIZED STABILIZATION Proposition 5 provide a sufficient condition to assess if

In this section, we briefly review the available results ofva(s), designed based d@4(s), can stabilize the closed
p-Interaction measureu¢IM) [6], point its limitation and loop system. However they provide no information regard-
suggest a modification gi-IM to overcome the same. ing the closed loop performance. We present bounds on

Let G(s) be partitioned asG(s) = de(s) + GI(S) input performance, whelK,,(s) is designed to maximize
such that de(s) contains the block-diagonal elementsthe performance of individual loops in the next proposition.

of G(s) and has same number of RHP poles G$s). Proposition6: Let all other conditions of Proposition 5
Define E(s) = (G(s) — Gpa(s))Goa(s)™t andHyy(s) =  hold, butKy,(s) is designed to maximize the performance
Ga(8)Kpa(s) (I + Gpa(s)Kpa(s))~L. Then the block di- of individual loops. If closed loop system is stable,
agonal controlledk,,(s) stabilizing G,q(s) also stabilizes 1 . .

G(s), if 6(Hypa(jw)) < pp (E(s)) for all w, whereA has o U(Gra(s))*) + [G1(s)] = [Haal)S(6)

same structure a&,4(s) [6]. In practice,G(s) andGpqa(s) - =

as defined above has same number of RHP poles only for < (37)

= ~ A \

open loop stable systems limiting the applicability.efM. ~ leaU(Gra(9))") ~1Gr(9)lleo]

This limitation is overcome by relaxing the requirement . Proof. Lflng G(s) = de(s_)1+ Gi(s), we obtain
that Gy (s) contains the block diagonal elements@fs).  (Kbd($)5(5)) ™" = (Kua(s)Spa(s)) ™" +Gi(s). Then, using
To relate these results to the input performance, the uﬁlngular value inequalities [3],
certainty irgi(?bdtgf) is |T0|'del':'ed as atid_iti;/efuncertaizt)t/) o (Kpa(jw)Spa(jw)) 1) — 5(G1(jw))]
as opposed to the multiplicative uncertainty form used by e NG =1
Grosdidier and Morari [6]. However this limits the utility = Q((Ifbd(j,w)?(]w‘)) 21 o
of the results to the case when individual blocksGaf,(s) < o((Kpa(jw)Spa(jw)) ™) +0(G1(jw)) Vw
has equal number of inputs and outputs. Tholgh(s)  Now (37) is obtained by maximizing over all and noting
designed based d84(s) is always block-diagonalKya(s)  that o ((Kpq(jw)Spa(jw)) ™) = o (U(Gea(s))*). n
is guaranteed to be block-diagonal onlyGf,(s) is block Representing the individual blocks 0fGpy(s)
diagonal. Note that design &,4(s) based oryq(s) only  as [Gyy(s)];;, we note that oy (U(Gpa(s))*) =
is equivalent to designing individual loops independently.maxigH(u([de(s)]m*), i = 1---n, . Then (35)



is most easily satisfied by assigning the RHP polewhere the objective is to choose one of the inputs requiring
of G(s) to the blocks of de(s) such that the joint minimum usage for stabilization. Use &, andH.-norms
controllability and observability of each pole is maximum.suggests the selection af andw; respectively. An appro-
This also minimizes the upper bound §Kq(s)S(s)||.  priate choice of norm can be done based on available infor-
VI. DISCUSSION ANDCONCLUSIONS mation regarding disturbance characteristics. But noting that
' |IK(s)S(s)||z, closely addresses the physical constraints of
In this paper, we used a state space framework to obtajRe system ant K (s)S(s)|loe < |[K(s)S(s)| 2, [7], use of
analytic expressions for achievable input performance fog_ _norm may be preferred. Then if for some combina-
SISO and MIMO systems with and without time delay. Retion of variables, |[K(s)S(s)||l« > /3, where 3 depends
garding the factors affecting achievable input performancen physical constraints, system stabilization without input
the following general conclusions are drawn: saturation using a linear feedback controller is not possible.
1) The input performance primarily depends on the joint With a minor modification, the applicability ofi-IM
controllability and observability of unstable poles. is increased to unstable systems, but it can still be very
2) Time delay poses no serious limitation on the achieveonservative. Consider the following system
able input performance for a system with slow insta-

o . 1 0|1 p 1
bilities andvice versa R 0 2[5 1 R 0

3) The input performance of a MIMO system, where theG(s) = I o0ilo o Gpa(s) = 1
delays cannot be separated at inputs or outputs, can 01 1 0 0 0

be much worse as compared to a system with delays
that can be factored at inputs or outputs. The sufficient condition for decentralized stabilization

The results presented here are useful for various purpos@i¥en by Corollary 3 is not satisfied, whes > 0.22,
including designs of the process, control structure aniut direct controller design using Matf&bsuggests that
controller synthesis. For optimal controller synthesis, thesKui(s) can stabilizeG(s) until 8 < 0.32. This con-
results can be used to assess if the input performanggrvativeness arises a& is much larger than the true
is overly emphasized in the mixed sensitivity objectiveuncertainty inGy,(s). It can be reduced using frequency
function used to trade-off the different objectives. The utilitydependent weights [6], but the choice of such weights is
of the results for other purposes is discussed in turn. ~ hon-trivial. Further note that the partition d&(s) into

Consider a rational SISO system with two given unstablésd(s) andG;(s) is non-unique. Though some guidelines
poles p1,p> (p1 > p2) and a zeroz, where z can be are provided, finding the optimal partition €(s) remains

influenced by Simp|e process or operating point Change@ﬂ issue for further research. In this paper, we assumed that
The objective is to choose such that input usage for the disturbance model does not share any unstable poles

stabilization is minimal. Clearly as — +oo, the gain of the With the system stable. This assumption can be relaxed for
system increases and thus the input requirement decreag@geralization purposes using the results presented here and
monotonically. In the rangg, < z < p, there also exists a that of Havre and Skogestad [3].
locally optimal value of, since a zero close to an RHP pole
reduces its joint controllability and observability increasing
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