Optimal operation of a Petlyuk Daistillation Column: Energy Savings by
Over-fractionation
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Abstract

This work shows the unexpected result that over-fractionating one of the product streams in a Petlyuk
distillation column may be optimal from a energy point of view. Analytic expressions for the potential
energy savings are derived using the Underwood equations. The energy savings by over-fractionation
may be further increased by bypassing some of the feed and mixing it with the over-fractionated product
to meet product specifications. Normally, the energy savings are small, so the main significance of our
results is to point out that over-fractionating is optimal in some cases.

1 Introduction

e The Petlyuk distillation column, see Figure 1(a), with a pre-fractionator (C{) and a main column (C»;
and C»,), Is an interesting alternative to the conventional cascade of binary columns for separation of
ternary mixtures. The potential savings are reported to be of approximately 30% in both energy and
capital cost [4].

e It is well known that if the products have different economic value, it may be economically optimal to
over-fractionate the low value product in order to produce more of the more valuable products.

e Here we intend to show that we in fact can save energy by over-fractionating one of the product
streams.

e It is known from literature that for a conventional binary distillation column, bypassing a portion of the
feed to the products does not affect the energy demand to produce the specified products [2].
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(a) Petlyuk Column (b) Petlyuk Column with bypass (Case 1)

Figure 1: Sketch of the Petlyuk column without (a) and with bypass (b)

2 System description

e Feed F consist of 3 components (A,B and C): e Products
- Composition: Z¢ = [z4 ZB ZC]T — Distillate, flow D, xp = [XA,D XB,D XC,D]T
— LiQUid fraction: qr — Side-stream, flow 5, Xg = [XA,S XB.S xC,S]T
— Relative voIatiIity: a = |ag ap CL’C]T — Bottom-stream, flow B, xp = [XA,B XB.B xC,B]T

e Operational objective: Minimize energy consumption (minimize boilup (V)) with given minimum

purity:
ming V(u) (1)
XA,D 2 x?x,D’ XB,S 2 x%,s’ XC,B 2 x(()?,B (2)

—u=[LVS R;R,] is the vector of steady-state degrees of freedom (manipulated inputs).
—x?j IS the minimum fraction of the main component i € {A, B, C} in each product stream j € {D, S, B}.

3 V,,~diagram and Underwood equations

e The V,,;,-diagram, see Figure 3(a), is a graphical representation of the energy requirements in distil-
lation columns [3] and is based on the Underwood equations [5].

e Assumptions: (1): Constant molar flows. (2): Constant relative volatility. (3): Infinite number of
stages.

e For a three-product column it can be shown that the minimum energy diagram for the Petlyuk column
with sharp splits maps the V,,,;,, diagram for the pre-fractionator C; operated at the preferred split [3].

e Same diagram applies for non-sharp splits, and the minimum boilup is given by eq. (3)
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where 64 = 04(z,qr, @) and 0p = 0p(z¢, q ¢, @) are the Underwood roots carried over from Cq to Cy;
and C»,, respectively.

e Three cases of operation [3]:

—Case 1: Cy; is limiting: Separation B/C is the most difficult separation (peak C,, is above peak

Ca1)-
—Case 3: (»; is limiting: Separation A/B is the most difficult separation, as illustrated in Figure 3(a).

— Case 2: Balanced main column: Required vapor load are equal.
e Important:

— Case 1 with x¢ g constant: Minimum boilup proportional to B.
— Case 3 with x4 p constant: Minimum boilup proportional to D

4 Energy savings by over-fractionation

e Based on the material balance of the column, explicit expressions for B and D are derived [1].

e Case 1 (Case3) : Energy savings (£s = =¥ ) when increasing the purity from xj; ,, (x(. p) t0 xa.p (xc,p)
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e Approximate savings without bypass:

—Case 1: Eg ~ x. .x% - Case 2: Eg ~ x¥. .x)

o Physical explanation (Case 1): 1Z
Energy savings is possible since (1) by over-fractionating in the top
component B is moved from the distillate to the side-stream, see
Figure 2 for an illustration. (2) Without violating the constraint in A Abey = Feamy
the side-stream, component C may now be moved from the bottom Yy .
stream to the side-stream. (3) Since the boilup is proportional to /
the amount of bottom product eq.(4), the energy input is reduced.

e Physical explanation (Case 3):
Same as Case 1, but now with over-fractionating in the bottom.
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(b) Energy saving when increasing purity from
x‘j‘,D to xap for z; = (0.5 0.3 0.2), @ = (9 3 1),
qr = 1, xj 5 = 0.03 and x2 ; = 0.1 with (dashed)
and without (solid) bypass.

(a) V., diagram for Case 3

Figure 3: V,,;, and energy savings for for Case 3.

5 Additional savings using bypass

e Over-fractionating one of the products makes it possible to bypass some of the feed to the product to
fulfill the composition constraint, reducing the energy input further, see Figure 1(b).

e Amount of bypass when over-fractionating to pure products (x4 p =1 or X¢c p = 1):

xo .xO
DD Case 3: Fgﬂ = Bl(xp 5=0)7- -

_ . Cn _ , ,
Case 1: F* = Dl(xB’D:O)l_xOB’D_ZA PR
e But: Introduces a component (C or A) into the product (D or B) that normally is not present

e Figure 3(b) illustrate the potential savings, for a specific case. Up to 4% energy savings without
bypass and 13% energy savings with bypass.

6 Confirmation of results for finite number of stages

1.05 ‘ ‘ :
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e Simulations carried out to verify the results. Assumptions model: Nt
— Constant relative volatility. Finite, equal number of stages in each _ ' 7
section. Constant molar flows. £ o0l
—zp =[050302],@=[931],¢7 =1, x%,S = 0.9, x(();,B = 0.97 >

e Simulation confirms that one may save energy when the column has *°

sufficient number of stages. Results also confirmed using HYSYS®.
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Conclusions

e Optimal from a energy point of view to over-fractionate one of the streams in the Petlyuk distillation
column.

e Additional savings possible if bypassing some of the feed to the over-fractionated product.

e Explicit expressions for the achievable energy savings derived based on the Underwood equations
assuming infinite number of stages.

e Energy savings possible due to different vapor load demands in the two main column sections.
¢ Results have been confirmed for finite number of stages.



