
 

COMPLEXITY MEASURE FOR BLOCK DIAGRAMS 
 

E. S. Hori1, S. Skogestad2*, W. H. Kwong3      
 
    1- Departamento de Engenharia Química – Universidade Federal de São Carlos 
        Campus Universitário, Km 235 –CEP: 13565-905 – São Carlos – SP – Brasil 
                     Telefone: (0-xx-16)260-8264 – Fax: (0-xx-16)260-8266 – Email: pshigueo@iris.ufscar.br 
    2- Chemical Engineering Department – Norwegian University of Science and Technology 

        N-7491 – Trondheim – Norway 
        Telefone: +47-7359-4154 – Fax: +47-7359-4080 – Email: skoge@chemeng.ntnu.no. 
        *(to whom all correspondence should be addressed) 

    3- Departamento de Engenharia Química – Universidade Federal de São Carlos 
        Campus Universitário, Km 235 –CEP: 13565-905 – São Carlos – SP – Brasil 
                     Telefone: (0-xx-16)260-8264 – Fax: (0-xx-16)260-8266 – Email: wu@power.ufscar.br 
 
 

ABSTRACT – The concept of complexity has been widely studied in the last years in 
several different areas. Although many writers on the subject understand qualitatively 
similar things by the term ”complexity”, a transition from this qualitative understanding 
to a quantitative approach would be highly desirable and necessary. The lack of 
understanding in this area has hindered planners in deciding how much integration is 
beneficial and beyond which point integration is actually detrimental to system 
performance, since correct decisions are difficult to make due to high system complexity. 
The objective of this paper is to present a method to quantify the static complexity of a 
block diagram in a way that can be useful for process control structure selection. The 
method is applied in several examples. The importance of this evaluation is to help to 
produce good control structures with the smallest possible complexity due to the fact that 
the costs of implementation increase in large complex systems. Once determined a way 
to quantify it, it is possible to minimize the complexity of this system keeping the same 
control performance. 
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1.INTRODUCTION            
 

The concept of complexity has been 
widely studied in the last years in several 
different fields, e.g., system analysis (Ben-Hur 
et al., 2002), manufacturing processes 
(Deshmukh et al., 1998; Calinescu et al., 2000; 
Sadhukhan et al., 2003), economics (Rycroft 
and Kash, 1999), mathematics (McCabe, 1976; 
Bläser, 2003), computer science (Werschulz 
and Woźniakowski, 2002), ecosystems 
(Zorach and Ulanowicz, 2003). 

 

Klir (1985) noted that commonsense 
definitions of complexity from Webster’s 
Third International Dictionary are as follow: 
1. Having many varied interrelated parts, 

patterns, or elements and consequently 
hard to understand fully; 

2. Being marked by an involvement of many 
parts, aspects, details, notions, and 
necessitating earnest study or examination 
to understand or cope with. 

 
Other definitions of complexity can 

be found in several other research areas: 
1. Complexity is the lack of connectedness in 

the system (Casti, 1979); 



 

2. Extrapolating from various different 
contexts in which the idea of complexity is 
used, a complex system may refer to one 
whose static structure or dynamic behavior 
is counterintuitive or unpredictable (Casti, 
1979); 

3. In general, we seem to associate 
complexity with anything we find difficult 
to understand (Flood and Carson, 1988); 

4. Complex systems are typically 
organizations made of many heterogenous 
parts interacting locally in the absence of a 
centralized pacemaker and control. Think, 
for example, of the economy, the brain, 
cellular metabolism, or the Los Angeles 
traffic basin. It may be easy to describe a 
system’s composition, but it is far more 
difficult to describe its global behavior 
(Fontana and Ballati, 1999). 

 
It may also refer to a system which 

has patterns of connections among subsystems 
such that the prediction of system behavior is 
difficult without substantial analysis or 
computation, or one in which the decision 
making structures make the effects of 
individual choices difficult to evaluate 
(Löfgren, 1977). 

 
Although many writers on the subject 

understand qualitatively similar things by the 
term ”complexity”, a transition from this 
qualitative understanding to a quantitative 
approach would be highly desirable and 
necessary step towards founding the science of 
manufacturing complexity (Calinescu et al., 
2000). 

 
The lack of understanding in this area 

has hindered planners in deciding how much 
integration is beneficial and beyond which 
point integration is actually detrimental to 
system performance, since correct decisions 
are difficult to make due to high system 
complexity (Deshmukh et al., 1998). 

 
According to Deshmukh et al. (1998), 

the complexity of a physical system can be 

characterized in terms of its static structure or 
time dependent behavior. Static complexity 
can be viewed as a function of the structure of 
the system, connective patterns, variety of 
components, and the strengths of interactions. 
Dynamic complexity is concerned with 
unpredictability in the behavior of the system 
over a time period. 

 
Frizelle and Woodcook (1995) first 

applied the entropy based theoretical measure 
of complexity for internal manufacturing 
input-output systems. Their work includes a 
mathematical model that provides a measure 
for the complexity of material flow found 
within a manufacturing operation, from the 
point of view of a product moving through a 
system. This paper reports on the further 
developments of applying the theoretical 
concept of entropy (Fast, 1970) from its 
theoretical and mathematical basis to its 
practical application in measuring both 
information and material complexity within 
the supply chain. 

 
According to Deshmukh et al. (1998): 

”Another important consequence of 
developing an analytical framework for 
complexity would be to assist manufacturing 
planners in managing desired levels of 
complexity in the system, since realistically it 
cannot be eliminated, depending on the 
changing operating conditions”. Although this 
was written for manufacturing processes, it is 
appliable for control also. 

 
According to Nett (1989) the more 

complex the control system is, the more it 
costs, the less reliable it is, and the harder it is 
to maintain it. Then is generally desirable that 
the complexity of the control system and, in 
particular, of the regulatory control layer be as 
small as possible (Skogestad, 2003). 

 
The objective of this paper is to 

present a method to quantify the complexity of 
a block diagram that can be useful for process 
control structure studies. 



 

 
2.MATHEMATICAL 
DEFINITIONS OF BLOCK 
COMPLEXITY 

 
Skogestad (2003) introduces a 

structural complexity number sΠ  as: 
 

s

s

block diagram complexity ( )

#measurements #manipulators #blocks #control-parameters
C

Π = + + +
 

 
where the number of measurements and 
manipulators refers to the ones used by the 
independent controller. The block complexity 
is the number of blocks plus the number of 
independent tunable control parameters. In this 
case a multivariable block is counted as having 
complexity 1. The problem in counting 
multivariable blocks as having complexity 1 is 
that we do not consider the complexity inside 
the block. This result can be sometimes 
misleading. 

 
In this section we present two 

possible mathematical definitions of block 
complexity ( #blocks #control-parameters+  
from Equation 1) that can be usefull for 
control structure studies. 

 
2.1Definition 1 (including summation 
blocks) 
 

To calculate the complexity of a 
block diagram we will consider that we only 
have SISO systems (in this case we will 
consider that all MIMO systems can be 
represented by a set of SISO systems). The 
calculation of the complexity involves the 
number of flows that enter in a sum block and 
the number of independent tunable parameters 
of the system (constants are not considered, 
e.g., fixed values, unit conversions, scaling). 
The complexity of block i  is given by: 

 

( )
s,i s,i

b,i

p,i , p,i s,i ,
1 1

# parameters  #sum-blocks  number of flows=

          1
n n

j i j i
j j

C

n F n n F
= =

= − +

+ − = − +∑ ∑
 
where: 

p,in  is the number of independent parameters 
inside the block i  

s,in  is the number of sum blocks inside the 
block i  

,j iF  is the number of flows (inside block i ) 
that enter in the sum block j  
 

The total complexity of the system is 
the sum of the complexities of each block plus 
the number of flows that enter in sum blocks 
and don’t belong to any other block: 

 

( )
b s b s

s b,i b,i s
1 1 1 1

1
n n n n

j j
i j i j

C C F C F n
= = = =

= + − = + −∑ ∑ ∑ ∑  

 
where: 

bn  is the number of blocks of the system 

sn  is the number of sum blocks of the system 

jF  is the number of flows that enter in the sum 
block j  
 

The total complexity for systems 
without feedback can be interpreted as the 
total number of parameters plus the total 
number of basic operations (sum, subtraction, 
multiplication, and division). If, in our 
diagram, we have other operations as sin, log, 
or more complexes functions, these operations 
would have larger complexity, but this is not 
the scope of this paper. 
 
2.2Definition 2 (including splitting 
blocks) 
 

Another possible definition of the 
complexity of a block diagram is the inclusion 
of splitting blocks instead of summation 
blocks. In this case, the complexity is defined 
as: 

(1) 

(2)

(3)



 

 

( )
sp,i sp,i

* *
b,i p,i , p,i sp,i ,

1 1

1
n n

j i j i
j j

C n F n n F
= =

= + − = − +∑ ∑  

 
where: 

sp,in  is the number of splitting blocks inside the 
block i  

*
,j iF  is the number of flows (inside block i ) 

that enter in the splitting block j  
 

The total complexity is: 
 

( )
sp spb b

* *
s b,i b,i sp

1 1 1 1
1

n nn n

j j
i j i j

C C F C F n
= = = =

= + − = + −∑ ∑ ∑ ∑  

 
where: 

bn  is the number of blocks of the system 

spn  is the number of sum blocks of the system 
*
jF  is the number of flows that enter in the 

sum block j  
 
3.EXAMPLES 
 

In this section we will present some 
examples to show the importance of the block 
diagram complexity and to compare both 
definitions. 
 
Example 1: Consider Figure 1.  
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Figure 1 – Multivariable block diagram 

 
This is a multivariable block diagram. 

If we calculate the complexity of this system 
without looking inside the multivariable block, 
the result would be equal to 7 (six independent 
parameters and 1 multivariable block). 
Although this could be considered a good 
result, in the last section was assumed that the 
complexity measure can be calculated only for 

block diagrams with SISO blocks. Then, to be 
able to evaluate its complexity, it is necessary 
to know what happens inside this block (what 
are the relations between the inputs and the 
outputs). Figure 2 gives two possible relations 
between the inputs and the outputs. 
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(b) 

Figure 2 - 2 possible block representations of 
Figure 1. 

 
Figures 2a and 2b are represented by 

Equations 6 and 7, respectively: 
 

11 12 13

21 22 23

y p A p B p C
x p A p B p C
= + +
= + +

 

 

( ) ( ) ( )
11 12 13

21 21 21 22 23 231 1
y p A p B p C
x p p A p p B p p C
= + +

= + + + + +
 

The complexity of these two block 
diagrams are: for Figure 2a the number of 
parameters is equal to 6 ( p, 6in = ), the number 
of sum blocks is equal to 2 ( s, 2in = ), the 
number of splitting blocks is equal to 3 
( sp, 3in = ), and there are 6 flows entering in the 

sum blocks (
s,i

,
1

6
n

j i
j

F
=

=∑ ) and 6 flows leaving 

the splitting blocks (
sp,i

*
,

1

6
n

j i
j

F
=

=∑ ). Then the 

complexity number of this block is equal to 10 
(definition 1) or 9 (definiton 2). Doing the 
same calculation for Figure 2b 

( p, 6in = , s, 4in = , sp, 6in = , 
s

,
1

11
n

j i
j

F
=

=∑ , and 

sp,i
*
,

1

12
n

j i
j

F
=

=∑ ) the resulting block complexity is 

equal to 13 (definition 1) and 12 (definition 2). 

(4) 

(5) 

(6) 

(7) 



 

 
In general the block representation of 

Figure 1 is Figure 2a. In this case or when we 
don’t know exactly how is structure inside the 
MIMO block, there is a easier way to estimate 
the complexity of this block for definitons 1 
and 2, respectively: 

 
( )b, i, o,2 1i i iC n n= −  

 
( )b, o, i,2 1i i iC n n= −  

 
where i,in  is the number of inputs of block i  
and o,in  is the number of outputs of block i  

 
Example 2: For a more complex example 
consider the system presented in Figure 3 
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Figure 3 - Block diagram with two separated 

MIMO blocks. 
 
The global complexity of the system 

represented by Figure 3 is the sum of the 
complexities of blocks 1 and 2 and the sum 
block. Blocks 1 and 2 are detailed in Figure 4. 
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(b) 
Figure 4 - Representation of blocks 1 (a) and 2 

(b) from Figure 3. 

 
If we don’t consider what is inside the 

blocks in Figure 3 we obtain a complexity of 7 
(block 1) and 3 (block 2), 2 flows entering a 
sum block and 2 leaving a splitting block. 
Then the total complexity would be 11 for 
both definitions. 

 
But, when we look inside the blocks 1 

and 2 (see Figure 4), we see that the 
complexity for block 1 is 11 (definition 1) and 
10 (definition 2) and for block 2 is 4 (definiton 
1) and 3 (definition 2). Then the total 
complexity of the system represented by 
Figure 3 is 16 (definition 1) and 14 (definiton 
2). 

 
Example 3: In this example we will apply the 
suggested complexity measures to some 
blocks diagrams presented by Skogestad and 
Postlethwaite (1996). Figures 5a and b, 6, 7, 
and 8 are the Figures 10.3a and b, 10.4, 10.5, 
and 10.8, respectively. 

 

 
(a) Conventional cascade control (extra 

measurements 2y ) 
 

 
(b) Input resetting (extra inputs 2u ) 
Figure 5 - Cascade implementations 

 
Figure 5 presents two typical control 

configurations with extra measurements (a) 
and extra manipulators (b). The advantage of 
the conventional cascade implementation is 
that it more clearly decouples the design of the 
two controllers. 
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Figure 6 - Common case of cascade control 

where the primary output 1y  depends directly 
on the extra measurement 2y . 
 
The complexities of Figures 5-8 are 

presented in Table 1, as well as the 
complexities of the other examples. For each 
figure is presented the complexity using both 
definitions. 

 

 
Figure 7 - Control configuration with two 

layers of cascade control. 
 

 
Figure 8 - Decentralized diagonal control of a 
2×2 plant. 

 
Table 1 - Comparison between complexity 

definitions 1 and 2. 
Examples Definition 1 Definition 2 
Figure 2a 10 9 
Figure 2b 13 12 

Figures 3 and 4 16 14 
Figure 5a 5 4 
Figure 5b 5 5 
Figure 6 8 6 
Figure 7 10 9 
Figure 8 5 5 

 
Table 1 shows that both definitions 

are equivalent. The difference is basically 

which one can be considered more important 
in the complexity measure, summation or 
splitting blocks. It is important to notice that 
we should use only one of them, never both at 
the same time. It is important to remember that 
we cannot compare the complexity of two 
structures calculated by two different 
definitions. In this case we must choose one 
definition and use it for all structures. 

 
4. APPLICATION TO PERFECT 
INDIRECT CONTROL 

 
An important application of the 

complexity measure is in the use of perfect 
indirect control. Skogestad et al. (2003) have 
shown that it is possible to obtain perfect 
indirect control if we have enough 
measurements and keep constant a 
combination of them. If we have the following 
linear model: 

 
1 1 d1∆ = ∆ + ∆y G u G d  

 
y y

d∆ = ∆ + ∆y G u G d  
 

where: 
1∆y  - primary variables (combination of the 

states) 
∆y  - available measurements 
∆u  - manipulated variables 
∆d  - disturbances 

 
They proved that, having enough 

measurements, we have perfect indirect 
control if we combine the measurements in the 
following way: 

 

d

y y
d∆ = ∆ = ∆ + ∆

G G

c H y HG u HG d  

 
where: 
∆c  - combination of measurements (secondary 
outputs) 
H  - matrix of the combination of variables 
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The solution for this problem is given 
by Equation 13: 

 

[ ]
-1y1

1-1 y y
c0 1 d1 d

−
 =  

G G

H P G G G G  

 
where c0P  is a matrix that relates the 
combination of measurements to the primary 
inputs. This matrix can be arbitrarily chosen. 

 
The problem in this approach is that 

the resulting H  matrix is a full matrix, making 
the control structure too complex. To reduce 
the complexity of this control structure 
keeping the property of perfect disturbance 
rejection we will divide the H  matrix in two 
parts ( [ ]1 2=H H H ), where 1H  is a square 
matrix. If we want 1H  to equal to identity 
matrix (to reduce the complexity), we should 
also divide the following matrices: 

 
1

2

y
y

y

 
=  
 

G
G

G
  

1

2

y
y d
d y

d

 
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 

G
G

G
  

 
where 1yG  is a square matrix. 

 
Joining Equations 13 and 14, and 

isolating 1H  and 2H , results in: 
 

( )( )-1 -1 -1
1 1 2 2 1 1 2 1

1
y y y y y y y y-1

1 c0 1 d1 1 d d d

− = − − −  
H P G G G G G G G G G G G

 

( )( )-1 -12
1 1 2 1 1

1
y y y y y-1 y

2 c0 d1 1 d d d

−
= − −H P G G G G G G G G

 
If c0P  is considered as been (it can be 

arbitrarily chosen): 
 

( )( )-1 -1 -1
1 1 2 2 1 1 2 1

1
y y y y y y y y

c0 1 d1 1 d d d

− = − − −  
P G G G G G G G G G G G

 
then we can conclude that 1 =H I . 

 
By Equation 17 we can easily verify 

that this solution is unique, i.e., there is only 

one matrix c0P  and, consequently, only one 
matrix 2H  that results in 1 =H I . 

 
To compare the complexity of the 

control structures given by these two ways to 
calculate the H  matrix we will use the 
example of the distillation column presented 
by Skogestad et al. (2003). In this example 
they combine the flow rates ( L , V , D , and 
B ) as measurements, then the original 
combination of variables (with full matrix H ) 
is represented by: 

 
1 11 12 13 14

2 21 22 23 24

c h L h V h D h B
c h L h V h D h B
= + + +
= + + +

 

 
This control structure has complexity 

equal to 14 (definition 1) or 12 (definition 2). 
The second combination of variables 
(imposing 1H  equal to identity) is: 

 
* *

1 13 14
* *

2 23 24

c L h D h B

c V h D h B

= + +

= + +
 

 
This control structure has complexity 

equal to 8 (using definition 1) or 6 (using 
definition 2). Independently of which 
definition we use, we demonstrated by this 
example that it is important to obtain control 
structures with the same characteristics 
(perfect disturbance rejection) but with 
reduced complexity. 

 
5.CONCLUSIONS 

 
This paper presented two similar 

ways to evaluate the complexity of block 
diagrams. The importance of this evaluation is 
to help to produce good control structures with 
the smaller possible complexity due to the fact 
that the costs of implementation increase in 
large complex systems. 

 
Independently of the choice of the 

definition, to be able to compare two different 
structures the designer must always use the 

(13) 

(14) 

(15)

(16)

(17) 

(18) 

(19) 



 

same definition. An important point to 
emphasize is that although we can count either 
summation or splitting blocks, we shouldn’t 
use both at the same time because, in doing 
this, we are counting twice. 

 
It was also shown that it is possible to 

obtain a perfect indirect control with minimum 
complexity. 
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