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In this paper, we study the effect of model errors on the
performance of feedforward controllers. In accordance
with the sensitivity function for feedback control, we
define the feedforward sensitivities, Sy (feedforward
from disturbance) and Sy, (feedforward from set-
point), as measures for the reduction in the output error
obtained by the feedforward control. For “ideal”
feedforward controllers based on the inverted nominal
model, the feedforward sensitivities equal the relative
model errors, which must thus remain less than 1 for
feedforward control to have a positive (dampening)
effect. For some common model error classes we
provide rules for when the feedforward controller is
effective, and we also design p-optimal feedforward
controllers.
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1. Introduction

There is a fundamental difference between feedfor-
ward and feedback controllers with respect to their
sensitivity to uncertainty. Feedforward control is
sensitive to uncertainty in general (including steady

*Also presented at European Control Conference, ECC'03, 1-4
September 2003, Cambridge, UK

Correspondence and offprint requests to: S. Skogestad, Department
of Chemical Engineering, Norwegian University of Science and
Technology, N-7491 Trodheim, Norway. E-mail: skoge@chemeng.
ntnu.no

state), whereas feedback control is insensitive to
uncertainty at frequencies within the system band-
width. With no model error, a feedforward controller
may remove the effect of disturbances, but due to its
dependence of the process model, it may actually
amplify the effect of a disturbance if the model is
faulty.

Textbooks on control and process control focus
mainly on feedback controllers. This reflects the dif-
ference in importance and popularity of the two con-
trollers, but also that feedback theory is more
complicated. Most of the articles on feedforward
control refer to industrial applications. However,
some control textbooks, for example, Buckley (1964),
Stephanopoulos (1984), Doebelin (1985), Seborg et al.
(1989), Middleton and Goodwin (1990), Coughanowr
(1991), Marlin (1995), Ogata (1996), and Shinskey
(1996), describe feedforward controllers and their
design, and the advantages and disadvantages com-
pared to feedback is discussed. It is concluded that a
feedforward controller may improve the performance,
and is valuable when feedback control is not suffi-
cient, but that in practice it must be combined with a
feedback controller. It is agreed that the feedforward
controller is most efficient if good disturbance mea-
surements and accurate models are available, but no
quantitative analysis is given (with some exceptions as
given in the following). Harriott (1964) claims that in a
“typical system” the disturbance effect is reduced to
20%. Middleton and Goodwin (1990) demonstrate
that the variation in the gain from the inputs to the
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outputs (the process uncertainty) is amplified with
feedforward control. Shinskey (1996) states that the
integrated error of the output signal can be reduced by
a factor of 10 even if the feedforward calculation has
10% error, and that mass- and energy balance based
feedforward controllers typically has less than 2%
error, leading to a reduction in integrated output error
with a factor of 50. Shinskey also provides an inter-
esting figure showing nine different responses to dis-
turbance steps for a process with a pure gain (static)
feedforward controller. The nine cases are the com-
binations of neglected time constants and delays in the
transfer functions from the disturbance and the
manipulated variable to the output (Shinskey, 1996,
Figure 7.12). The figure may also be used for dynamic
feedforward controllers as a qualitative illustration of
the effect of errors in delays or time constants on
disturbance step responses. (Note that Shinskey
assumes that the disturbance has a negative effect on
the output, in contrast to what we assume in the
present paper.)

In the context of internal model control (IMC),
Morari and Zafiriou (1989) recommend a structure
for the combined feedback—feedforward scheme that
decouples the two functions such that the feedforward
controller handles disturbance dampening and the
feedback controller handles reference tracking. This is
exploited in the controller tuning (assuming perfect
models) since the two controllers can be tuned inde-
pendently. The traditional controllers can then be
derived from these controllers and the process models.
It is shown that assuming perfect models, optimal
feedforward can only be better than optimal feedback
if there are non-minimum phase components (such as
delays and inverse responses) in the process.

Scali and co-workers (Lewin and Scali 1988, Scali
et al. 1989) also work in the IMC context and compare
the control error of H, optimal feedback controllers
with an H, optimal combination of feedback and
feedforward controllers under the presence of uncer-
tainty. The motive is to make a fair comparison, and
to give methods for identifying when feedforward is
worth the effort, and to quantify the benefits from
accurate models. Uncertainty representations, similar
to the ones we will discuss, are used. Numerical results
for parametric uncertainty in first-order processes
with delay are presented for different nominal values
and uncertainties. Even for this simple case the picture
gets rather complicated, as there are many parameters
that must be varied to cover all cases, both nominal
parameters as well as the parameters representing the
uncertainty, so it is difficult to present the results
and give general quantitative answers. The overall
conclusion is that feedforward may make the
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performance poorer if the response to the manipu-
lated input is considerably faster than the disturbance
response and the uncertainty is large for the model of
the disturbance effect.

Marlin (1995) studies the effect of model errors (one
at a time) by comparing combined feedforward and
feedback control with the response when pure feed-
back is applied. The response to a disturbance step for
a first-order process with delay is the criterion for the
comparison. From his example the feedforward
reduces the control error with more than 50% for
parametric errors up to +50%.

A general quantitative frequency domain analysis
of feedforward control under model uncertainty is
proposed by Balchen (1968) (and referred in Balchen
and Mummeé 1988).

The aim of this paper is to study feedforward con-
trol under the presence of uncertainty and answer the
following basic questions:

1. How much does the feedforward controller reduce
the control error?

2. When is the feedforward controller amplifying the
effect of disturbances on the outputs?

3. If combined with feedback control, when is feed-
forward control necessary (and useful)?

4. How can uncertainty be taken into account when
the feedforward controller is designed?

The outline of the paper is as follows. We first reca-
pitulate the characteristics of feedforward control
(Section 2), and then define feedforward sensitivities
(Section 3). We then discuss the effect of model errors
under feedback and feedforward control, that is,
answer questions 1 and 2 (Section 4) and study some
classes of model uncertainty in Section 5. We illustrate
some of the ideas with an example (Section 6).
Question 3 is discussed in Section 7. Proposals to
answers of Question 4 are given in Section 8. The
paper is concluded in Section 9.

2. The Characteristics of Feedforward
Control

A block diagram where feedforward from a dis-
turbance and the reference is combined with feedback,
is shown in Fig. 1. To analyze the effect of a given
feedforward controller, we denote the feedback con-
troller K and the feedforward action from the dis-
turbance Ky and the reference Kj,. With perfect
measurements we then have (see Fig. 1)

u=K(y, — )+ K,y — Kied . (1)
———— N——
Feedback Feedforward
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Fig. 1. Block scheme for feedforward control combined
with a feedback controller. We assume ideal measurements:
Gyn=1and G,, = 1.

Some important characteristics of the “traditional”
feedforward controller are:

1. The basic task of a feedforward controller (K and
Kir,) is to use the process input, u, to reduce the
effect of measured disturbances and improve set-
point tracking.

2. Feedforward control is “open loop” since the dis-
turbance measurement, d,,, and the reference y,
(which are used by the feedforward controller) are
independent of u.

3. For linear systems, the feedforward controller does
not influence the stability of the system.

4. The feedforward controller uses a model of
the process (G and G,). If the model is faulty, then
the controller based on this faulty model will not
yield the desired performance, and the controller
may even amplify the effect of the disturbance.

5. Normally the effect of the disturbance is observed
earlier in the disturbance measurement than in the
other process measurements.

6. Referring to Fig. 1, the closed loop response for
the combination of feedforward and feedback
control is

e(s) = y(s) = ye(s)
= S(5)(Gals) — G(s)Kir(s))d(s)
= S()(I = G(8)Kir(5))yr(s) (2)

where S(s) = (I+ G(s)K(s))™" is the feedback
sensitivity function.
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2.1. Ideal Feedforward Control

An “ideal” feedforward controller, which is based on
inverting the nominal model (e.g. Balchen 1968,
Balchen and Mummé 1988, Morari and Zafiriou
1989), removes completely the effect of the dis-
turbance and reference changes such that e(s) = 0. We
denote the “ideal” controller with an asterisk, and get
from (2)

Ky=G"'Gs Ky, =G (3)

Designs of robustly optimized (u-optimal) feedfor-
ward controllers presented later in this paper confirm
that this is a good controller as to use in some practical
cases. However, there are three reasons why ideal
feedforward control (e=0) may not be achieved in
many cases:

(a) The ideal feedforward controller in (3) may not be
realizable. First, if G is non-minimum phase, it
cannot be inverted. Second, if G has more poles
than zeros, for example, G = 1/(7s + 1), the inverse
is improper and requires differentiation. Because
of measurement noise, higher-order derivatives
are normally avoided (Harriott 1964). Thus, we
divide G into a (practically) invertible part, G_,
and a not invertible allpass part, G, such that
G=G_G_, (Holt and Morari 1985a,b). Morari
and Zafiriou (1989) derive the H,-optimal feed-
forward controller (in the context of IMC). A
simpler alternative that we will use here is

Ky =G"'Gs; Ki, =G . (4)

(4) has an optimal Hy-norm (H,-optimal for
impulse disturbances on the output, G; = I, and
impulses in the reference).

(b) The ideal feedforward controller in (3) is also not
realizable if the number of outputs exceeds the
number of manipulated inputs (the length of y
exceeds the length of #). One must then control the
(most) important outputs (reducing the length of y
till it equals the length of u), or find some com-
promise between the outputs, for example, use the
pseudo-inverse of G.

(¢) The model used in the design of the feedforward
controller differs from the actual plant. This is the
main topic of this paper.

3. Feedforward Sensitivity Functions

The closed loop response for combined feed-
forward and feedback control in (2) may be
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rewritten as follows
e = S(SiGad — Serryr), (5)

where we define the feedforward sensitivities as
St = (I — GKyGY), (6)
Strr = 1 — GKgy,r. (7)

These express the effect of feedforward action on the
control error. Gj, denotes the generalized inverse of G
(e.g. Zhou et al. 1996, p. 67). Feedback control is
effective and improves performance as long as the gain
of the sensitivity function ||S|| < 1. Similarly, feed-
forward control improves the performance if

||Sff|| <1 and ||Sff_y,~|| < 1. (8)

Here, an appropriate norm dependent on the defini-
tion of performance is used. With no feedforward
control Sy = I, and with “ideal” feedforward control
St = 0.

In the literature, S and S are also denoted control
ratio and feedforward control ratio, respectively
(Balchen and Mummé 1988). More precisely, in
Balchen and Mummé (1988), the feedforward control
ratio is defined for single-input/single-output (SISO)
controllers as

©)

where K is the actual feedforward controller and Kj;
is the “ideal” controller for the actual process. For
SISO controllers this is identical to the definition in
Eq. (6). For multivariable controllers, Eq. (6) differs
from the definition by Balchen and Mummé (1988,
Eq. (2.10.3)), and in Eq. (7) we have introduced
the sensitivity function for feedforward from the
reference.

Balchen uses a Nichols chart to determine require-
ments on the gain and phase error in Kjy relative to Kj
for a given disturbance dampening (e.g. 0.1) in Sg. The
Nichols chart used to be convenient for the study of
h(jw) + 1 given a transfer function i(jw). With tools
like Matlab, it is now easy to study any transfer
function by defining a finite number of frequencies
and calculate the gain or phase shift over this set of
frequencies. We follow this direct approach.

4. The Effect of Model Error with
Feedforward Control

In this section, we restrict ourselves to SISO processes,
that is, with one control input, u, one disturbance, d,
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and one output y. With a nominal process model,

y=Gu+ Gyd, and an actual plant model
y' = G'u+ GJd, the actual control error is
¢ =) —y, =S'"(SkGyd — Si;,vr), (10)
where
pdef 1
= — 11
I+GK’ (1)
def ,  G'Kir
Sp=1- G (12)
Sk, € 1 G' Ky, (13)

S expresses the ratio between the output when a
feedback controller is applied and when it is not (open
loop). Similarly, Sf; and S, express the ratio of the
output when feedforward is applied and the output
when it is not. This follows by comparing the output
error using control in (10) with the output error when
no control is applied (u = 0):

e/:y,_yr:G/dd_yr- (14)

Note that for the case with no control (K = 0, K = 0,
Kir, = 0), we have S' =1, Si; =1, Sy, = 1.

The actual sensitivity can be expfessed in terms
of the nominal sensitivity and the relative error as
following:

1

/
5= Sl +ET’ (13)
where S = 1/(1 + GK) and T = 1 — S are the nominal
sensitivity and complementary sensitivity functions,
respectively, and E the relative error in G, that is,
E=G'/G -1 (see also Skogestad and Postlethwaite
1996, Section 5.13).

The “ideal” feedforward controller (3) gives with no
model error

=0, Sy, =0. (16)

With model error we get the result

. G/a,

Si=1- G/G;’= —Eq, (17)
. G’
=1-&=-E (18)

where E, is the relative error in G/G,; and E the relative
error in G. Thus for “ideal” controllers, Si; and Si,
are equal to (except for the sign) the relative model
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errors in G/G, and G, respectively, and we have that
the “ideal” feedforward action reduces the control
error for a frequency w, as long as the relative mod-
elling errors are less than one, that is,

G'(jw)/Gy(Jw)

i | = V] = [1 - SR
(19)

N SN G'(jw)
S, (w)| = [E(jw)| = ‘1 - G(J'w)‘ <1 (20

In Section 8, we discuss how to modify the ideal
feedforward controller such that |Si(jw)| < 1; V.
However, the nominal performance becomes worse. If
G is not invertible, we obtain for the feedforward
controller, K; in (4)

G'/G'
Sh=1- d 21
ft Gf/Gd’ ( )
G/
Sk =1——. 22
ff,r G_ ( )

For a given process and the knowledge of its uncer-
tainty we can use (19) and (20) to see whether an
“ideal” feedforward controller will be effective. This
can be used to consider whether the extra controller
shall be implemented, and if other control configura-
tions or even process modifications are necessary to
obtain the desired response (e.g. introduction of
buffer tanks, see Faanes and Skogestad 2003).

If the model error (uncertainty) is sufficiently large,
such that the relative error in G/G, is larger than 1,
then we see from (17) that ’S’f’; is larger than 1 and
feedforward control makes control worse. This may
quite easily happen in practice. For example, if the
gain in G is increased by 33% and the gain in Gy is
reduced by 33%, then Sif =1 — ((G/G)/(G/Ga)) =
1—(1.33/0.67)=1—2=—1. In words, the feedfor-
ward controller overcompensates for the disturbances,
such that its negative counteractive effect is twice that
of the original effect.

Another important insight from (10) and (17) is the
following: To achieve |¢/| < 1 for |d| =1 with feed-
forward control only (S" = 1) we must require that the
relative model error in G/Gy is less than 1/|G/|. This
requirement is unlikely to be satisfied at frequencies
where |G’d] is much larger than 1 (see Example 1) and
motivates the need for feedback control in such cases.

Example 1. Consider a plant with

300 100
T10s+10 YT 105+ 1

(23)
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The objective is to keep |y| < 1 for d = 1, but note that
the disturbance gain at steady state is 100. Nominally,
the feedforward controller Ky = G~' Gy gives perfect
control, y = 0. Now we apply this controller to the
actual process where the gains have changed by 10%

, 0330, 9%
T 10s+17 4T 105+ 17

(24)
From (10) the disturbance response in this case is

G'/G
/ 1— d G/d
g < G/Gd> ¢

20
10s + 1 d

=-0.22G)d = — (25)
Thus, for a step disturbance d of magnitude 1, the
output will approach —20 (much larger than 1). This
means that we need to use feedback control, which is
hardly affected by the above model error. There is
some benefit in using feedforward control, though.
The feedback control is required to be effective at
all frequencies where the gain from the disturbance to
the output is larger than 1. Without feedforward
control the feedback loop must be effective up to
wgq =~ |kg4|/7=100/10 = 10. The feedforward con-
troller brings this limit down to about 20/10 = 2. In
other words, the feedforward controller reduces the
bandwidth requirement for the feedback controller
from 10 to 2.

5. Some Classes of Model Uncertainty

In the following, we will consider some examples of
model uncertainties for ideal feedforward controllers,
and use (19) and (20) to analyse when feedforward
control should be used. To simplify notation we write:
Sff = S/ff and Sf‘f’r = 1{?,

Static gain uncertainty. Let G' = oG and G, = a,G,
where « and «y are constants. (Nominally, o = 1 and
aqg = 1 and a +100% gain error corresponds to o = 2
and oy = 2.) In this case we have from (19) that ideal
feedforward control reduces the error from the dis-
turbance, d, as long as

o

|Ser| = ‘ <lel<a/ag<?2 (26)

(6 7]
and from (20) for the reference y, as long as
St =11—0| <1 0<a<2 (27)

See Fig. 2(a). In other words, if the effect of the input
changes sign (which is not very common), or is
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Fig. 2. Effect of uncertainty on Sy for SISO feedforward control. (a) Effect of gain uncertainty |Si|=]1 — (a/c)]
corresponding to G'=aG and G, =ayGs (b) Effect of time delay uncertainty |[Sg|=|1—e®%*| where
A = (92, - 0’) —(64—10), and ¢, ¢, 6; and 6 are the delays in G/, G', G, and G, respectively. At low frequencies the
effect is zero, but for high frequencies, it doubles the worst-case error. (c) Effect of time constant uncertainty
[Sir| = |1 — ((caras + 1)/ (ras + 1))| corresponding to G’ =G, Gy =Gy, /(Tas +1), G, = Gy, /(auras +1). (d) Effect of

combined uncertainty in gain and time constant
Gy = Gdo/(TdS + 1), Gil = adeo/(ades + 1).

increased by more than 100% (which may easily
happen), feedforward actually makes the response
worse. This will also happen, as we saw above, if the
gain in G is increased by more than 33% and the gain
in G, at the same time is reduced with more than 33%,
since a/ag = 1.33/0.67 = 2.0.

In the following we will only consider feedforward
from the disturbance, d.

Delay uncertainty. We let 0, ¢, 6, and ¢/, denote the
delays for G, G', G, and G/, respectively. We assume
0, > 0, so that ideal feedforward control is feasible,

and perfect models except for the delay. Now the

[Sar = [(1 = (1/a))(1/ (7as + 1))

corresponding to G’ =G,

feedforward sensitivity becomes

e /el Abjw
_ m =1 —e~",

1S(s)] = |Ea(s)| = \1

(28)
def

where A0 = (0/,—0') — (0, — 0) is the error in the
difference between the delays in G; and G. The ideal
feedforward control reduces the error at a frequency
w as long as

Si(jw)| = |Es(jw)| = |1 — 29|

= /2 —2cos(Abfw) < 1.

(29)
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We note that since cos(Abw) = cos(—Abw), the rela-
tive delay uncertainty is independent of the sign of A#.
In Fig. 2(b), we plot [Sg| in (29) as a function of
normalized frequency. At low frequencies feedfor-
ward control is perfect, but for frequencies above
w; = 1.05/|Af| rad/s, feedforward has a negative
effect, and in the worst-case (at frequency
wmax = 7/|Af|) the feedforward effect doubles the
error. To avoid that the feedforward controller
amplifies the control error, the feedforward control
signal may be low-pass filtered with a break frequency
at about 1/]Af| or less.

We may find the frequency, w;, where |Si| =1
analytically:
cos 1(1/2) 1.05 1

AG] A9 A
To find the frequency wp,x for the first maximum
value of 2, we differentiate the expression for |Sg(jw)|
with respect to the frequency

d d
— =—4/2-2 A
W | St W cos(Abfw)

_ Afsin(Abfw) (31)

/2 — 2cos(Abw)

(30)

w1 =

to obtain
T
max — . 2

Uncertainty in time constants. In the general case this
is more complicated to analyze than the gain and
delay errors. We consider the situation where the error
is in G4 only and is restricted to one time constant:
G, = Gdo/(TdS + 1) and GZ[ = Gdo/(adeS + 1) where
«y 1 the relative error in the time constant. We then
obtain the following limit for effective feedforward

agtgs + 1

s)| = |E =|1-
5005 = 5] = |1 - 2725

‘ < 1. (33)
If 0<a;<2, then |[l1— (agras+1)/(ras+1)| is
always less than or equal to one. For ay > 2 the
feedforward is effective as long as

1
Wiy < (34)
Oéa'(Oéd - 2)

The maximum value of |Si| is g — 1, see Fig. 2(c).
Again this can be used to find the frequency for which
the feedforward controller shall be active.

The situation if there is an error in only G is similar
to the case with error in only Gy.

Combined uncertainty in both gain and time constant
(“pole uncertainty”). Some physical parameter

A. Faanes and S. Skogestad

changes affect both the gain k, and the time constant
74, such that their ratio k,/7, remains constant. As an
example, consider the following physical state-space
model with a single state

dx

—=A4 Dd 5
T x + Dd, (35)
y=x+u, (36)

where x is the state, u is the control input (manipu-
lated variable), y is the output, and 4 and D are
constants. Laplace transform yields

b _ -D/4 |
Gals) = A = s T (37)

G(s) = 1.

An error in 4 will then influence both the gain
(ky=—D/A) and the time constant (r;=—1/A4),
whereas k;/7, = D remains unchanged.

The model in (37) can be written on the form
G, = Gdo/(’TdS-l- 1) and GQ: OédeO/(OszdS+ 1),
where «y is the relative error in the gain and the time
constant (which is equal to the relative error in 1/A4).
G contains no errors (G' = G). We then obtain the
following requirement for effective feedforward
control

ISu(s)] = | Eals)| = \(1 _L>

Qg

1
TdS—i-]

‘<1. (38)

The effect of model error is largest at low frequencies
(below 1/7, [rad/s]) where |Si(jw)|~ |l —1/ag|.
Feedforward has a positive effect at all frequencies
when oy > 1/2. For ay < 1/2, feedforward is effective
at high frequencies

1
WTg > Wy —1= o V1—=2ay (39)

as shown in Figure 2(d).
In other cases G(s) and Gy(s) share the same
dynamics. For example, consider the physical model

%:Ax—i—Bu—FDd; y=x (40)
and we get
D B
Gd(s)—S_A, G(s)—S_A. (41)

In this case G/G; = B/D and an error in A does not
affect feedforward control and gives Si = 0.
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Frequency domain representation of uncertainties. In
Lewin and Scali (1988) and Scali et al. (1989)
combinations of the above uncertainties were exam-
ined. The analytical method we have used above is not
suitable for this case, and another approach is pro-
posed. We want to find |Sg(jw)|,,,- that is, the worst-
case feedforward sensitivity for each frequency given
the parametric uncertainty. Since it is impractical to
find an analytical expression for |Sk(jw)l,... We cal-
culate its value for some w; € 2 where  is a set of
frequencies in the relevant range:

. G, (jwr, )/ Gap(jwi, ra)
Sir(jwi = max|l — 2~ £ :
St (jwr) lmax na. G(jwi)/Ga(jw:)

where r and r; are vectors of the parameters in G and
G4, respectively. For each parameter we have
ri. <1 < . The optimization is in general non-
convex, so that precautions must be taken to find the
global optimum at each frequency.

Example 2. We consider the following process
(Skogestad and Postlethwaite 1996, Example 7.3):

2<k6,7<3, (43)

kq .
G/ — 70d‘\’
d(s) Tas + 1 ¢

2<kg b4 <3, (44)

that is, nominally G and G, are equal, but their
parameters may vary independently between 2 and 3.
Nominally

2.5

G'(s) = G(s) = —> .
(s) = Guls) = 55,7

(45)

We find that the ideal feedforward controller from
the disturbance measurement is Ky = 1. Solving the
optimization problem (42)" gives |Sgr(jw) | max @S Shown
in Fig. 3. We can see that the ideal feedforward con-
troller dampens the disturbance for frequencies below

0.3 rad/s for all combinations of the parameters.

'The optimization problem is non-convex so we first make a
uniform grid in the space spanned by the parameters and take the
maximum value of |Sg( jw;, r, r4)| for all points. The result of this is
used as initial value for the routine fmincon in Matlab. A Monte
Carlo simulation results in lower values of |Sy(jw;)| up to a
frequency higher than 1 rad/s.
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Fig. 3. |Si(jw)|m. When frequency domain uncertainty is
used to represent the gain, delay and time constant
uncertainties, see (43) and (44).

6. Example: Two-Tank Process

Example 3. In this example we consider feedforward
control of the process illustrated in Fig. 4(a). A hot
flow with flow rate ¢;, and temperature T;, passes
through tank 1 and into tank 2 where it is cooled by
mixing with a cold flow with flow rate ¢. and
temperature 7T,. Ti, is measured before the first tank.
The outlet temperature, 75, shall be kept constant
despite temperature variations in the hot flow. To
obtain this, the measurement of 7}, is used by a
feedforward controller to adjust ¢, to compensate for
the variations.

In Appendix A we derive the model on transfer
function form

y(s) = G(s)u(s) + Ga(s)d(s), (46)
__k _ ka o
G(S) n s+ 1’ Gd(s) - (7'1S+ 1)(7’2S+ l)e ' ’
(47)

where d = Tj, is the disturbance, u = ¢, is the control
input and y = T, is the output that shall be kept
constant. The parameters are defined by 71 = V' /¢,
=V’ k= (T —T19)/¢" and kq = ¢?/¢°, where
0" =d{ +q.

6.1. Feedforward Controller Design

The “ideal” feedforward controller is given by (3):

ka/k

Kr=G'G;=
fr T s+ 1

e ™. (48)
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Fig. 4. The process in Example 3. (a) Illustration of the process. Nominal data: VY = 1001, V) =701, ¢0 = ¢% = 161/s,
¢° =41/s, T? — TY = —40°C. (b) Block diagram. Parameters derived from the nominal data: X' = =2, k/, = 0.8, 7] = 6.25,

75 = 3.5. In addition there is a delay, ¢ = 10s.?

In Fig. 4(b) we have illustrated the process and the
feedforward controller in a block diagram. The vari-
ables of the actual plant are marked with a prime.

6.2. Sinusoidal Disturbances

We will now see how a feedforward controller
dampens the effect of sinusoidal disturbances. The
disturbance has amplitude 1 and three frequencies are
considered: 0.1, 1 and 2 rad/s. (These three frequencies
have been chosen to illustrate |Sg(jw)| <1,
[Ser(jw)| = 1, and |Si(jw)| > 1.) We will study six
cases (the results are summarized in Fig. 5):

(a) No control. See Figure 5(a).

In the remaining cases we use the feedforward
control in (48).

(b) Nominal case (perfect model). As seen in Fig. 5(b),
the disturbance is perfectly cancelled by the feed-
forward controller.

(c) Gain error k/;=0.5k;, and no error in G.
Figure 5(c) illustrates that the feedforward con-
troller does not help, that is, the feedforward
controller overcompensates such that the varia-
tion in y has the same amplitude as without con-
trol, as expected from (26). This applies to all
frequencies. If the gain error is reduced, the feed-
forward controller has a positive effect on the
dampening compared to no control, whereas if the
gain error increases further above 2, the feedfor-
ward controller has a negative effect.

(d) Delay error0;=0,—1; ¢ =0 = |Af| = 1, which
is 10% of the delay (see Fig. 5(d)). From (30) the
feedforward controller has a dampening effect up
to the frequency 1/|Ad| = lrad/s, as confirmed
by the simulation results. Even this relative small

2Actually in Example 3 we consider errors in the nominal model
(G, G ), and thereby in the controller Ky, while the actual plant
(G, Gij) is kept constant. This has the advantage that the response
without control remains constant, so that it is easier to identify the
effect on performance of using an incorrect model in the controller.

error gives a low frequency limit for where the
feedforward controller is effective.

(e) Error in time constant 7; = 37;. This may be the
result of operating tank 1 with a higher level than
expected in the model. In Section 4, we found
that for all frequencies, the feedforward controller
has a positive effect on the dampening as long
as 7 <27;. When the error is larger than
this than this, as it is here, feedforward control
is effective (by (34)) for frequencies w <
1/((6.25/3)/3(3 —2)) = 0.277. As illustrated in
Fig. 5(e) at 0.1rad/s, the controller has some
dampening effect, while above this frequency the
controller makes the situation worse.

(f) Error in gain and time constant k!, = 0.5k, and
11 = 0.571, see Fig. 5(f). At low frequencies the
response is similar to a pure gain error, but
this error gives no problems for high frequency
disturbances.

6.3. Step Disturbances

Using the same controller, the output response ( y) to
a unit step in the disturbance (d) is shown in Fig. 6.

(a) Gain errors give problems at low frequencies, and
therefore we get an offset from set-point after a
step disturbance (see Fig. 6(a)). With pure feed-
forward this is clearly the worst error for “step
like” disturbances.

(b) Delay errors give problems only at high fre-
quencies (Fig. 6(b)), so that the deviation from
set-point has a limited duration. The performance
is improved compared to no control.

(¢) Time constant errors give only transient deviations
from the set-point (see Fig. 6(c)).

(d) Combined gain and time constant errors (Fig. 6(d))
give the same steady-state response as the gain
error. But the error is smaller in the beginning,
which makes it easier for feedback control.
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T>) to sinusoidal disturbances (d = Tj, = sinwt with
frequencies 0.1, 1 and 2 rad/s (upper, middle and lower plot, respectively). (a) No control. (b) Nominal case: Perfect control.
(c) Gain error (k/; = 0.5ky): Same amplitude as with no control (for all frequencies). (d) Delay error (JAf| = 1): Improved
performance for 0.1rad/s, no effect for 1rad/s, and larger amplitude for 2rad/s. (e) Error in time constant (7] = 37):
Improved performance only for the lowest frequency. (f) Error in gain and time constant (k/, = 0.5k, and 7{ = 0.57):
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Fig. 6. Feedforward control of two-tank process: Response (y = T3) to unit step disturbances (d = Ti,). (a) Gain errors.
(b) Delay errors. (¢) Errors in time constant. (d) Errors in gain and time constant.

7. When is Feedforward Control Needed
and When is it Useful?

We will now shortly discuss when a feedforward
controller is needed and useful in the combination
with a feedback controller. We consider a scalar
system and assume that the variables are scaled, so
that the disturbance d is within +1, and the control
error, ¢ =y — y,, shall stay within 1. We consider
two cases (similar to the buffer tank design; Faanes
and Skogestad 2003):

Given feedback controller (known S). Given the
sensitivity function S(jw) and a transfer function from
the disturbance to the output of Gy(jw). Then feed-
forward is needed (with |[Si(jw)| <1) at all
frequencies where

1S(jw)Ga(jw)| > 1. (49)

Unknown S (shortcut method)

1. Let wy; denote the frequency up to which
|Ga(jw)| > 1, such that control is needed to achieve
acceptable disturbance rejection.

2. Let wp denote the frequency up to which feedback
control is effective, i.e., [S(jw)| < 1 for all w < wp.
Approximations of the achievable wp for a given
process are discussed in (Skogestad and
Postlethwaite 1996, pp. 173—174) and (Faanes
and Skogestad 2003).

It then follows that feedforward control is needed (with
|Si(jw)| < 1) in the frequency range from wp to wy.
A similar rule is given by Middleton and Goodwin
(1990), although they denote wy the desired bandwidth
with no reference to how to determine this.
Feedforward control may also be needed outside
the range between wp and w,;, namely when
|S| > 1/|G4|. But at least we know that if wp < wy,
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then feedforward control (or some process or instru-
mentation modification) is needed.

Knowing where feedforward control is needed, we
may use | Sgr(jw)| to identify where a given feedforward
controller is useful. This is illustrated in Fig. 7. In
Fig. 7(a), the model error is so large that feedforward
control has a negative effect on the performance for
frequencies between wp and wy. In Fig. 7(b), feedfor-
ward control reduces the control error for some fre-
quencies, while at others it makes the performance
worse (|Sk(jw)| > 1). In Fig. 7(c), feedforward control
is effective in the whole range between wp and wj.

Example 3. (continued from Section 6). Is the
feedforward controller needed and useful? Figure 7
demonstrates that the feedforward controller must be
effective for the frequencies where the feedback loop
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fails to dampen disturbances. We will here check if our
feedforward controller is useful when there is a delay
error in the feedforward loop of Af = 1s.

We apply feedback control using a measurement of
T,. Because of the delay and the higher-order
dynamics in tank 2, the bandwidth of this control loop
is limited. We consider two different effective delays in
the feedback loop: Case (a) #, = 0.62s and Case (b)
92 = 10s.

The process model is scaled assuming that the outlet
temperature is allowed to vary +0.05°C around the
nominal value, and obtain a modified k;=
k4/0.05 = 16.0. A PI controller with k., = 0.57,/(k9)
and 77 =min(n,80) =7 (SIMC tuning, see
Skogestad 2003) is used.

Now S(jw) is known, and thereby SG,. For both
cases (a) and (b) there is a frequency range where

(@) 101 (b) 101
- Sff P
S; ,
é fr Oqy é’ FF useful 0y
S 100 I I €100 I
g ('OB g FF neg. - FF not
effect necessary
and may
have negative
I e effect
107" : : : 107! : : :
1074 1072 100 102 10* 1074 1072 10° 102 10%
Frequency Frequency
(©) 10
Sff ———

(]

E ®q

€100 I I

()]

= 05

107 4 ' 2 ' o : 2 4
10” 10™ 10 10 10
Frequency

Fig. 7. Examples of (a) large, (b) intermediate and (c) small relative model errors,

it = —E4. wp is the bandwidth for

feedback control, and w, is the required disturbance bandwidth. More generally, feedforward control is required at
frequencies where |SG4| > 1. (a) Feedforward has a negative effect. (b) Feedforward is useful at low frequencies, but has a
negative effect at high frequencies. (c) Feedforward is useful for all frequencies between wp and w,.
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Fig. 8. Example 3: Combination of feedback and feedforward control illustrated in the frequency domain. Delay error,
|Af| = 1s. (a) Delay of 0.62s in tank 2: wg = wy. (b) Delay of 10s in tank 2: wp < wy.

|SG4| > 1 (see Fig. 8). For both cases, |Sg|< 1;
VYw < wy, so feedforward control is clearly useful.

For case (a) the combination of feedforward and
feedback gives acceptable performance with
|Ser(jw)S(Jw)Ga(jw)| < 1; Yw. However, for case (b)
this is not the case, and we have an intermediate
frequency range where |SySG,| > 1.

We note from Fig. 8(a) that feedforward control is
needed even though wg = wy. The reason is that G,
has slope —2 whereas S has slope 1 in the logarithmic
scale.

In conclusion, we see that for a delay error of
A6 =1s in the feedforward loop, the addition of
feedforward control is useful both with the short
(6, = 0.62s) and long delay (6, = 10s) in the feedback
loop. For the Ilongest delay (10s), additional
improvements (design changes) are necessary in order
to achieve the performance requirements.

8. Design of Feedforward Controllers under
Uncertainty

Knowledge of the model uncertainty may be utilized
in the feedforward controller design. H, optimal
combined feedforward/feedback control under the
presence of uncertainty is derived in (Lewin and Scali
1988, Scali et al. 1989). Here, we discuss two other
methods:

e Two step procedure: (1) Choose a nominal
model and design the ideal feedforward con-
troller. (2) Modify this by introducing a low-
pass filter or by reducing the gain to achieve
|Ser(jw)| < 1; Vw.

e p-optimal feedforward controller.

8.1. Modification of Ideal Feedforward Controller

Errors in time constants or time delays lead to reduced
performance at high frequencies, and one may
attempt to avoid this by adding a low-pass filter in
series with the feedforward controller. The break fre-
quency can be chosen as the frequency where |Sg(jw)|
crosses 1. For delay error Af the break frequency is
about 1/A6, and for a relative error a, in the time
constant in Gy, 74, the break frequency is about
1/(14y/a(ag — 2)) (see Section S for details).

Low-pass filters are also often used to remove noise
from the measurement to avoid excessive wear in the
actuators (e.g. Buckley 1964).

Gain errors reduce the performance at all fre-
quencies, so a low-pass filter does not help. The only
way to avoid the feedforward controller from making
the situation worse is to reduce the gain of the feed-
forward controller so that |Sg(jw)| < 1 for the whole
range of the process gains. This will, however, reduce
the effect of the feedforward controller in the nominal
case. If we choose Kjr = 8K} (where Kj; is the ideal
controller obtained with the nominal model), we
obtain

«
Sg=1-8—, (50)
q

where o and «y are the gain errors in G and Gy,
respectively. To assure |Sg| < 1, we take the smallest
possible oy, and the largest possible o and choose the
following reduction factor, (:

min(ay)
max(a)

6=2 (51)
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We have here assumed a/ay > 0. 5 will always be less
than 1 since we only make use of it as long as
max(a)/ min(ay) > 2.

8.2. u-optimal Feedforward Design

Normally, p-design is used for feedback controllers
(Doyle 1982, 1983, Skogestad and Postlethwaite
1996), but may also be applied to feedforward con-
trollers. In this case, the whole design is taken in one
step (and not by modifications on a nominal design).
Figure 9 illustrates how the problem may be
formulated for the feedforward case. The u-design
algorithm finds the controller (between the dis-
turbance, d, and G) that minimizes the weighted
output, that is, the output of Wp. The uncertainty
block A may be structured so that the uncertainty in
G and G; may be independent.

With the presently available software we cannot
handle delays in the pu-design. If one knows that
nominally the feedforward controller should include
a delay, this may be included manually after the

FW1—>A
d -4

\4—
u > G - w

Fig. 9. Problem formulation for the design of a u-optimal
feedforward controller.
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p-design. The nominal delays in G and G, are then
omitted in the models used for the u-design.

We will now apply the two methods to the example
in Section 6.

Example 3. (continued from Section 6) Low-pass filter.
We consider ¢, = 6; — 15, and add to the ideal feed-
forward controller a first-order low-pass filter with
break frequency 1/|Af| = 1 rad/s.

From Fig. 10(a), we see that the filtered feedfor-
ward controller makes the nominal performance
worse, especially at high frequencies where it
approaches no control (compare with Fig. 5(a) and
(b)). On the other hand, with delay error (Fig. 10(b))
the performance is slightly improved (compare with
Fig. 5(d)) at the highest (worst) frequency, but at
lower frequencies the performance remains poorer
with the filter. These results are confirmed in Fig. 11,
which shows the magnitude at all frequencies.

The filter introduces a phase shift, and therefore a
delay error of 1s no longer gives the same effect as
—1s, and in the opposite direction the effect of the
filter is better.

p-design. We consider combined gain and delay error
in G, and design a p-optimal feedforward controller
using the setup in Fig. 9. We let the uncertainty
weight, Wy, be diagonal with elements

Wi, =107%, (52)
1.1s4+0.2
Wy =——" 17~
L7055+ 1

(1/2.363)%s% +2-0.838 - (1/2.363)s + 1
(1/2.363)%s> +2-0.685- (1/2.363)s+ 1
(53)

PN
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0O 10 20 30 40 50 60 70 80 90 100
Time [s]

Fig. 10. Feedforward controller with low-pass filter (response of sinusoidal disturbances with amplitude 1 and frequencies
0.1, 1 and 2rad/s on the process of Example 3). (a) Nominal case: The feedforward effect is reduced or removed by the filter.
(b) Delay error (0, = 6; — 1s): With the filter the feedforward controller does not make the performance worse for any of

these three frequencies.
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Fig. 12. Effect of detuned feedforward control: |Si| for p-optimal feedforward controllers with performance weight,
Wp=1000, 100, 5, 1, 10~*. (| S| for the ideal controller (48) is dashed.) (a) Nominal case (no uncertainty). (b) Delay error

(@, = 04— 15).

where W), represents the uncertainty in G, (approxi-
mately zero) and W, represents the uncertainty in G
corresponding to 20% gain uncertainty and £1 s delay
uncertainty (Skogestad and Postlethwaite 1996, Eq.
(7.27)). The performance weight, Wp, is chosen as a
constant independent of frequency, and several values
for Wp is considered (from 10~ to 1000). A large
value of Wp corresponds to requiring tight control.
The p-controller is designed with D—K iterations
using the u-toolbox in Matlab (with scaling matrices
of order 2). The delay difference between G and Gy is
removed from the models used for the design, and the
nominal delay of 10s is included manually in the
feedforward controller.

The resulting | S| is seen in Fig. 12. From the peak
value in Fig. 12(b), we see that with Wp large the
p-optimal feedforward control is close to the “ideal”
controller in (48). “Detuning” (Wp < oo) gives little
improvement when there is a delay error, except
when a large detuning (Wp < 1) is used. However,
nominal performance is then poor. This is confirmed
by Fig. 13, which shows the step response with gain

and delay errors (only errors in the direction that gives
benefit are shown).

In summary, with a low weight on performance
(small Wp), the p-optimal feedforward controller
approaches no control (|Sg| = 1; Vw). Interestingly,
with a large weight on performance (large Wp) we
obtain a feedforward controller close to the ideal.

9. Conclusions

In this paper, we have discussed and illuminated some
important characteristics of feedforward controllers.
We have defined the feedforward “sensitivity func-
tions”, Si and Sj;, for the disturbance and the refer-
ence, respectively. For ideal feedforward controllers,

=G 'Ggand K, = G, we find that S§; is equal
to the relative error in G/G,4, and S, is equal to the
relative error in G (except for the signs). A simple
frequency domain analysis of [Si| and |Si,| shows
for which frequencies feedforward control has a
positive (dampening) effect when certain uncertainties
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Fig. 13. Effect of detuned feedforward control: Step responses for p-optimal feedforward controllers with performance
weight, Wp=1000, 100, 5, 1, 10~%. (a) No delay error. (b) 20% gain error. (c) Delay error: 0, =04+ 1s.

are present (in gain, delay, dominant time constant
and a common combination of gain and time con-
stant). The results are summarized in Fig. 2. We also
discuss how to analyze the effect of more complex
uncertainties.

Feedforward is needed when the bandwidth, wg, of
the feedback controller is below the frequency w, for
which |G4| becomes less than one (with appropriate
scaling). We must then require |Si(jw)| <1 in the
frequency region between wg and wy, or if it is known,
for all frequencies where the closed loop frequency
response, |S(jw)Gq(jw)l|, is above 1. See Fig. 7 for a
summary.

The ideas are illustrated with a process example.
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Appendix A: Modelling of the Two-Tank
Process

We here develop a model of the two-tank process of
Example 3. Energy balances for tanks 1 and 2 can be
expressed by

d(Cle Tl)
ds

d(CszTz)
ds

= cpqinTin — cpq1 T1, (54)

=cpqiT1 + cpq.T. — cpgaTa,  (55)

A. Faanes and S. Skogestad

where T and T, are the temperatures in the two tanks,
¢ 1s the heat capacity, p the density (¢ and p are both
assumed constant and temperature independent), V;
and V), are the volumes of tank 1 and 2, respectively,
and ¢; and ¢, are the outlet flow rates from the two
tanks. By use of the mass balance for both tanks, the
energy balance simplifies to

dTl _ qin .

@ T T (36)
d ¢ qe

i =7 (T = To) + (T~ 7). (57)

Linearization around a steady-state nominal point
(marked with 0) under the assumption that ¢;,, ¢; and
T, are constant, yields

dAT 0 0
d;:%Am—%AR (58)
1 1
dAT, ¢ q° ° - 179
— D AT L AT+ 2 g, (59)
de 13 v &

where ¢° = ¢¥ + ¢°. The terms with AV, and AV, are
cancelled since T2 = 7Y and in tank 2 steady-state
energy balance yields ¢)T) + ¢°T? = (¢ + ¢°)T7.
Laplace transform yields for the outlet temperature

41/4°
L) = ) (s v 1) )
(T(O - T20)/q0

V3 /g0 + 1

qc(s)- (60)

In (60), some delay and higher-order dynamics in
tank 1, that is, between the measurement of T}, and
the inlet of tank 2, is ignored. This is represented by a
delay, 6. Delay and higher order dynamics in tank 2
can be ignored since they can be assumed equal for the
disturbance and the control input. We obtain the
model (46) and (47).



