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Abstract

In this paper we study the effect of model errors on the performance of feedforward
controllers. In accordance with the sensitivity function for feedback control, we define the
feedforward sensitivities, ��� (feedforward from disturbance) and ����� � (feedforward from
set-point), as measures for the reduction in the output error obtained by the feedforward
control. For “ideal” feedforward controllers based on the inverted nominal model, the
feedforward sensitivities equal the relative model errors, which must thus remain less
than � for feedforward control to have a positive (dampening) effect.

For some common model error classes we provide rules for when the feedforward
controller is effective, and we also design 	 -optimal feedforward controllers.
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1 Introduction

There is a fundamental difference between feedforward and feedback controllers with respect
to their sensitivity to uncertainty. Feedforward control is sensitive to uncertainty in general
(including steady-state), whereas feedback control is insensitive to uncertainty at frequencies
within the system bandwidth. With no model error a feedforward controller may remove the
effect of disturbances, but due to its dependence of the process model, it may actually amplify
the effect of a disturbance if the model is wrong.

Textbooks on control and process control focus mainly on feedback controllers. This re-
flects the difference in importance and popularity of the two controllers, but also that feedback
theory is more complicated. Most of the articles on feedforward control refer to industrial
applications. However, some control textbooks, e.g., Buckley (1964), Stephanopoulos (1984),
Doebelin (1985), Seborg et al. (1989), Middleton and Goodwin (1990), Coughanowr (1991),
Marlin (1995), Ogata (1996), Shinskey (1996), describe feedforward controllers and their de-
sign, and the advantages and disadvantages compared to feedback is discussed. It is concluded
that a feedforward controller may improve the performance, and is valuable when feedback
control is not sufficient, but that in practice it must be combined with a feedback controller. It
is agreed that the feedforward controller is most efficient with good disturbance measurements
and accurate models, but no quantitative analysis is given (with some exceptions as given in the
following). Harriott (1964) claims that in a “typical system” the disturbance effect is reduced
to ����� . Middleton and Goodwin (1990) demonstrate that the variation in the gain from the
inputs to the outputs (the process uncertainty) is amplified with feedforward control. Shinskey
(1996) states that the integrated error of the output signal can be reduced by a factor of 10 even
if the feedforward calculation has ����� error, and that mass- and energy balance based feed-
forward controllers typically has less than ��� error, leading to a reduction in integrated output
error with a factor of 50. Shinskey also provides an interesting figure showing nine different re-
sponses to disturbance steps for a process with a pure gain (static) feedforward controller. The
nine cases are the combinations of neglected time constants and delays in the transfer functions
from the disturbance and the manipulated variable to the output (Shinskey, 1996, Figure 7.12).
The figure may also be used for dynamic feedforward controllers as a qualitative illustration
of the effect of errors in delays or time constants on disturbance step responses. (Note that
Shinskey assumes that the disturbance has a negative effect on the output, in contrast to what
we assume in the present paper.)

In the context of IMC (Internal Model Control), Morari and Zafiriou (1989) recommend
a structure for the combined feedback-feedforward scheme that decouples the two functions
such that the feedforward controller handles disturbance dampening and the feedback con-
troller handles reference tracking. This is exploited in the controller tuning (assuming perfect
models) since the two controllers can be tuned independently. The traditional controllers can
then be derived from these controllers and the process models. It is shown that assuming per-
fect models optimal feedforward can only be better than optimal feedback if there are non
minimum phase components (such as delays and inverse responses) in the process.

Scali and co-workers (Lewin and Scali, 1988; Scali et al., 1989), also work in the IMC
context and compare the control error of �
	 optimal feedback controllers with an �
	 opti-
mal combination of feedback and feedforward controllers under the presence of uncertainty.
The motive is to make a fair comparison, and to give methods for identifying when feed-
forward is worth the effort, and to quantify the benefits from accurate models. Uncertainty
representations, similar to the ones we will discuss, are used. Numerical results for parametric
uncertainty in first order processes with delay are presented for different nominal values and
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uncertainties. Even for this simple case the picture gets rather complicated, as there are many
parameters that must be varied to cover all cases, both nominal parameters as well as the pa-
rameters representing the uncertainty, so it is difficult to present the results and give general
quantitative answers. The overall conclusion is that feedforward may make the performance
poorer if the response to the manipulated input is considerably faster than the disturbance
response and the uncertainty is large for the model of the disturbance effect.

Marlin (1995) studies the effect of model errors (one at a time) by comparing combined
feedforward and feedback control with the response when pure feedback is applied. The re-
sponse to a disturbance step for a first order process with delay is the criterion for the com-
parison. From his example the feedforward reduces the control error with more than ����� for
parametric errors up to ������� .

A general quantitative frequency domain analysis of feedforward control under model un-
certainty is proposed by Balchen (1968) (and referred in (Balchen and Mummé, 1988)).

The aim of this article is to study feedforward control under the presence of uncertainty
and answer the following basic questions:

1. How much does the feedforward controller reduce the control error?

2. When is the feedforward controller amplifying the effect of disturbances on the outputs?

3. If combined with feedback control, when is feedforward control necessary (and useful)?

4. How can uncertainty be taken into account when the feedforward controller is designed?

The outline of the paper is as follows. We first recapitulate the characteristics of feedfor-
ward control (Section 2), and then define feedforward sensitivities (Section 3). We then discuss
the effect of model errors under feedback and feedforward control, i.e., answer questions 1
and 2 (Section 4) and study some classes of model uncertainty in Section 5. We illustrate
some of the ideas with an example (Section 6). Question 3 is discussed in Section 7. Proposals
to answers of Question 4 are given in Section 8. The article is concluded by Section 9.

2 The characteristics of feedforward control

A block diagram where feedforward from a disturbance and the reference is combined with
feedback, is shown in Figure 1. To analyze the effect of a given feedforward controller, we
denote the feedback controller � and the feedforward action from the disturbance � � and the
reference � � � � . With perfect measurements we then have (see Figure 1)

��� �	��
����
��� ��� �
Feedback

� � � � ��
����� ���� ��� �
Feedforward

(1)

Some important characteristics of the “traditional” feedforward controller are:

1. The basic task of a feedforward controller ( � � and � ��� � ) is to use the process input, � ,
to reduce the effect of measured disturbances and improve set-point tracking.

2. Feedforward control is “open loop” since the disturbance measurement, ��� , and the
reference 
�� (which are used by the feedforward controller) are independent of � .

3. For linear systems, the feedforward controller does not influence the stability of the
system.
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Figure 1: Block scheme for feedforward control combined with a feedback controller. We
assume ideal measurements: ��� � � � and � � � � .

4. The feedforward controller uses a model of the process ( � and ��� ). If this model is
poor, the effect of the controller may become poor, and it may even amplify the effect of
the disturbance.

5. Normally the effect of the disturbance is observed earlier in the disturbance measurement
used in the feedforward controller than in the other process measurements.

6. Referring to Figure 1, the closed loop response for the combination of feedforward and
feedback control is

� ��� � � 
 ��� �  
�� �����
� � ��� � ���	� ��� � 
� ��� � � � ����� ��� ��� �

 � ����� ��� 
� ��� � � � � � ��� ����
�� ��� � (2)

where � ��� � � �� � � ��� ���	��� ����� � is the feedback sensitivity function.

Ideal feedforward control

An “ideal” feedforward controller based on inverting the nominal model (e.g., (Balchen, 1968;
Balchen and Mummé, 1988) and (Morari and Zafiriou, 1989)), removes completely the effect
of the disturbance and reference changes such that � ������� � . We denote the “ideal” controller
with an asterisk, and get from (2)

���� � � �
� ����� ������ � � � �

�
(3)

Designs of robustly optimized ( � -optimal) feedforward controllers presented later in this paper,
confirm that this is a good controller as to use in some practical cases. However, there are three
reasons why ideal feedforward control ( � � � ) is not achieved in many cases:

(a) The ideal feedforward controller in (3) may not be realizable. First, if � is non-minimum
phase, it cannot be inverted. Second, if � has more poles than zeros, e.g., � � ��� ����� � � � ,
the inverse is improper and requires differentiation. Due to measurement noise higher
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order derivatives are normally avoided (Harriott, 1964). Thus we divide � into a (prac-
tically) invertible part, � � , and a not invertible allpass part, ��� , such that � � � � ���
(Holt and Morari, 1985a; Holt and Morari, 1985b). Morari and Zafiriou (1989) derive
the � 	 -optimal feedforward controller (in the context of IMC). A simpler alternative
that we will use here is

� �� � � �
�
� �	� � � � � � � � �

�
� (4)

(4) has a optimal � 	 -norm ( � 	 -optimal for impulse disturbances on the output, � � � � ,
and impulses in the reference).

(b) The ideal feedforward controller in (3) is also not realizable if the number of outputs
exceeds the number of manipulated inputs (the length of 
 exceeds the length of � ). One
must then control the (most) important outputs (reducing the length of 
 till it equals
the length of � ), or find some compromise between the outputs, for example use the
pseudo-inverse of � .

(c) The model used in the design of the feedforward controller differs from the actual plant.
This is the main topic of this paper.

3 Feedforward sensitivity functions

The closed loop response for combined feedforward and feedback control in (2) may be rewrit-
ten as follows � � � � � � �	� �  � � � � 
�� � (5)

where we define the feedforward sensitivities as

� � � �
� 
� � � ������ (6)

� � � � � �  � � � � � (7)

These express the effect of feedforward action on the control error. � �� denotes the generalized
inverse of ��� (Zhou et al., 1996, page 67). Feedback control is effective and improves perfor-
mance as long as the gain of the sensitivity function � � �
	 � . Similarly feedforward control
improves the performance if � � ����	 � and � � ��� ���	 � (8)

Here, an appropriate norm dependent on the definition of performance is used. With no feed-
forward control � � � � , and with “ideal” feedforward control � � � � .

In the literature � and � � are also denoted control ratio and feedforward control ratio,
respectively (Balchen and Mummé, 1988). More precisely, in (Balchen and Mummé, 1988),
the feedforward control ratio is defined for single-input/single-output (SISO) controllers as

� � � �  � �
� �� (9)

where � � is the actual feedforward controller and � �� is the “ideal” controller for the actual
process. For SISO controllers this is identical to the definition in Equation (6). Equation (6)
extends the definition to multivariable controllers, and in Equation (7) we have introduced the
sensitivity function for feedforward from the reference.
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Balchen uses a Nichols chart to determine requirements on the gain and phase error in � �
relative to � �� for a given disturbance dampening (e.g. 0.1) in � � . The Nichols chart used to be
convenient for the study of � ����� � � � given a transfer function � ����� � . With tools like Matlab,
it is now easy to study any transfer function by defining a finite number of frequencies and
calculate the gain or phase shift over this set of frequencies. We follow this direct approach.

4 The effect of model error with feedforward control

In this section we restrict ourselves to single-input/single-output (SISO) processes, i.e., with
one control input, � , one disturbance, � , and one output 
 . With a nominal process model,

 � � � � �	� � , and an actual plant model 
�� � ��� � � ��� � � , the actual control error is:

� � � 
 �  
�� � � �	� � �� � � � �  � �� � � 
���
 (10)

where

� ������� �
� � � � � (11)

� �� ������ �  ��� � �
� � � (12)

� �� � � ������ �  � � � � � � (13)

� expresses the ratio between the output when a feedback controller is applied and when it is
not (open loop). Similarly, � �� and � �� � � express the ratio of the output when feedforward is
applied and the output when it is not. This follows by comparing the output error using control
in (10) with the output error when no control is applied ( � � � ):

� � � 
 �  
�� � � � � � �
�� (14)

Note that for the case with no control ( � � � , � � � � , � � � � � � ), we have � � � � , � �� � � ,� �� � � � � .
The actual sensitivity can be expressed in terms of the nominal sensitivity and the relative

error as following
� � � � �

� ����� (15)

Here, � � � � � � � � � � and
� � �  � are the nominal sensitivity and complementary

sensitivity functions, respectively, and
�

the relative error in � , i.e.,
� � � � � �  � (see also

(Skogestad and Postlethwaite, 1996, Section 5.13)).
The “ideal” feedforward controller (3) gives with no model error

� � �� � ��� � � ���� � � � (16)

With model error we get the result

� � �� � �  � � � � � �
� � ���

�  � � (17)

� � �� � � � �  ���
�
�  � (18)
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Here,
� � is the relative error in � � ��� and

�
the relative error in � . Thus for “ideal” con-

trollers, � � �� and � � �� � � are equal to (except for the sign) the relative model errors in ��� ��� and
� , respectively, and we have that the “ideal” feedforward action reduces the control error for
a frequency � , as long as the relative modelling errors are less than one, i.e.,� � � �� � ��� � � � � � � ����� � � ������ �  � � ����� � � � � � ����� �

� ����� � � ��� ����� �
���� 	 � (19)

�� � � ���� � ����� � �� � � � ����� � � � ���� �  ��������� �
� � ��� �

���� 	 � (20)

In Section 8 we discuss how to modify the ideal feedforward controller such that
� � �� ����� � � 	

� ��� � . However, the nominal performance becomes worse. If � is not invertible, we obtain for
the feedforward controller, � �� in (4)

� �� � �  � � � � � �
� � � ���

(21)

� �� � � � �  � �
� �

(22)

For a given process and the knowledge of its uncertainty we can use (19) and (20) to see
whether an “ideal” feedforward controller will be effective. This can be used to consider
whether the extra controller shall be implemented, and if other control configurations or even
process modifications are necessary to obtain the desired response (e.g., introduction of buffer
tanks, see (Faanes and Skogestad, 2000; Faanes and Skogestad, 2003)).

If the model error (uncertainty) is sufficiently large, such that the relative error in ��� � � is
larger than � , then we see from (17) that

� � � �� � is larger than � and feedforward control makes
control worse. This may quite easily happen in practice. For example, if the gain in � is
increased by 33% and the gain in ��� is reduced by 33%, then � � �� � �  ���	�
�� �� �
� � � �  �
� 
��� ��� �
�  � �  � . In words, the feedforward controller overcompensates for the disturbances, such
that its negative counteractive effect is twice that of the original effect.

Another important insight from (10) and (17) is the following: To achieve
� � � � 	 � for� � � � � with feedforward control only ( � � � � ) we must require that the relative model error

in � � ��� is less than ��� � � � � � . This requirement is unlikely to be satisfied at frequencies where� ��� � � is much larger than � (see the following example) and motivates the need for feedback
control in such cases.

Example 1 Consider a plant with

� � � ���
��� � � � � ��� � �����

��� � � � (23)

The objective is to keep
� 
 � 	 � for � � � , but note that the disturbance gain at steady state

is ����� . Nominally, the feedforward controller � � � � �
� �	� gives perfect control, 
 � � . Now

we apply this controller to the actual process where the gains have changed by �����

� � � ��� �
��� � � � � � � � � � �

��� � � � (24)

From (10) the disturbance response in this case is


 � ��� �  ��� � ��� �
��� �	��� � � � � �  ��� ��� � � � � �  ���

��� � � � � (25)
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Thus, for a step disturbance � of magnitude � , the output will approach  ��� (much larger
than � ). This means that we need to use feedback control, which is hardly affected by the
above model error. There is some benefit in using feedforward control, though. The feedback
control is required to be effective at all frequencies where the gain from the disturbance to the
output is larger than 1. Without feedforward control the feedback loop must be effective up
to � ��� ��� � � ��� � ����� � ��� � ��� . The feedforward controller brings this limit down to about
��� � ��� � � . In other words, the feedforward controller reduces the bandwidth requirement for
the feedback controller from ��� to � .

5 Some classes of model uncertainty

In the following we will consider some examples of model uncertainties for ideal feedforward
controllers, and use (19) and (20) to analyse when feedforward control should be used. To
simplify notation we write: � � � � � �� and � ��� � � � � ���� � .
Static gain uncertainty. Let � � ��� � and � � � ��� � �	� where � and � � are constants. (Nom-

inally, � � � and � � � � and a
� ������� gain error corresponds to � � � and � � � � .)

In this case we have from (19) that ideal feedforward control reduces the error from the
disturbance, � , as long as� � � � � ���� � 

�
� �

���� 	 ��� � 	 � � � � 	 � (26)

and from (20) for the reference 
 � as long as� � � � � � � � �  � � 	 �	� � 	 � 	 � (27)

See Figure 2(a). In other words, if the effect of the input changes sign (which is not very
common), or is increased by more than 100% (which may easily happen), feedforward
actually makes the response worse. This will also happen, as we saw above, if the gain
in � is increased by more than ��� � and the gain in � � at the same time is reduced with
more than 33%, since � � � � � ��� ��� ������
� � � � � .

In the following we will only consider feedforward from the disturbance, � .

Delay uncertainty. We let � , � � , � � and � �� denote the delays for � , � � , ��� , and ��� � , respec-
tively. We assume � ����� so that ideal feedforward control is feasible, and perfect
models except for the delay. Now the feedforward sensitivity becomes� � � ��� � � � � � � ��� � � � ���� � 

� �
� ��� � � � � �� �� �
� � � � �

� � � ���� � �� �  ��� ����� �� (28)

where ��� ������ ��� �� �� � � ���� �  � � is the error in the difference between the delays in � �
and � . The ideal feedforward control reduces the error at a frequency � as long as� � ������� � � � � � � ����� � � � �� �  ��� ���!� �� �#" �  �%$'&)( �*��� � � 	 � (29)

We note that since $'&)( ���+� � � � $'&)( � ,�+� � � , the relative delay uncertainty is indepen-
dent of the sign of �+� .
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In Figure 2(b) we plot
� � � � in (29) as a function of normalized frequency. At low fre-

quencies feedforward control is perfect, but for frequencies above � � � ��� � � � � ��� ������� � ( ,
feedforward has a negative effect, and in the worst-case (at frequency ���	��
 �� � � �+� � )
the feedforward effect doubles the error. To avoid that the feedforward controller am-
plifies the control error, the feedforward control signal may be low-pass filtered with a
break frequency at about ��� � ��� � or less.

We may find the frequency, � � , where
� � � � � � analytically:

� � � $'&)( �
� � � ��� �� �+� � � ��� � �� �+� � � �� �+� � (30)

To find the frequency ���	��
 for the first maximum value of 2 we differentiate the expres-
sion for

� � ��� � � � � with respect to the frequency

�
� �

� � � � � �
���
" �  � $ &)( �*�+� � � � �+� (���� ���+� � �

" �  � $ & ( ���+� � � (31)

to obtain
���	��
 �

�� �+� � (32)

Uncertainty in time constants. In the general case this is more complicated to analyze than
the gain and delay errors. We consider the situation where the error is in � � only and
is restricted to one time constant: ��� � �	��� � � � � � � � � and � � � � �	��� � � � � � � � � � �
where � � is the relative error in the time constant. We then obtain the following limit for
effective feedforward � � � ��� � � � � � ����� � � � ���� � 

� � � � � � �
� � � � �

���� 	 � (33)

If ��� � ��� � , then
� �  � � ��� � � � � � � � � � � � � � � is always less than or equal to one.

For � � � � the feedforward is effective as long as

� � ��	 �
" � � � � �  � � (34)

The maximum value of
� � � � is � �  � , see Figure 2(c). Again this can be used to find

the frequency for which the feedforward controller shall be active.

The situation if there is an error in only � is similar to the case with error in only ��� .
Combined uncertainty in both gain and time constant (“pole uncertainty”). Some phys-

ical parameter changes affect both the gain
� � and the time constant � � , such that their

ratio
� � ��� � remains constant. As an example, consider the following physical state space

model with a single state

���
���

� � � ��� � (35)


 � � � � (36)

where � is the state, � is the control input (manipulated variable), 
 is the output, and �
and

�
are constants. Laplace transform yields

�	� ��� � �
�

�  � �  � � �
�  �� 
 � � � � � ��� � � � (37)
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An error in � will then influence both the gain (
� � �  � � � ) and the time constant

( � � �  ��� � ), whereas
� � ��� � � �

remains unchanged.

The model in (37) can be written on the form � � � ��� � � ��� � � � � � and ��� � � � � �	� � �
� � � � � � � � � , where � � is the relative error in the gain and the time constant (which is
equal to the relative error in ��� � ). � contains no errors ( � � � � ). We then obtain the
following requirement for effective feedforward� � � ��� � � � � � ����� � � � ���� � �  �� � � �

� � � � �
���� 	 � (38)

The effect of model error is largest at low frequencies (below ��� � ��� ����� � (�� ) where� � �� ����� � � � � �  ��� � � � . Feedforward has a positive effect at all frequencies when � � �
� ��� . For � � 	 ����� , feedforward is effective at high frequencies

� � � � � � � ��� ���	� 
 � � �� �
�
�  � � � (39)

as shown in Figure 2(d).

In other cases � ��� � and ��� ��� � share the same dynamics. For example, consider the
physical model

���
���

� � � �� � � � � � 
 � � (40)

and we get

�	� ��� � �
�

�  � � � ��� � �
�

�  � (41)

In this case ��� ��� � � � � and an error in � does not affect feedforward control and
gives � �� � � .

Frequency domain representation of uncertainties. In (Lewin and Scali, 1988; Scali et al.,
1989) combinations of the above uncertainties were examined. The analytical method
we have used above is not suitable for this case, and another approach is proposed. We
want to find

� � � ����� � � �	��
 , i.e., the worst-case feedforward sensitivity for each frequency
given the parametric uncertainty. Since it is impractical to find an analytical expression
for

� � � � � � � � �	��
 , we calculate its value for some ������� where � is a set of frequencies
in the relevant range:� � � ������� � � �	��
 ��� ���� � � � ���� �  ��� ������� ��� � � �	� � � � ����� ��� � �

� � � ��� � � �	� � � ��� � ���� � ������� (42)

where � and � � are vectors of the parameters in � and ��� , respectively. For each pa-
rameter we have �����! " �#�$� �#�$� �!%'& . The optimization is in general non-convex, so that
precautions must be taken to find the global optimum at each frequency.

Example 2 We consider the following process (from (Skogestad and Postlethwaite, 1996,
Example 7.3)):

� � ��� � � �
��� � �

� �
�
� � � � � � ��� � � � (43)

� � � ��� � �
� �

� � � � �
� �
� � � � � � � � � � � � � � � � (44)
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(a) Effect of gain uncertainty � �����������
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(b) Effect of time delay uncertainty � ��������� 	�
������! #" �� where $&%'�)(*%��� 
 %+�-, 
 (*% � 
 %�, ,
and %+�� , %+� , % � and % are the delays in ���� , ��� ,� � and � , respectively. At low frequencies
the effect is zero, but for high frequencies, it
doubles the worst-case error.
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√αd(αd−2)
__________

ωτd (logarithmic scale)

(c) Effect of time constant uncertainty� �.���/� ���
	�
 ���10#�32!46507�328465 ��� corresponding to���9� � , � � � � �1:<; (*= ��>@? 	 , , ����A�� �1:B; (C� � = �<>@? 	 , .
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(d) Effect of combined uncertainty in gain and

time constant � �����D�E���
F 	�
G5���IH 50#�328465 ��� cor-

responding to �����J� , � � �J� �1:B; (C= ��>K? 	 , ,���� �L� � � �1:<; (C� � = ��>K? 	 , .
Figure 2: Effect of uncertainty on � � for SISO feedforward control
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i.e., nominally � and ��� are equal, but their parameters may vary independently be-
tween � and � . Nominally

� � ��� � � � � � ��� � � � � �
� � � � � � (45)

We find that the ideal feedforward controller from the disturbance measurement is � � �
� . Solving the optimization problem (42)1 gives

� � � � � � � � �	��
 as shown in Figure 3. We
can see that the ideal feedforward controller dampens the disturbance for frequencies
below ��� � ����� �%( for all combinations of the parameters.
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Figure 3:
� � � � � � � � �	��
 when frequency domain uncertainty is used to represent the gain, delay

and time constant uncertainties, see (43) and (44).

6 Example: Two tank process

Example 3 In this example we consider feedforward control of the process illustrated in Fig-
ure 4(a). A hot flow with flow rate ����� and temperature

� ��� passes through tank 1 and into
tank 2 where it is cooled by mixing with a cold flow with flow rate ��� and temperature

� � . � ���
is measured before the first tank. The outlet temperature,

� 	 , shall be kept constant despite
temperature variations in the hot flow. To obtain this the measurement of

� ��� is used by a
feedforward controller to adjust ��� to compensate for the variations.

In Appendix A we derive the model on transfer function form


 ��� � � � ����� � ��� � � ��� ��� ��� ��� � (46)

� ��� � � �
� 	 � � � � ��� ��� � �

� �
� � � � � � � �� 	 � � � �

� �
� � (47)

where � � � ��� is the disturbance, ��� ��� is the control input and 
 � � 	 is the output that shall
be kept constant. The parameters are defined by � � �	� �� �
� ���� , � 	 �	� �	 ��� � , � � � � ��  � �	 � �
� �
and
� � � �

�� �
� � .
1The optimization problem is non-convex so we first make a uniform grid in the space spanned by the param-

eters and take the maximum value of � ��� (������������� � ,B� for all points. The result of this is used as initial value for
the routine fmincon in Matlab. A Monte-Carlo-simulation results in lower values of � � ��(����� ,B� up to a frequency
higher than

	������ ;! .
12
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(a) Illustration of the process. Nom-
inal data: ���5 � 	������

, ���	 ��
 ��� , ���� �  �5 � 	���� ;� ,  �� ��� � ;! ,� �� 
 � �	 � 
 � �����

G'd = (τ'1s+1)(τ'2s+1)
e-θ's

G' = k'
(τ'2s+1)

Kff =
(τ1s+1)

e-θs +-
+

d

u y

k'd

kd/k

(b) Block diagram. Parameters derived from the nomi-
nal data: � � � 
��

, � �� � ��� �
, = �5 � �����! 

, = �	 �#" �  . In
addition there is a delay, %���� 	$�  . 	

Figure 4: The process in Example 3

Feedforward controller design

The ”ideal” feedforward controller is given by (3):

� � � � �
� �	� �

� � � �
� � � � �

� �
� � (48)

In Figure 4(b) we have illustrated the process and the feedforward controller in a block dia-
gram. The variables of the actual plant are marked with a prime.

Sinusoidal disturbances

We will now see how a feedforward controller dampens the effect of sinusoidal disturbances.
The disturbance has amplitude � and three frequencies are considered: ��� � , � and � ����� � ( .
(These three frequencies have been chosen to illustrate

� � � ����� � � 	 � , � � � � ��� � � � � , and� � ��� � � � � � � .) We will study six cases (the results are summarized in Figure 5):

(a) No control. see Figure 5(a).

In the remaining cases we use the feedforward control in (48).

(b) Nominal case (perfect model) As seen in Figure 5(b), the disturbance is perfectly can-
celled by the feedforward controller.

(c) Gain error
� �� � ��� � � � , and no error in � . Figure 5(c) illustrates that the feedforward

controller does not help, i.e., the feedforward controller overcompensates such that the
variation in 
 has the same amplitude as without control, as expected from (26). This
applies to all frequencies. If the gain error is reduced, the feedforward controller has
a positive effect on the dampening compared to no control, whereas if the gain error
increases further above � , the feedforward controller has a negative effect.

2Actually in Example 3 we consider errors in the nominal model ( � �7� � ), and thereby in the controller % � ,
while the actual plant ( ��� �7���� ) is kept constant. This has the advantage that the response without control remains
constant, so that it is easier to identify the effect on performance of using an incorrect model in the controller.

13



(d) Delay error � �� � � �  � � � � � ��� � �+� � � � , which is ����� of the delay (see Fig-
ure 5(d)). From (30) the feedforward controller has a dampening effect up to the fre-
quency ��� � �+� � � � ����� � ( , as confirmed by the simulation results. Even this relative
small error gives a low frequency limit for where the feedforward controller is effective.

(e) Error in time constant � �� � � � � . This may be the result of operating tank 1 with a higher
level than expected in the model. In Section 4 we found that for all frequencies, the
feedforward controller has a positive effect on the dampening as long as � �� 	 � � � .
When the error is larger than this than this, as it is here, feedforward control is effective

(by (34)) for frequencies � 	 ���
�
��
�� � � � � � " � � �  � � � � ��� �)�)� . As illustrated in

Figure 5(e) at ��� � ����� � ( , the controller has some dampening effect, while above this
frequency the controller makes the situation worse.

(f) Error in gain and time constant
� �� � ��� � � � and � �� � ��� ��� � , see Figure 5(f). At low

frequencies the response is similar to a pure gain error, but this error gives no problems
for high frequency disturbances.

Step disturbances

Using the same controller, the output response ( 
 ) to a unit step in the disturbance ( � ) is shown
in Figure 6.

(a) Gain errors give problems at low frequencies, and therefore we get an offset from set-
point after a step disturbance (see Figure 6(a)). With pure feedforward this is clearly
the worst error for “step like” disturbances.

(b) Delay errors give problems only at high frequencies (Figure 6(b)), so that the deviation
from set-point has a limited duration. The performance is improved compared to no
control.

(c) Time constant errors give only transient deviations from the set-point (see Figure 6(c)).

(d) Combined gain and time constant errors (Figure 6(d)) give the same steady-state re-
sponse as the gain error. But the error is smaller in the beginning, which makes it easier
for feedback control.

7 When is feedforward control needed and useful?

We will now shortly discuss when a feedforward controller is needed and useful in the combi-
nation with a feedback controller. We consider a scalar system and assume that the variables
are scaled, so that the disturbance � is within � � , and the control error, � � � 
 �  
�� , shall
stay within � � . We consider two cases (similar to the buffer tank design, (Faanes and Skoges-
tad, 2003)):

Given feedback controller (known � ) Given the sensitivity function � � � � � and a transfer
function from the disturbance to the output of � � � ��� � . Then feedforward is needed
(with

� � �� � ��� � � 	 � ) at all frequencies where� � ����� � �	� � ��� � � � � (49)
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(c) Gain error ( � �� � ���� � � ): Same am-
plitude as with no control (for all fre-
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−1

0

1

−0.1

0

0.1

0 10 20 30 40 50 60 70 80 90 100

−0.02

0

0.02

 Time [s]

(d) Delay error ( � $&% ��� 	
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(e) Error in time constant ( = �5 � " = 5 ):
Improved performance only for the low-
est frequency.
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(f) Error in gain and time constant ( � �� ����� � � and = �5 � ���� = 5 ): Improved perfor-
mance for the two highest frequencies.

Figure 5: Feedforward control of two tank process: Response ( 
 � � 	 ) to sinusoidal distur-
bances ( � � � ��� � (���� � � with frequencies ��� � , � and � ����� � ( (upper, middle and lower plot,
respectively)
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Figure 6: Feedforward control of two tank process: Response ( 
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Unknown � (shortcut method) 1. Let � � denote the frequency up to which
� ��� ����� � � � � ,

such that control is needed to achieve acceptable disturbance rejection.

2. Let ��� denote the frequency up to which feedback control is effective, i.e.,
� � ����� � � 	

� for all � 	 ��� . Approximations of the achievable ��� for a given process are
discussed in (Skogestad and Postlethwaite, 1996, p. 173-4) and (Faanes and Sko-
gestad, 2003).

It then follows that feedforward control is needed (with
� � �� ����� � � 	 � ) in the

frequency range from ��� to � � .
A similar rule is given by Middleton and Goodwin (1990), although they denote
� � the desired bandwidth with no reference to how to determine this.

Feedforward control may also be needed outside the range between ��� and � � ,
namely when

� � � � ��� � ��� � . But at least we know that if ��� 	� � , then feedfor-
ward control (or some process or instrumentation modification) is needed.

Knowing where feedforward control is needed, we may use
� � � � � � � � to identify where

a given feedforward controller is useful. This is illustrated in Figure 7. In Figure 7(a), the
model error is so large that feedforward control has a negative effect on the performance for
frequencies between ��� and � � . In Figure 7(b) feedforward control reduces the control error
for some frequencies, while at others it makes the performance worse (

� � �� ����� � � � � ). In
Figure 7(c) feedforward control is effective in the whole range between ��� and � � .
Example 3 (continued from Section 6) Is the feedforward controller needed and useful?

Figure 7 demonstrates that the feedforward controller must be effective for the frequencies
where the feedback loop fails to dampen disturbances. We will here check if our feedforward
controller is useful when there is a delay error in the feedforward loop of ��� � � ( .

We apply feedback control using a measurement of
� 	 . Because of the delay and the higher-

order dynamics in tank 2, the bandwidth of this control loop is limited. We consider two
different effective delays in the feedback loop: Case a) � 	 � ����
�� ( and Case b) ��	 � ���%( .

The process model is scaled assuming that the outlet temperature is allowed to vary � ��� � � ���
around the nominal value, and obtain a modified

	� � � � � ����� � � � � 
�� � . A PI controller with�
� � ��� � � 	 � � � � � and ��
 � � � � �� 	 ���)� � � � 	 (SIMC tuning, see (Skogestad, 2003)) is used.

Now � � � � � is known, and thereby � ��� . For both cases a) and b) there is a frequency
range where

� � ��� � � � (see Figure 8). For both cases,
� � � � 	 � � � � 	 � � , so feedforward

control is clearly useful.
For case a) the combination of feedforward and feedback gives acceptable performance

with
� � � � � � � � � � � � ��� ����� � � 	 � ��� � . However, for case b) this is not the case, and we have

an intermediate frequency range where
� � � � �	� � � � .

We note from Figure 8(a) that feedforward control is needed even though �� � � � . The
reason is that ��� has slope  � whereas � has slope � in the logarithmic scale.

In conclusion, we see that for a delay error of �+� � � ( in the feedforward loop, the
addition of feedforward control is useful both with the short ( � 	 � ��� 
��%( ) and long delay
( � 	 � � � ( ) in the feedback loop. For the longest delay ( ���%( ), additional improvements (design
changes) are necessary in order to achieve the performance requirements.
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(a) Feedforward has a negative effect
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(b) Feedforward is useful at low frequencies,
but has a negative effect at high frequencies
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(c) Feedforward is useful for all frequencies
between �� and  �

Figure 7: Examples of (a) large, (b) intermediate and (c) small relative model error, � � �� �
 � � . ��� is the bandwidth for feedback control, and � � is the required disturbance bandwidth.
More generally, feedforward control is required at frequencies where

� � � � � � � .
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(a) Delay of
� � � �  in tank 2:  � �  �
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(b) Delay of
	��  in tank 2:  ���  �

Figure 8: Example 3: Combination of feedback and feedforward control illustrated in the
frequency domain. Delay error,

� �+� � � � ( .

8 Design of feedforward controllers under uncertainty

Knowledge of the model uncertainty may be utilized in the feedforward controller design. � 	
optimal combined feedforward/feedback control under the presence of uncertainty is derived
in (Lewin and Scali, 1988; Scali et al., 1989). Here, we discuss two other methods:

� Two step procedure: 1) Choose a nominal model and design the ideal feedforward con-
troller. 2) Modify this by introducing a low pass filter or by reducing the gain to achieve� � � ����� � � 	 � � � �

� � -optimal feedforward controller

Modification of ideal feedforward controller

Errors in time constants or time delays lead to reduced performance at high frequencies, and
one may attempt to avoid this by adding a low-pass filter in series with the feedforward con-
troller. The break frequency can be chosen as the frequency where

� � � ����� � � crosses � . For
delay error �+� the break frequency is about ��� ��� , and for a relative error � � in the time
constant in ��� the break frequency is about ��� " � � � � �  � � (see Section 4 for details).

Low-pass filters are also often used to remove noise from the measurement to avoid exces-
sive wear in the actuators (e.g., (Buckley, 1964)).

Gain errors reduce the performance at all frequencies, so a low-pass filter does not help.
The only way to avoid the feedforward controller from making the situation worse, is to reduce
the gain of the feedforward controller so that

� � � � � � � � 	 � for the whole range of the process
gains. This will, however, reduce the effect of the feedforward controller in the nominal case.
If we choose � � ��� � �� (where � �� is the ideal controller obtained with the nominal model),
we obtain � � � �  �

�
� � (50)
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where � and � � are the gain errors in � and ��� , respectively. To assure
� � � � 	 � , we take the

smallest possible � � , and the largest possible � and choose the following reduction factor, � :

� � �
� ��� � � � �� ��� � � � (51)

We have here assumed � � � �,� � . � will always be less than 1 since we only make use of it as
long as � ��� � � � � � ��� � � � � � � .

� -optimal feedforward design

Normally, � -design is used for feedback controllers (Doyle, 1982; Doyle, 1983; Skogestad
and Postlethwaite, 1996), but may also be applied to feedforward controllers. In this case, the
whole design is taken in one step (and not by modifications on a nominal design). Figure 9 il-
lustrates how the problem may be formulated for the feedforward case. The � -design algorithm
finds the controller (between the disturbance, � , and � ) that minimizes the weighted output,
i.e., the output of ��� . The uncertainty block � may be structured so that the uncertainty in �
and ��� may be independent.

WI ∆

Gd

G WP

+

+ +
+

+

+

d

u

Figure 9: Problem formulation for the design of a � -optimal feedforward controller

With the presently available software we cannot handle delays in the � -design. If one
knows that nominally the feedforward controller should include a delay, this may be included
manually after the � -design. The nominal delays in � and ��� are then omitted in the models
used for the � -design.

We will now apply the two methods to the example in Section 6.

Example 3 (continued from Section 6)
Low pass filter. We consider � �� � � �  � ( , and add to the ideal feedforward controller a first
order low pass filter with break frequency ��� � �+� � � � ����� � ( .

From Figure 10(a), we see that the filtered feedforward controller makes the nominal per-
formance worse, especially at high frequencies where it approaches no control (compare with
Figure 5(b)). On the other hand, with delay error (Figure 10(b)) the performance is slightly
improved (compare with Figure 5(d)) at the highest (worst) frequency, but at lower frequen-
cies the performance remains poorer with the filter. These results are confirmed in Figure 11,
which shows the magnitude at all frequencies.

The filter introduces a phase shift, and therefore a delay error of � ( no longer gives the
same effect as  � ( , and in the opposite direction the effect of the filter is better.
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(a) Nominal case: The feedforward effect is
reduced or removed by the filter.
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Figure 10: Feedforward controller with low-pass filter (response of sinusoidal disturbances
with amplitude � and frequencies ��� � , � and � ����� � ( on the process of Example 3).
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Figure 11:

� � � ����� � � with and without low-pass filter (Example 3)
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� -design. We consider combined gain and delay error in � , and design a � -optimal feedfor-
ward controller using the setup in Figure 9. We let the uncertainty weight, � 
 , be diagonal
with elements

� 
�� � ��� �
�

(52)

� 
�� � ��� ��� � ��� �
��� � � � �

�
� �
	 � 
�
 
 	 � 	 � � � � � � � � � �

	 � 
�
 � � �
� �
	 � 
�
 
 	 � 	 � � � � � 
 � � � �

	 � 
�
 � � �
(53)

Here � 
�� represents the uncertainty in ��� (approximately zero) and � 
 � represents the un-
certainty in � corresponding to ����� gain uncertainty and � � ( delay uncertainty (Skogestad
and Postlethwaite, 1996, eq. (7.27)). The performance weight, � � , is chosen as a constant
independent of frequency, and several values for � � is considered (from ��� �

�
to � ����� ). A

large value of ��� corresponds to requiring tight control. The � -controller is designed with
D-K iterations using the � -toolbox in Matlab (with scaling matrices of order � ). The delay
difference between � and ��� is removed from the models used for the design, and the nominal
delay of ���%( is included manually in the feedforward controller.

The resulting
� � � � is seen in Figure 12. From the peak value in Figure 12(b) we see that

with � � large the � -optimal feedforward control is close to the “ideal” controller in (48).
“Detuning” ( � � 	�� ) gives little improvement when there is a delay error, except when
a large detuning ( � � � � ) is used. However, nominal performance is then poor. This is
confirmed by Figure 13, which shows the response with gain and delay errors (only errors in
the direction that gives benefit are shown).

In summary, with a low weight on performance (small � � ), the � -optimal feedforward
controller approaches no control (

� � � � � � � � � ). Interestingly, with a large weight on perfor-
mance (large � � ) we obtain a feedforward controller close to the ideal.
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(a) Nominal case (no uncertainty)
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Figure 12: Effect of detuned feedforward control:

� � � � for � -optimal feedforward controllers
with performance weight, ��� � ������� � ����� � �	� � � ��� � � . (

� � � � for the ideal controller (48) is
dashed.)

9 Conclusions

In this paper we have provided some important characteristics of feedforward controllers. We
have defined the feedforward “sensitivity functions”, � �� and � �� � � for the disturbance and the
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Figure 13: Effect of detuned feedforward control: Step responses for � -optimal feedforward
controllers with performance weight, � � � � ����� � � ��� � ��� � � ��� � � .
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reference, respectively. For ideal feedforward controllers, � �� � � �
� �	� and � ���� � � � �

�
we

find that � � �� is equal to the relative error in � � ��� , and � � �� � � is equal to the relative error in �
(except for the signs). A simple frequency domain analysis of

� � � � and
� � � � � � shows for which

frequencies feedforward control has a positive (dampening) effect when certain uncertainties
are present (in gain, delay, dominant time constant and a common combination of gain and
time constant). The results are summarized in Figure 2. We also discuss how to analyze the
effect of more complex uncertainties.

Feedforward is needed when the bandwidth, ��� , of the feedback controller is below the
frequency � � for which

� ��� � becomes less than one (with appropriate scaling). We must then
require

� � �� ����� � � 	 � in the frequency region between ��� and � � , or if it is known, for
all frequencies where the closed loop frequency response,

� � ����� � ��� ����� � � , is above � . See
Figure 7 for a summary.

The ideas are illustrated with a process example.
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Balchen, J. G. and K. I. Mummé (1988). Process Control. Structures and Applications. Van
Nostrand Reinhold. New York.

Buckley, P. S. (1964). Techniques of Process Control. John Wiley & Sons, Inc.. New York.

Coughanowr, D. R. (1991). Process Systems Analysis and Control. McGraw-Hill Inc.. New
York.

Doebelin, E. O. (1985). Control System Principles and Design. John Wiley & Sons. New York.

Doyle, J. (1982). Analysis of feedback systems with structured uncertainties. IEEE Proceed-
ings, Part D 129(6), 242–250.

Doyle, J.C. (1983). Synthesis of robust controllers and filters. Proc. IEEE Conf. on Decision
and Control, San Antonio, Texas pp. 109–114.

Faanes, A. and S. Skogestad (2000). A systematic approach to the design of buffer tanks. PSE
’2000, 16-21 July, 2000, Keystone, Colorado, USA, Supplement to Computers. chem.
Engng. 24, 1395–1401.

Faanes, A. and S. Skogestad (2003). Buffer tank design for acceptable control performance.
Ind. Eng. Chem. Res. 42(10), 2198–2208.

Harriott, P. (1964). Process Control. McGraw-Hill. New York.

24



Holt, B.R and M. Morari (1985a). Design of resilient processing plants - V. The effect of
deadtime on dynamic resilience. Chem. Eng. Sci. 40(1), 1229–1237.

Holt, B.R and M. Morari (1985b). Design of resilient processing plants - VI. The effect of
right-half-plane zeroes on dynamic resilience. Chem. Eng. Sci. 40(1), 59–74.

Lewin, D. R. and C. Scali (1988). Feedforward control in presence of uncertainty. Ind. Eng.
Chem. Res. pp. 2323–2331.

Marlin, T. E. (1995). Process Control. Designing Processes and Control Systems for Dynamic
Performance. McGraw-Hill, Inc.. New York.

Middleton, R. H. and G. C. Goodwin (1990). Digital Control and Estimation. Prentice-Hall
International. London.

Morari, M. and E. Zafiriou (1989). Robust Process Control. Prentice Hall. Englewood Cliffs,
N.J., USA.

Ogata, K. (1996). Modern Control Engineering. Prentice-Hall, Inc.. Englewood Cliffs, N.J.,
USA.

Scali, C., M. Hvala and D. R. Lewin (1989). Robustness issues in feedforward control.. ACC-
89 pp. 577–581.

Seborg, D., T. F. Edgar and D. A. Mellichamp (1989). Process Dynamics and Control. John
Wiley & Sons. New York.

Shinskey, F. G. (1996). Process Control Systems - Application, Design, and Tuning, 4th Ed..
McGraw-Hill Inc., New York.

Skogestad, S. (2003). Simple analytic rules for model reduction and PID controller tuning. J.
Proc. Contr. 13(4), 291–309.

Skogestad, S. and I. Postlethwaite (1996). Multivariable Feedback Control. John Wiley &
Sons. Chichester, New York.

Stephanopoulos, G. (1984). Chemical Process Control: An Introduction to Therory and Prac-
tice. Prentice-Hall International. Englewood Cliffs, New Jersey, USA.

Zhou, K., J. C. Doyle and K. Glover (1996). Robust and Optimal Control. Prentice Hall. New
Jersey, US.

Appendix A Modelling of the two tank process

We here develop a model of the two tank process of Example 3. Energy balances for tanks 1
and 2 can be expressed by

� ����� � � � � �
� �

� ��� � ��� � ��� ���� � � � � (54)

� ����� � 	 � 	 �
� �

� ��� � � � � � ��� ��� � � ���� � 	 � 	 (55)
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where
� � and

� 	 are the temperatures in the two tanks, � is the heat capacity, � the density,( �
and � are both assumed constant and temperature independent), � � and � 	 are the volumes of
tank 1 and 2, respectively, and � � and � 	 are the outlet flow rates from the two tanks. By use of
the mass balance for both tanks, the energy balance simplifies to

� � �
���

� � ���
� � � � ���  � � � (56)

� � 	
���

� � �
� 	 �

� �  � 	 � � ���
� 	 �

� �  � 	 � (57)

Linearization around a steady-state nominal point (marked with � ) under the assumption that
� ��� , � � and

� � are constant, yields

� � � �
���

� �
����

� �� � � ���  �
����

� �� � � � (58)

� � � 	
���

� �
��

� �	 � � �  �
�

� �	 � � 	 � � ��  � �	
� �	 � ��� (59)

where �
� � �

�� � �
�
� . The terms with � � � and � � 	 are cancelled since

� ���� � � �� and in tank 2
steady-state energy balance yields �

�� � �� � �
�
� � �� � ��� �� � �

�
� � � �	 . Laplace transform yields for

the outlet temperature

� 	 ��� � � �
�� �
� �

� � �� �
� ���� � � � � � � �	 �
� � � � � �
� ��� ��� � � � � ��  � �	 � �
� �

� �	 ��� � � � � ��� ����� (60)

In (60), some delay and higher order dynamics in tank 1, i.e., between the measurement
of
� ��� and the inlet of tank 2, is ignored. This is represented by a delay, � . Delay and higher

order dynamics in tank 2 can be ignored since they can be assumed equal for the disturbance
and the control input. We obtain the model (46) and (47).
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