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Introduction

Are large process gains a problem in terms of input-output controllability?
Two main types of input errors are discussed: input (load) disturbance

and input (valve) inaccuracy caused by limited input resolution. This
work is motivated by the results in |1, 2, 3, 4, 5.
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Input Load Disturbance

Figure 1. Block diagram of a feedback control system.

For performance we must require |SGd,| < Ymaz, YVw. This gives the
controllability requirement:

where |S(jwg)| = 1 and typically
(1) wg ~0.5/6 (0 is the effective delay in
the loop).

Example, pH neutralization: |G(0)| > 10%. Use many tanks to get G(s) high order so it drops off.

Limited Input Resolution

Limited mput resolution is represented in Figure 2 by a quantizer in which
u, = q - round(u/q), where g is the quantization step.

Figure 2. Feedback control configuration for limited input resolution.

With a quantizer, limit cycles oscillations are inevitable if the controller
has integral action - independent of the controller tuning.

Proof: At steady state the average uss = r/|G(0)| does not generally match u,. With oscillations between two quanti-

zation levels, uss = ug - f +uqgp - (1 — f) [f = fraction of time at a given quantizer level].
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Sinusoidal oscillations

Consider the following system:
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Figure 3. Simulation results for the system (2).

From the figure, the oscillations have magnitude a = 0.189 and period
T = 6.72s. From a describing function analysis, assuming sinusoidal be-
havior, a = (4q/7)-|G(jwr.1s0)|- This analysis agrees with the simulation
in Figure 3: @ = 0.187 and T' = 27 /w150 = 6.28. The corresponding
controllability requirement with a = ¥4, 18 then:

. T Ymax
|G (Jwr,i80)] < — - (3)
4 q

where L = GK. Typically,
WI,,180 ~ 15/(9

Nonsinusoidal oscillations

Consider the following system:
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Figure 4. Simulation results for the system (4).

For a first-order plus time delay processes G(s) = ke ™ /(75 4 1) with a
Pl-controller K = K.(1;s +1)/7;s and 77 = 7, the exact amplitude (a)
and period (T) of the limit cycles are:

(1 — e—(H/T)/(l—f)) (1 — e—(H/T)/f) 1 1
a = kq ; T = 0(
1 — e—(6/7)[1/(A—F)+1/F]

T varies between 40 (f = 0.5) and oo (f =0or f =1).

Controllability of Processes with Large Gains
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Figure 5. The amplitude in (5) agrees surprisingly well with the describing function analysis (3).

Example Figure 4: the measured and calculated values (5) are a = 0.30
and T = 16.07s. For this case, (3) is a bit optimistic as it gives a = 0.24
and T" = 46 = 4s. Conclusion: (3) is a nice bound!

How to Avoid Oscillations
The oscillations in Figure 2-4 can be reduced by the following means:

a. Change the valve (smaller ¢);

b. Redesign the process (smaller effective delay 6);

c. Remove integral action (but P-control may give poor performance);

d. Introduce fast forced cycling, e.g., d, = sinwt (may wear out the valve,

see Figure 6).
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Figure 6. Simulation results for the system given by (4) using a modulator.
C lusi

Large steady-state gain |G(0)] is not a problem.
Large gain |G(jw)| at bandwidth frequencies should be avoided:

1. With mput load disturbances, a high gain implies the need for a high
bandwidth which cannot always be achieved.

2. For limited input resolution, high gains give a large amplitude of the
resulting limit cycles.

3. Controllability: (1) is more restrictive than (3) if |d,| > ¢/2.4 (normally

the case).



