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Tuning for Smooth PID Control with Acceptable Disturbance Rejection

Sigurd Skogestad*

Department of Chemical Engineering, Norwegian Lémsity of Science and Technology (NTNU),
N-7491 Trondheim, Norway

The objective of most published tuning rules is “tight” or fast control, subject to avhieving acceptable robustness.
This gives a maximum limit on the controller gain. In industrial practice, however, the objective is often
“smooth” or slow control, subject to achieving acceptable performance in terms of disturbance rejection. This
paper provides the corresponding minimum limit on the controller gain. In terms of appropriately scaled
variables, the minimum controller gain is approximately 1, which justifies default settings commonly used

in industry.

1. Introduction

Two main approaches to controller tuning are as follows:

(2) Tight control: Fastest possible control subject to achieving
acceptable robustness; and

(2) Smooth control: Slowest possible control subject to
achieving acceptable disturbance rejection.

Although “smooth” control is probably the more common
objective in industrial practice, almost all published proportienal
integral-derivative (PID) tuning rulés® aim at tight control.
The model-based direct synthesis approatiidmve the closed-
loop time constant, (alternatively known as or 1) as a tuning

parameter, but also in these works the emphasis is to obtain a

lower bound one (tight control).
In this paper, we will mainly consider the simple Skogestad
internal model control (SIMC) PID rulgwhich hasz. as a

for “tight” control is to select the closed-loop response time
equal to the delay:

Tc,min =0 (6)

For a first-order plus delay process, this choice gives a robust
design with a gain margin between 2.96 and 3.14, a sensitivity
peak Ms) between 1.70 and 1.59, and a maximum allowed time
delay error (increase) between 159% and 214%. Note that it is
possible to use an even lower value frif we accept less
robustness. For example, the classical Zieghtichols tuning
rules are quite aggressive and correspondde- 0.

It is clear that the “SIMC-rule for tight control’z{ = 0) is
nota good choice in many cases. First, with no delay=0),

eq 6 givest, = 0 and eq 3 gives an infinite controller gain,
which obviously cannot be used in practice. More generally,

tuning parameter, but it is stressed that the results can be applied®ne prefers to use a larger value fgrthan that given in eq 6
also to other rules that have a free tuning parameter. For a first-in order to obtain smoother control with

order plus delay process with gdintime constant;, and time
delay 9,

—0s

7,5+1

1
®
the SIMC PI settings for the controller gain and integral time
are

9(s) =k @)

and PI controller,

(9 = K, (1 T @)

; @)

7, = min(zy, 4(z, + 0)) (4)

A second-order plus delay process model results in a PID

controller® The tuning parameter, is free to be chosen, but it
is generally bounded by the limits for tights( min) and smooth
(te,may control:

T )

< <
emin = Tc = Tomax

The limit 7 min depends mainly on the robustness requirements

with respect to the delag, and the SIMC recommendation
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(i) less input usage,

(ii) less sensitivity to measurement noise,

(iii) better robustness, and

(iv) less disturbing effect on the rest of the plant.

For example, the X tuning approach”, commonly used in
the pulp and paper industry, normally gives a much larger value
for 7¢; one recommendation is to use a closed-loop time constant
which is 3x the process time constaht,e., . = 7. = 3r1.
However, the problem is that the resulting disturbance response
may be unacceptable (too slow). The question, therefore, is as
follows: What is the slowest (“smoothest”) control we can
allow, or equivalently, what i$¢ max?

The goal of this paper is to derive this limit, when the
performance requirement is to achieve a specified level of
disturbance rejection. In turns out to be simplest to derive a
lower limit on the lower gainK¢min. We can then use eq 3 to
obtain

1

cmax ? : K -0

T

()

c,min

and we can obtain the corresponding value,dfom eq 4.

2. Derivation of Lower Limit on Controller Gain

The linear transfer function model in deviation variables is
written (Figure 1)

y=g(s)u + gy4(s)d (8)

Here, u is the manipulated input (controller outpud),is the
disturbancey is the controlled outpug(s) is the process transfer
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Figure 1. Block diagram of feedback control system. ~ ]
function, andgq(s) is the disturbance transfer function. The 107 y = " X 2
Laplace variables is often omitted to simplify notation. With 10 10 10 10 10

feedback control, we have = c(s)(ys — y), wherec(s) is the Frequency

feedback controller. In the following, we do not consider setpoint Figure 2. Frequency plots with “tight” SIMC PI settings. Performance
. A . . requirement|l + gc| = |gdl*|dol/|Ymaxd (eq 10) is easily satisfied at all
changes, i.eys = 0 in terms of deviation variables. The effect .. encies. Datagy = g = 4 (€°029/(6s +1). lymad = 1, |do| = 1, PI
of the disturbancel on the control outpuy under closed-loop control with K. = 3.75 andz = 1.6.
control is then
Consider the special case, studied in this paper, of a first-order
. 9u(9) 9 plus delay process with input disturbanggs) = g(s) = ke %
Y=17F g(s)c(s) ©) (rs + 1). Since|gu(jw)| drops with frequency, condition 12 is
most easily satisfied when is large (tight control), so we must
We consider the following performance requirement: For any at least require that eq 12 is satisfied when we use the tight

sinusoidal disturbancd of magnitude|do|, d(t) = do Sin wt, SIMC rule in eq 6, which gives. ~ 0.5/6.6 We assumen.r;

the resulting output variatiop should be less thajymax, i.e., > 1 (i.e.,0 < 0.5r1), because otherwise feedback control cannot

y(t) < |Ymax- give any performance improvement for this disturbance, and
For simplicity, we mostly assume thado| and |ymad are with this assumption we havigg(jwc)| &~ K/(wcr1). To satisfy

constant, independent of frequenayrad/s), but the derivation  the necessary requirement (eq 12), we must then require the
also holds if they are frequency-dependent. Using eq 9, the following:
performance requiremeny| < | ymax becomes

. ‘Ul |ymax|
DI 0 <057 T (13)
T+ gaja))

valentl Note that eq 13, or more generally eq 12, is a process

or equivaiently “controllability” condition, which must be satisfied because
|| otherwise the process is not controllable with any controller.
1+ gdjw)| = |g4(w)| Ow (20) In summary, to satisfy eq 10 at high frequencies for the case
Ymaxd with an input disturbance to a first-order plus delay process,

The exact requirement (eq 10), which should be satisfied at all \évslg.ust make the following requirements in terms of the time

frequencies to achieve acceptable disturbance rejection, can be
used to obtain “smooth” controller settings numerically. Requirement R1(for feedback control to be useful):

To obtain explicit controller settings and obtain insight, we 0 < 0.5
now want to use eq 10 to derive bounds on the controller gain. i
To this effect, consider the graphical illustration of eq 10 in

Figure 2. Definew as the gain crossover frequency whige Requirement R2 (controllability): 6 < 0_5@M
drops below 1 (see Figure 2), and divide the frequency range K| Id|
in two, as follows: _
(1) High Frequencies.For w > w., we have|l + gc ~ 1 (2) Low Frequencies.Forw < wc, we havell + gc| ~ [gc|
and we must from eq 10 require that (.Se.e F|gure 2), and requ"ement 10 gives the f0||0W|ng lower
limit on the frequency-dependent controller gain
: [Ymax!
Gio)l = TG oz o (1) | o lggio)l 1
0 ()| = ICpnj)l = ———-+ ;. Do <o
. ) o o mn 19G@)|  Ymax y
A necessary requirement for eq 11 is that it is satisfied at (14)
frequencywc, . )
Requirement 14 may be rewritten as
. Yinad _
9aidl = 757 (12) _ o luge)]
0 [c(jw)| = [Cphi(iw)l = o < w, (15)

|ymax| '
(in process control, this condition is usually also sufficient
because eq 11 is usually most easily satisfied at low frequencies)where
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o 194()] - | 10°
Ug(jo)| =" i) (16)

is the magnitude of the input change needed to reject a sinusoidal

disturbance of magnitudep| at low frequenciesp < wc. This 10

interpretation follows since, at low frequenciges: 0, and then

from eq 8, the required input to reject the disturbanca is

—(g4/9)d. From eq 15, we then derive the following useful rule

at lower frequenciesy < wc, where control is effectiveThe 10" }

minimum controller gain at a gen frequency is approximately

equal to input change required for disturbance rejection at this

frequency diided by the allowed outpufariation. As expected, lu iy, |

tight control (with|ymad small) requires a large controller gain 10° |

Ic|, as do large disturbances (willy| large). w=1/t,
Pl and PID control. For a “pure” proportional controller, 2 = ~ X 2

T : S 10 10 10 10 10
we havec(s) = K, and for acceptable disturbance rejection, Frequency
we must from eq 15 require

Figure 3. Controller gain|c| as a function of frequency for Pl and PID
. controller, together with the lower boundo|/|ymax for acceptable distur-
|U0(JCU)| bance rejection. Data Pl controlleK. = 3.75,7) = 1.6. Data for PID-

K.z max (17) controller: K = 3.75,7y = 1.6, 7p = 0.2.

w<w |yma><|
c

The boundK; min in eq 19 is tight in most cases. The main

For PI and PID control, the integral action may take care of exception is when the integral time is small such that w.
some of the disturbance rejection, and we may generally reduce(i.e., 71 < 7¢). There is then no frequency range where
K¢ below the value given by eq 17. This is illustrated in Figure proportional action is required for disturbance rejection, and
3, where the bound (eq 15) is shown for Pl and PID control for the mimum controller gain will be smaller than the value given
the case wher@u(jow)| is assumed to be constant. [Note: The in eq 19. Recall that the SIMC tuning rule in eq 41s=
“ideal” form is used for the PID controllecppg(s) = K¢(1 + min(zy, 4(tc + 0)), so with the SIMC tunings, this only happens
1/7is + ©ps).] Several things are worth noting from Figure 3. if 7, = 11 < 7, that is, when the closed-loop response tipe
First, we see that the integral action makes it easier to satisfyis longer than the open-loop time constantA typical example
the bound (eq 15) at frequencies lower thapn= 1/r; (the may be a flow control loop.
derivative action also makes it easier to satisfy it a high  Load Disturbance. For the very common case of amput
frequencies, but this is generally less important because eq 15load) disturbance we havegy = g, and for acceptable
only needs to be satisfied up to frequengy). Second, we disturbance rejection, we must from eq 14 requogw)| >
observe that, for both Pl and PID control, the minimum value |do(jw)|/|Ymad, @ < we From eq 19, we then get for Pl and
of the controller gainc(jw)| as a function of frequency is equal  PID control
to K¢, independent of the values of and 7p: o

0

cmin |ymax|

Load disturbanceK, = K (22)

min |Cp(jw)| = min [Cpp(jw)| = K, (18)
w )
) ) where|dp| is the maximum expected disturbance magnitude in
(This holds for the ideal PID form, not for the cascade PID the frequency range from to w. (where proportional control
form.) A sufficient (conservative) condition for satisfying eq g required). This bound guarantees tyat< |ymay in response
15 is, therefore, to replade| by Kc, but this just rederives eq g sinusoidal load disturbances of magnituds:.

17, which we know is conservative for Pl and PID control.

To avoid this conservativeness, assume that the integral actions p, Example
ensures that condition 15 is (easily) satisfied at frequencies lower _ _ _
than w;, and we consider the frequency range framto w. Consider a first-order with delay process

where proportional action is needed for disturbance rejection. 4

Introducing eq 18, condition 15 then gives the following Q) = a.(S) = k e 22
requirement for acceptable disturbance rejection 9(9) = 9u(9) s+ 1 (22)
|| with gaink = 4, time constant; = 6, and time delay = 0.2.

Kez Kemin= 10— (19) As a disturbance, we consider an input (load) disturbance of

[Yimax magnitude|do] = 1, and we assume that the plant has been

) ) ) ] ) scaled such that the performance requirement is that the output
where |ug| is the required input magnitude for disturbance geviation should stay withitt|ymad = =£1. It is also desirable
rejection at high frequencies (in the frequency range from  that control is as smooth as possible, which means that we want
andwc). More precisely, K. as small as possible. From eq 21, we must for a sinusoidal

) disturbance select
U= Max _|ug(jv) (20)
welw,o Ke = Ke min = 1dol/Vmad = 1
wherew, = 1/t is the frequency up to which integral action is to achieve acceptable disturbance rejection.
effective,w. ~ 1/1; is the closed-loop bandwidth, ang(jw) is Tight Control ( ¢ min). FOr comparison, let us first consider
defined in eq 16. the response with tight control. According to the SIMC rule
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Figure 4. Response to step load disturbance for process (eq 22) with “tight”
SIMC PI settings (eq 23) with, = 0.2: dashed line= with measurement
noisen (+0.1 standard deviation); solid lire no noise.

(eq 6), we select; = 6 = 0.2, and from eqs 3 and 4, the PI
settings are

K.=3.75, 7,=1.6 (23)
We note thai; is 3.75< the minimum required value, so we
expect that the output response is much better than the
requirement of staying withia=1. This is also seen from the
frequency plots in Figure 2, where we find that the value of
|gal*|dol/|Ymax IS only 0.31 of|1 + g/, even at the “worst”
frequency (with the smallest margin).

In Figure 4 we also show the simulated time response to a
unit stepinput disturbance (a step disturbance is not covered
by the theory in this paper, which is for sinusoidal disturbances,
but it is included because of the popularity of step responses in
process control). The output deviatigft) in Figure 4 is<0.25,
well-below |ymay = 1. However, because of the high controller

to measurement noise(dashed line in Figure 4). Simulations
show that it does not help to filter the measuremgnin this
case.

Smooth control (t¢ may). The above response is unnecessarily
fast, and from the derivation in the beginning of the example,
the controller gain may be reduced K@ = K¢ min = 1. From
eq 7, this corresponds ta.max = 1.3 and eq 4 gives the
following “smooth” SIMC PI settings:

1

77 =min{6,4- (1.3+0.2)} = 6 (24)

6

The frequency plots in Figure 5 show that the performance
requirement (eq 10) is satisfied at all frequencies, although the
margin is much smaller than with the tight settings in Figure 2.
Figure 5 gives that the value df4|*|dol/|Ymaxd IS 0.82 of

|1 + gc| at the “worst” frequency (with the smallest margin).
The value 0.82 is less than 1 because of the approximétion
+ gc] &~ |gc| used in the derivation df; min = 1. Note in Figure

5 that the curve fofgd| is difficult to identify because it closely
follows |1 + gc| at low frequencies anfiy|-|dol/| Ymax at high
frequencies.

lg,l -1l /1y

10° 10'
Frequency

Figure 5. Frequency plots with “smooth” SIMC PI settings (eq 24).

Performance requiremeitt + gc| = |gal*|dol/|Ymax (€q 10) is satisfied at

all frequencies. Datagg = g = 4 (€ 929/(6s + 1), |Ymad = 1, |do| = 1, PI

control withK; = 1 andz, = 6.

1

OUTPUT y
o
[4;]

INPUT u

15 20 25

10
gain, the input usage and also the output response is sensitiverigure 6. Response to step load disturbance for process (eq 22) with

30

“smooth” SIMC PI settings (eq 24) with: = 1.3: dashed line= with
measurement noise (+0.1 standard deviation); solid lire no noise.

is smooth and that the sensitivity to noise is significantly
reduced. Thus, this tuning is preferred in practice.

4. Discussion

Default Industrial Pl Settings. The bound in eq 19 confirms
the common default factory setting with a controller gain of
approximately 1. This follows since, in industrial practice, the
variables, or more precisely the instrument ranges, are often
scaled such that

|U0| ~ |ymax|

For example, we may haveo| ~ |Ymay = 50% (of full signal
span). Herejuo| is the expected input variation for disturbance
rejection andymax is the acceptable output deviation. From eq
19, it then follows that we need; = 1 for acceptable
disturbance rejection.

There are, of course, exceptions to the Kilemin = 1. First,
if the variables have been scaled differently (or not at all), then
we should use¢ min = |Uol/|ymad from eq 19. Second, even

The corresponding simulated response to a step disturbancevhen the scalinguo| & |ymaX has been used, one may for some

in Figure 6 has a maximum deviation fgr of 0.66. The
deviation is belowymay = 1, partly because of the approxima-
tion |1 + gc| ~ |gc| and partly because a unit step disturbance
in this case is “better” than the worst-case unit sinusoidal
disturbance. Also note from the simulation that the input usage

PI1 controlllers use a lower value than 1 for the controller gain.
This holds for cases where the disturbance is handled by the
integral action, as illustrated in Figure 3. This may happen either
if (i) the disturbance occurs at frequencies lower tham dr if

(ii) the integral time is small{ < 7¢) such that the proportional



action is only active outside the closed-loop bandwidth. This is

likely to happen for processes with a small time constant

like a flow loop, because such loops often have a small integral

time (r; =~ 7).
Averaging Level Control. A well-known case where smooth
control is desired is for “averaging level control”, where we

use a tank in order to smoothen flow disturbances. Here, the

main control objective is not to control the level tightly but

rather to have smooth input usage (smooth flow variations),

Ind. Eng. Chem. Res., Vol. 45, No. 23, 2008821

Tl |ymax|
60<05—--——
ko |dyl

(28)
which is identical to eq 13 (requirement R2). We note from eq
28 that a small delag is required if we have a tight performance
requirement |fmax small), a large disturbancedg| large), or a
“fast-acting” disturbancek( = k/z; large).

For the averaging level control problem, we hake=

subject to the requirement of stabilizing the system and keeping |Ahma/(|Adol zan), and the controllability requirement becomes

the levelh within bounds when there are flow disturbances.
That is, the requirement is to keéy = |Ah| < |Ahmay (M)
for a change in the flow of magnituddo| = |ug| = |Aqo| (M¥/
S).

From eq 21, the minimum controller gain for averaging level
control is then

|AQy|

K. = K

C c,min = |Ah (25)

max|

0 < 0.5rank This is reasonable, as the time defaynust be

less than the timegn it takes for the level to exceed its bound.
Sinusoidal ResponsesThe frequency plots (e.g., Figures 2

and 5) give the open-loop and closed-loop responseg(fir

|Ymax 10 & sinusoidal disturbanat) = |do| sinwt as a function

of frequencyw. Specifically, the open-loop value of(t)|/|Ymax

(ast — ) is equal togy||dol/|Ymax, Which is given by the “gap”

between the lines for 1 (dotted) andgl|dol/|ymax (for the

specific example, there is a “negative gap” at low frequencies,

which signals that feedback control is required to achieve

which agrees with the value normally recommended (e.g., ref acceptable performance in response to disturbances). The closed-
8). Next, consider the integral time. For level control, the process 100p value is equal tdga||dol/|ymax*(1/|1+L]), which is given

transfer functiorg(s) from u (flowrateq) to y (levelh) is close
to integrating (withry in eq 1 being very large) and can be
written

_K —0s

98 =3e€

wherek' = k/zy is the initial slope of the response. Combining
egs 3 and 4 gives the SIMC setting for the integral time of an
integrating process

4

KK .

T

This agrees with the industrially recommended value in ref 9
and keeping; above this value avoids the “slow” oscillations
that may otherwise result from having two integrators in the
control loop® To derive an alternative expression forlet Tiank
denote the time it would take for the tank level to exceed its
allowed bound (i.e., for the level to change bAhmay) in
response to a maximum flow increase of magnituag for

the case with no control. If the tank is nominally half full, then
Trank 1S €qual to the tank residence tirkiég. We then havdd =

| Ahmax/(IAQoltany), and with the minumum controller gakc

= |Adpl/|Ahmay, the integral time from eq 26 becomes

T = 4'Ttank

Thus, the integral time for smooth level control shouldaex
the residence time.

Controllability Implications. Consider an input (load)
disturbance of magnitudep|. In eq 21, we derived the minimum
controller gain for acceptable disturbance rejectkinz K¢ min
= |dol/|ymax- From eq 7, the corresponding value for the SIMC
tuning parameter for a first-order plus delay process is

_ T |Ymad
C,max k |d0|

T -0 (27)

However, there is also a minimum valag min= 6 (SIMC rule

(eq 6)) to have acceptable robustness for a time deland

we must requirere, max > Temin = 6. This results in the
controllability requirement

by the “gap” (which should be large) between the lines for
|1 + L| and|gql|dol/|ymax- FoOr the specific example, the gap is
large when we use tight settings (Figure 2) but small when we
use smooth settings (Figure 5).

Assumption of Sinusoidal DisturbancesThe derivation of
the results in this paper is based on the assumption of sinusoidal
disturbances. This may seem to be a restrictive assumption but
actually is not. First, the set of sinusoidal signals is much richer
and more general than, for example, a step change. Second,
sinusoidal disturbances are common in real systems, as a visit
to any industrial plant would show. Actually, step changes,
which are frequently used in academic simulation studies
including this paper, almost never occur in practice.

There are no general relationships between a sinusoidal time
response (the frequency domain) and a step response, but as
illustrated by the example, they are quite closely related for
simple processes of the kind commonly encountered in process
control.

Generalization to Decentralized Control of Multivariable
Systems.The results in this paper can be directly generalized
to decentralized control of multivariable systems by introducing
the closed-loop disturbance gdfi! Consider a square multi-
variable planty = G(s)u + Gy4(s)d, controlled by a diagonal
(decentralized) controlle€(s) = diag{ci}. As before, consider
a sinusoidal disturbancg of magnitude|do| and assume that
the maximum allowed variation in each outputyg < |Vi max
(performance requirement). We want to derive an expression
for the minimum controller gaifc; min|-

Let the diagonal matrixc = diag{gi} contain the diagonal
elements ofG (corresponding to the selected pairings for
decentralized control). The closed-loop response becgres
(I + GO)~1G¢(s)d where, for decentralized control, the sensitiv-
ity matrix S= (I + GC)~! may be rewritten &8

S=(1+3A-1)"A (29)
HereS= (I + GC)~! = diag{ 1/(1 + gic)} is a diagonal matrix
containing the sensitivities of the individual loops (which is not
equal to the diagonal elements §. A = GG™! is the
“performance relative gain array” (PRGA), which has the same
diagonal elements as the “conventional” relative gain array
(RGA). At low frequenciesp < w¢, where feedback is effective,
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we haveS ~ 0 and eq 29 become®~ SA. The closed-loop
response then becomes

y~ (I +GC)'Gy9)d; o < w, (30)
where
G = AG,=GG G, (31)

is known as the “closed-loop disturbance gain” (CLDG) under
decentralized control. Consider a single disturbahde which
caseGy is a vector. Using eq 30, the response in outpus

yi~(1+ giici)ilgd,i(s)d;

whereg is theith element in the CLDG vectdBg. Using eq
32, the performance requiremewgt < |yi may becomes

w<w

¢ (32)

11+ gic(w)l = [8g;(@)| * 1dol/1Yi mads Do <
and assumingl + gic| ~ |giCi| gives
. . 18g;(@)| 1ol
Ic(w)| = Ic min(iw)]| =—— - ; Uo<o
|(J ) |,m|n(J ) |gii(Jw)| |y|max| c
(33)

The requirement (eq 33) provides a direct generalization of eq
14. The only change is to replaagg by the closed-loop
disturbance gaifiq; defined in eq 31. Equation 33 has proved
to be very useful in applications for tuning decentralized
controllerst!

Note from eq 31 thaGq is multiplied by the PRGA to get
Gy. The PRGA corrects for the interactions between the loops.
It may seem from eq 31 that plants with large elements in the
RGA (and PRGA) need a high controller gain to achieve
acceptable performance. This is generally true for setpoint
changes (wher&y may be viewed as the setpoint direction,
which may take on any value) but not necessarily for distur-
bances, as illustrated by the following example.

Example. Consider the steady-state model of a distillation
column with two outputy (top and product purity), two inputs
u (reflux and boilup), and a single disturbarté€eed composi-
tion). For “column A” with 40 stages, a relative volatility of

1.5, and 99% product purities, the steady-state gain matrices

are

G (87.8 —86.4

o (881
108.2 —109.6) ¢

11.19)

FromGy, it seems the disturbance affects both products equally,
but actually, under decentralized control, there is a large
difference. The RGA and PRGA matrices are

_[35.1 —34.1).
RGA_(—34.1 35.1 )
. x~-1_ (351 276
PRGA=A=GG _(—43.2 35.1 )
and we get

- ~0.4
Ga=AGy= (11.7)

Thus, in this case, the interactions actually reduce the steady-
state effect of the disturbance on output 1 (top composition)
from 8.8 to —0.4, even though the plant has large RGA
elements. The effect on output 2 (bottom composition) is almost
unchanged at 11. From eq 33, the implication for controller
design is that the bottom loop needs tob20x faster than

the top loop in order to get acceptable performance for a feed
composition disturbance.

5. Conclusion

The requirement of acceptable disturbance rejection (output
deviation less thatymay in response to a sinusoidal disturbance
of magnitude|do|) at low frequencies results in a lower limit
on the controller gain,

94(w)! . |d_o|_
19G@)|  [Ymad’

|C(jw)| = |Cmin(jw)| = < W, (14)

(additional controllability requirements R1 and R2, which are
independent of the controller, are derived by considering high
frequencies). For aead disturbance and PI or PID contro@
14 givesK; = K¢min = [Uol/|Ymaxl; S€e eq 19. In words, th
minimum controller gain is approximately equal to the input
change required for disturbance rejection divided by the allowed
output variation. Thus, if the inputs and outputs are scaled with
respect to their expected variations (such thgf ~ |Ymax),

the minimum controller gain is approximately 1. A lower value
than 1 may be used for cases where the disturbance is handled
by the integral action in the controller.
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Note
Actually, this is a slight misprint: 
It applies for any disturbance and not only a load disturbance. For a load disturbance, we have u0=d. 
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