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The objective of most published tuning rules is “tight” or fast control, subject to avhieving acceptable robustness.
This gives a maximum limit on the controller gain. In industrial practice, however, the objective is often
“smooth” or slow control, subject to achieving acceptable performance in terms of disturbance rejection. This
paper provides the corresponding minimum limit on the controller gain. In terms of appropriately scaled
variables, the minimum controller gain is approximately 1, which justifies default settings commonly used
in industry.

1. Introduction

Two main approaches to controller tuning are as follows:
(1) Tight control: Fastest possible control subject to achieving

acceptable robustness; and
(2) Smooth control: Slowest possible control subject to

achieving acceptable disturbance rejection.
Although “smooth” control is probably the more common

objective in industrial practice, almost all published proportional-
integral-derivative (PID) tuning rules1-6 aim at tight control.
The model-based direct synthesis approaches4-6 have the closed-
loop time constantτc (alternatively known asε or λ) as a tuning
parameter, but also in these works the emphasis is to obtain a
lower bound onτc (tight control).

In this paper, we will mainly consider the simple Skogestad
internal model control (SIMC) PID rule,6 which hasτc as a
tuning parameter, but it is stressed that the results can be applied
also to other rules that have a free tuning parameter. For a first-
order plus delay process with gaink, time constantτ1, and time
delayθ,

and PI controller,

the SIMC PI settings for the controller gain and integral time
are6

A second-order plus delay process model results in a PID
controller.6 The tuning parameterτc is free to be chosen, but it
is generally bounded by the limits for tight (τc, min) and smooth
(τc,max) control:

The limit τc,min depends mainly on the robustness requirements
with respect to the delayθ, and the SIMC recommendation6

for “tight” control is to select the closed-loop response time
equal to the delay:

For a first-order plus delay process, this choice gives a robust
design with a gain margin between 2.96 and 3.14, a sensitivity
peak (Ms) between 1.70 and 1.59, and a maximum allowed time
delay error (increase) between 159% and 214%. Note that it is
possible to use an even lower value forτc if we accept less
robustness. For example, the classical Ziegler-Nichols tuning
rules1 are quite aggressive and correspond toτc ≈ 0.

It is clear that the “SIMC-rule for tight control” (τc ) θ) is
not a good choice in many cases. First, with no delay (θ ) 0),
eq 6 givesτc ) 0 and eq 3 gives an infinite controller gain,
which obviously cannot be used in practice. More generally,
one prefers to use a larger value forτc than that given in eq 6
in order to obtain smoother control with

(i) less input usage,
(ii) less sensitivity to measurement noise,
(iii) better robustness, and
(iv) less disturbing effect on the rest of the plant.
For example, the “λ tuning approach”, commonly used in

the pulp and paper industry, normally gives a much larger value
for τc; one recommendation is to use a closed-loop time constant
which is 3× the process time constant,7 i.e., λ ) τc ) 3τ1.
However, the problem is that the resulting disturbance response
may be unacceptable (too slow). The question, therefore, is as
follows: What is the slowest (“smoothest”) control we can
allow, or equivalently, what isτc,max?

The goal of this paper is to derive this limit, when the
performance requirement is to achieve a specified level of
disturbance rejection. In turns out to be simplest to derive a
lower limit on the lower gain,Kc,min. We can then use eq 3 to
obtain

and we can obtain the corresponding value ofτI from eq 4.

2. Derivation of Lower Limit on Controller Gain

The linear transfer function model in deviation variables is
written (Figure 1)

Here, u is the manipulated input (controller output),d is the
disturbance,y is the controlled output,g(s) is the process transfer
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τc,min ) θ (6)

τc,max)
τ1

k
‚ 1

Kc,min
- θ (7)

y ) g(s)u + gd(s)d (8)

g(s) ) k
e-θs

τ1s + 1
(1)

cPI(s) ) Kc (1 + 1
τ1s) (2)

Kc ) 1
k

‚
τ1

τc + θ
(3)

τ1 ) min(τ1, 4(τc + θ)) (4)

τc,min e τc e τc,max (5)
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function, andgd(s) is the disturbance transfer function. The
Laplace variables is often omitted to simplify notation. With
feedback control, we haveu ) c(s)(ys - y), wherec(s) is the
feedback controller. In the following, we do not consider setpoint
changes, i.e.,ys ) 0 in terms of deviation variables. The effect
of the disturbanced on the control outputy under closed-loop
control is then

We consider the following performance requirement: For any
sinusoidal disturbanced of magnitude|d0|, d(t) ) d0 sin ωt,
the resulting output variationy should be less than|ymax|, i.e.,
y(t) e |ymax|.

For simplicity, we mostly assume that|d0| and |ymax| are
constant, independent of frequencyω (rad/s), but the derivation
also holds if they are frequency-dependent. Using eq 9, the
performance requirement|y| e | ymax| becomes

or equivalently

The exact requirement (eq 10), which should be satisfied at all
frequencies to achieve acceptable disturbance rejection, can be
used to obtain “smooth” controller settings numerically.

To obtain explicit controller settings and obtain insight, we
now want to use eq 10 to derive bounds on the controller gain.
To this effect, consider the graphical illustration of eq 10 in
Figure 2. Defineωc as the gain crossover frequency where|gc|
drops below 1 (see Figure 2), and divide the frequency range
in two, as follows:

(1) High Frequencies.For ω g ωc, we have|1 + gc| ≈ 1
and we must from eq 10 require that

A necessary requirement for eq 11 is that it is satisfied at
frequencyωc,

(in process control, this condition is usually also sufficient
because eq 11 is usually most easily satisfied at low frequencies).

Consider the special case, studied in this paper, of a first-order
plus delay process with input disturbance,gd(s) ) g(s) ) k e-θs/
(τ1s + 1). Since|gd(jω)| drops with frequency, condition 12 is
most easily satisfied whenωc is large (tight control), so we must
at least require that eq 12 is satisfied when we use the tight
SIMC rule in eq 6, which givesωc ≈ 0.5/θ.6 We assumeωcτ1

> 1 (i.e.,θ < 0.5τ1), because otherwise feedback control cannot
give any performance improvement for this disturbance, and
with this assumption we have|gd(jωc)| ≈ k/(ωcτ1). To satisfy
the necessary requirement (eq 12), we must then require the
following:

Note that eq 13, or more generally eq 12, is a process
“controllability” condition, which must be satisfied because
otherwise the process is not controllable with any controller.
In summary, to satisfy eq 10 at high frequencies for the case
with an input disturbance to a first-order plus delay process,
we must make the following requirements in terms of the time
delay:

(2) Low Frequencies.For ω < ωc, we have|1 + gc| ≈ |gc|
(see Figure 2), and requirement 10 gives the following lower
limit on the frequency-dependent controller gain

Requirement 14 may be rewritten as

where

Figure 1. Block diagram of feedback control system.

Figure 2. Frequency plots with “tight” SIMC PI settings. Performance
requirement|1 + gc| g |gd|‚|d0|/|ymax| (eq 10) is easily satisfied at all
frequencies. Data:gd ) g ) 4 (e-0.2s)/(6s +1), |ymax| ) 1, |d0| ) 1, PI
control with Kc ) 3.75 andτI ) 1.6.

y )
gd(s)

1 + g(s)c(s)
d (9)

|gd(jω)|
|1 + gc(jω)| |d0| e |ymax|

|1 + gc(jω)| g |gd(jω)| |d0|
|ymax|

; ∀ω (10)

|gd(jω)| e
|ymax|
|d0|

; ∀ω g ωc (11)

|gd(jωc)| e
|ymax|
|d0|

(12)

θ < 0.5
τ1

k

|ymax|
|d0|

(13)

Requirement R1(for feedback control to be useful):
θ < 0.5τ1

Requirement R2(controllability): θ < 0.5
|τ1|
|k|

|ymax|
|d0|

|c(jω)| g |cmin(jω)| )
|gd(jω)|
|g(jω)| ‚

|d0|
|ymax|

|; ∀ω < ωc

(14)

|c(jω)| g |cmin(jω)| )
|u0(jω)|
|ymax|

; ∀ω < ωc (15)

7818 Ind. Eng. Chem. Res., Vol. 45, No. 23, 2006



is the magnitude of the input change needed to reject a sinusoidal
disturbance of magnitude|d0| at low frequencies,ω < ωc. This
interpretation follows since, at low frequenciesy ≈ 0, and then
from eq 8, the required input to reject the disturbance isu )
-(gd/g)d. From eq 15, we then derive the following useful rule
at lower frequencies,ω < ωc, where control is effective:The
minimum controller gain at a giVen frequency is approximately
equal to input change required for disturbance rejection at this
frequency diVided by the allowed outputVariation. As expected,
tight control (with|ymax| small) requires a large controller gain
|c|, as do large disturbances (with|u0| large).

PI and PID control. For a “pure” proportional controller,
we havec(s) ) Kc, and for acceptable disturbance rejection,
we must from eq 15 require

For PI and PID control, the integral action may take care of
some of the disturbance rejection, and we may generally reduce
Kc below the value given by eq 17. This is illustrated in Figure
3, where the bound (eq 15) is shown for PI and PID control for
the case where|u0(jω)| is assumed to be constant. [Note: The
“ideal” form is used for the PID controller,cPIDS(s) ) Kc(1 +
1/τIs + τDs).] Several things are worth noting from Figure 3.
First, we see that the integral action makes it easier to satisfy
the bound (eq 15) at frequencies lower thanωI ≡ 1/τI (the
derivative action also makes it easier to satisfy it a high
frequencies, but this is generally less important because eq 15
only needs to be satisfied up to frequencywc). Second, we
observe that, for both PI and PID control, the minimum value
of the controller gain|c(jω)| as a function of frequency is equal
to Kc, independent of the values ofτI andτD:

(This holds for the ideal PID form, not for the cascade PID
form.) A sufficient (conservative) condition for satisfying eq
15 is, therefore, to replace|c| by Kc, but this just rederives eq
17, which we know is conservative for PI and PID control.

To avoid this conservativeness, assume that the integral action
ensures that condition 15 is (easily) satisfied at frequencies lower
than ωI, and we consider the frequency range fromωI to ωc

where proportional action is needed for disturbance rejection.
Introducing eq 18, condition 15 then gives the following
requirement for acceptable disturbance rejection

where |u0| is the required input magnitude for disturbance
rejection at high frequencies (in the frequency range fromωI

andωc). More precisely,

whereωI ) 1/τI is the frequency up to which integral action is
effective,ωc ≈ 1/τc is the closed-loop bandwidth, andu0(jω) is
defined in eq 16.

The boundKc,min in eq 19 is tight in most cases. The main
exception is when the integral time is small such thatωI > ωc

(i.e., τI < τc). There is then no frequency range where
proportional action is required for disturbance rejection, and
the mimum controller gain will be smaller than the value given
in eq 19. Recall that the SIMC tuning rule in eq 4 isτI )
min(τ1, 4(τc + θ)), so with the SIMC tunings, this only happens
if τI ) τ1 < τc, that is, when the closed-loop response timeτc

is longer than the open-loop time constantτ1. A typical example
may be a flow control loop.

Load Disturbance. For the very common case of aninput
(load) disturbance, we have gd ) g, and for acceptable
disturbance rejection, we must from eq 14 require|c(jω)| g
|d0(jω)|/|ymax|, ω < ωc. From eq 19, we then get for PI and
PID control

where|d0| is the maximum expected disturbance magnitude in
the frequency range fromωI to ωc (where proportional control
is required). This bound guarantees that|y| < |ymax| in response
to sinusoidal load disturbances of magnitude|d0|.

3. PI Example

Consider a first-order with delay process

with gaink ) 4, time constantτ1 ) 6, and time delayθ ) 0.2.
As a disturbance, we consider an input (load) disturbance of
magnitude|d0| ) 1, and we assume that the plant has been
scaled such that the performance requirement is that the output
deviation should stay within(|ymax| ) (1. It is also desirable
that control is as smooth as possible, which means that we want
Kc as small as possible. From eq 21, we must for a sinusoidal
disturbance select

to achieve acceptable disturbance rejection.
Tight Control ( τc,min). For comparison, let us first consider

the response with tight control. According to the SIMC rule

Figure 3. Controller gain|c| as a function of frequency for PI and PID
controller, together with the lower bound|u0|/|ymax| for acceptable distur-
bance rejection. Data PI controller:Kc ) 3.75, τI ) 1.6. Data for PID-
controller: Kc ) 3.75,τI ) 1.6, τD ) 0.2.

Load disturbance:Kc g Kc,min )
|d0|

|ymax|
(21)

g(s) ) gd(s) ) k
e-θs

τs + 1
(22)

Kc g Kc,min ) |d0|/|ymax| ) 1

|u0(jω)| ≡ |gd(jω)| ‚ |d0|
|g(jω)| (16)

Kc g max
ω<ωc

|u0(jω)|
|ymax|

(17)

min
ω

|cPI(jω)| ) min
ω

|cPID(jω)| ) Kc (18)

Kc g Kc,min )
|u0|

|ymax|
(19)

|u0| ≡ max
ω∈[ωI,ωc]

|u0(jω)| (20)
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(eq 6), we selectτc ) θ ) 0.2, and from eqs 3 and 4, the PI
settings are

We note thatKc is 3.75× the minimum required value, so we
expect that the output response is much better than the
requirement of staying within(1. This is also seen from the
frequency plots in Figure 2, where we find that the value of
|gd|‚|d0|/|ymax| is only 0.31 of |1 + gc|, even at the “worst”
frequency (with the smallest margin).

In Figure 4 we also show the simulated time response to a
unit step input disturbance (a step disturbance is not covered
by the theory in this paper, which is for sinusoidal disturbances,
but it is included because of the popularity of step responses in
process control). The output deviationy(t) in Figure 4 is<0.25,
well-below|ymax| ) 1. However, because of the high controller
gain, the input usage and also the output response is sensitive
to measurement noisen (dashed line in Figure 4). Simulations
show that it does not help to filter the measurementym in this
case.

Smooth control (τc,max). The above response is unnecessarily
fast, and from the derivation in the beginning of the example,
the controller gain may be reduced toKc ) Kc,min ) 1. From
eq 7, this corresponds toτc,max ) 1.3 and eq 4 gives the
following “smooth” SIMC PI settings:

The frequency plots in Figure 5 show that the performance
requirement (eq 10) is satisfied at all frequencies, although the
margin is much smaller than with the tight settings in Figure 2.
Figure 5 gives that the value of|gd|‚|d0|/|ymax| is 0.82 of
|1 + gc| at the “worst” frequency (with the smallest margin).
The value 0.82 is less than 1 because of the approximation|1
+ gc| ≈ |gc| used in the derivation ofKc,min ) 1. Note in Figure
5 that the curve for|gc| is difficult to identify because it closely
follows |1 + gc| at low frequencies and|gd|‚|d0|/| ymax| at high
frequencies.

The corresponding simulated response to a step disturbance
in Figure 6 has a maximum deviation fory of 0.66. The
deviation is below|ymax| ) 1, partly because of the approxima-
tion |1 + gc| ≈ |gc| and partly because a unit step disturbance
in this case is “better” than the worst-case unit sinusoidal
disturbance. Also note from the simulation that the input usage

is smooth and that the sensitivity to noise is significantly
reduced. Thus, this tuning is preferred in practice.

4. Discussion

Default Industrial PI Settings. The bound in eq 19 confirms
the common default factory setting with a controller gain of
approximately 1. This follows since, in industrial practice, the
variables, or more precisely the instrument ranges, are often
scaled such that

For example, we may have|u0| ≈ |ymax| ) 50% (of full signal
span). Here,|u0| is the expected input variation for disturbance
rejection andymax is the acceptable output deviation. From eq
19, it then follows that we needKc g 1 for acceptable
disturbance rejection.

There are, of course, exceptions to the ruleKc, min ) 1. First,
if the variables have been scaled differently (or not at all), then
we should useKc,min ) |u0|/|ymax| from eq 19. Second, even
when the scaling|u0| ≈ |ymax| has been used, one may for some
PI controlllers use a lower value than 1 for the controller gain.
This holds for cases where the disturbance is handled by the
integral action, as illustrated in Figure 3. This may happen either
if (i) the disturbance occurs at frequencies lower than 1/τI or if
(ii) the integral time is small (τI < τc) such that the proportional

Figure 4. Response to step load disturbance for process (eq 22) with “tight”
SIMC PI settings (eq 23) withτc ) 0.2: dashed line) with measurement
noisen ((0.1 standard deviation); solid line) no noise.

Kc ) 3.75, τI ) 1.6 (23)

Figure 5. Frequency plots with “smooth” SIMC PI settings (eq 24).
Performance requirement|1 + gc| g |gd|‚|d0|/|ymax| (eq 10) is satisfied at
all frequencies. Data:gd ) g ) 4 (e-0.2s)/(6s + 1), |ymax| ) 1, |d0| ) 1, PI
control with Kc ) 1 andτI ) 6.

Figure 6. Response to step load disturbance for process (eq 22) with
“smooth” SIMC PI settings (eq 24) withτc ) 1.3: dashed line) with
measurement noisen ((0.1 standard deviation); solid line) no noise.

|u0| ≈ |ymax|

7820 Ind. Eng. Chem. Res., Vol. 45, No. 23, 2006



action is only active outside the closed-loop bandwidth. This is
likely to happen for processes with a small time constantτ1,
like a flow loop, because such loops often have a small integral
time (τI ≈ τ1).

Averaging Level Control. A well-known case where smooth
control is desired is for “averaging level control”, where we
use a tank in order to smoothen flow disturbances. Here, the
main control objective is not to control the level tightly but
rather to have smooth input usage (smooth flow variations),
subject to the requirement of stabilizing the system and keeping
the levelh within bounds when there are flow disturbances.
That is, the requirement is to keep|y| ) |∆h| e |∆hmax| (m)
for a change in the flow of magnitude|d0| ) |u0| ) |∆q0| (m3/
s).

From eq 21, the minimum controller gain for averaging level
control is then

which agrees with the value normally recommended (e.g., ref
8). Next, consider the integral time. For level control, the process
transfer functiong(s) from u (flowrateq) to y (level h) is close
to integrating (withτ1 in eq 1 being very large) and can be
written

wherek′ ) k/τ1 is the initial slope of the response. Combining
eqs 3 and 4 gives the SIMC setting for the integral time of an
integrating process

This agrees with the industrially recommended value in ref 9,
and keepingτI above this value avoids the “slow” oscillations
that may otherwise result from having two integrators in the
control loop.6 To derive an alternative expression forτI, let τtank

denote the time it would take for the tank level to exceed its
allowed bound (i.e., for the level to change by|∆hmax|) in
response to a maximum flow increase of magnitude∆q0 for
the case with no control. If the tank is nominally half full, then
τtank is equal to the tank residence timeV/q. We then havek′ )
|∆hmax|/(|∆q0|ttank), and with the minumum controller gainKc

) |∆q0|/|∆hmax|, the integral time from eq 26 becomes

Thus, the integral time for smooth level control should be∼4×
the residence time.

Controllability Implications. Consider an input (load)
disturbance of magnitude|d0|. In eq 21, we derived the minimum
controller gain for acceptable disturbance rejection,Kc g Kc,min

) |d0|/|ymax|. From eq 7, the corresponding value for the SIMC
tuning parameter for a first-order plus delay process is

However, there is also a minimum valueτc, min ) θ (SIMC rule
(eq 6)) to have acceptable robustness for a time delayθ, and
we must requireτc, max > τc,min ) θ. This results in the
controllability requirement

which is identical to eq 13 (requirement R2). We note from eq
28 that a small delayθ is required if we have a tight performance
requirement (|ymax| small), a large disturbance (|d0| large), or a
“fast-acting” disturbance (k′ ) k/τ1 large).

For the averaging level control problem, we havek′ )
|∆hmax|/(|∆q0|τtank), and the controllability requirement becomes
θ e 0.5τtank. This is reasonable, as the time delayθ must be
less than the timeτtank it takes for the level to exceed its bound.

Sinusoidal Responses.The frequency plots (e.g., Figures 2
and 5) give the open-loop and closed-loop responses fory(t)/
|ymax| to a sinusoidal disturbanced(t) ) |d0| sinωt as a function
of frequencyω. Specifically, the open-loop value of|y(t)|/|ymax|
(ast f ∞) is equal to|gd||d0|/|ymax|, which is given by the “gap”
between the lines for 1 (dotted) and|gd||d0|/|ymax| (for the
specific example, there is a “negative gap” at low frequencies,
which signals that feedback control is required to achieve
acceptable performance in response to disturbances). The closed-
loop value is equal to|gd||d0|/|ymax|‚(1/|1+L|), which is given
by the “gap” (which should be large) between the lines for
|1 + L| and|gd||d0|/|ymax|. For the specific example, the gap is
large when we use tight settings (Figure 2) but small when we
use smooth settings (Figure 5).

Assumption of Sinusoidal Disturbances.The derivation of
the results in this paper is based on the assumption of sinusoidal
disturbances. This may seem to be a restrictive assumption but
actually is not. First, the set of sinusoidal signals is much richer
and more general than, for example, a step change. Second,
sinusoidal disturbances are common in real systems, as a visit
to any industrial plant would show. Actually, step changes,
which are frequently used in academic simulation studies
including this paper, almost never occur in practice.

There are no general relationships between a sinusoidal time
response (the frequency domain) and a step response, but as
illustrated by the example, they are quite closely related for
simple processes of the kind commonly encountered in process
control.

Generalization to Decentralized Control of Multivariable
Systems.The results in this paper can be directly generalized
to decentralized control of multivariable systems by introducing
the closed-loop disturbance gain.10,11 Consider a square multi-
variable plant,y ) G(s)u + Gd(s)d, controlled by a diagonal
(decentralized) controller,C(s) ) diag{ci}. As before, consider
a sinusoidal disturbanced of magnitude|d0| and assume that
the maximum allowed variation in each output is|yi| e |yi,max|
(performance requirement). We want to derive an expression
for the minimum controller gain|ci,min|.

Let the diagonal matrixG̃ ) diag{gii} contain the diagonal
elements ofG (corresponding to the selected pairings for
decentralized control). The closed-loop response becomesy )
(I + GC)-1Gd(s)d where, for decentralized control, the sensitiv-
ity matrix S ) (I + GC)-1 may be rewritten as10

HereS̃) (I + G̃C)-1 ) diag{1/(1 + giici)} is a diagonal matrix
containing the sensitivities of the individual loops (which is not
equal to the diagonal elements ofS). Λ ) G̃G-1 is the
“performance relative gain array” (PRGA), which has the same
diagonal elements as the “conventional” relative gain array
(RGA). At low frequencies,ω < ωc, where feedback is effective,

Kc g Kc,min )
|∆q0|

|∆hmax|
(25)

g(s) ) k′
s

e-θs

τI ) 4
Kck′ (26)

τI ) 4τtank

τc,max)
τ1

k
‚
|ymax|
|d0|

- θ (27)

θ e 0.5
τ1

k
‚
|ymax|
|d0|

(28)

S) (I + S̃(Λ - I))-1 S̃Λ (29)
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we haveS̃ ≈ 0 and eq 29 becomesS ≈ S̃Λ. The closed-loop
response then becomes

where

is known as the “closed-loop disturbance gain” (CLDG) under
decentralized control. Consider a single disturbanced, in which
caseGd is a vector. Using eq 30, the response in outputyi is

whereg̃di is the ith element in the CLDG vectorG̃d. Using eq
32, the performance requirement|yi| e |yi,max| becomes

and assuming|1 + giici| ≈ |giici| gives

The requirement (eq 33) provides a direct generalization of eq
14. The only change is to replacegd by the closed-loop
disturbance gaing̃d,i defined in eq 31. Equation 33 has proved
to be very useful in applications for tuning decentralized
controllers.11

Note from eq 31 thatGd is multiplied by the PRGA to get
G̃d. The PRGA corrects for the interactions between the loops.
It may seem from eq 31 that plants with large elements in the
RGA (and PRGA) need a high controller gain to achieve
acceptable performance. This is generally true for setpoint
changes (whereGd may be viewed as the setpoint direction,
which may take on any value) but not necessarily for distur-
bances, as illustrated by the following example.

Example. Consider the steady-state model of a distillation
column with two outputsy (top and product purity), two inputs
u (reflux and boilup), and a single disturbanced (feed composi-
tion). For “column A” with 40 stages, a relative volatility of
1.5, and 99% product purities, the steady-state gain matrices
are

FromGd, it seems the disturbance affects both products equally,
but actually, under decentralized control, there is a large
difference. The RGA and PRGA matrices are

and we get

Thus, in this case, the interactions actually reduce the steady-
state effect of the disturbance on output 1 (top composition)
from 8.8 to -0.4, even though the plant has large RGA
elements. The effect on output 2 (bottom composition) is almost
unchanged at 11. From eq 33, the implication for controller
design is that the bottom loop needs to be∼20× faster than
the top loop in order to get acceptable performance for a feed
composition disturbance.

5. Conclusion

The requirement of acceptable disturbance rejection (output
deviation less than|ymax| in response to a sinusoidal disturbance
of magnitude|d0|) at low frequencies results in a lower limit
on the controller gain,

(additional controllability requirements R1 and R2, which are
independent of the controller, are derived by considering high
frequencies). For a load disturbance and PI or PID control, eq
14 givesKc g Kc,min ) |u0|/|ymax|; see eq 19. In words, the
minimum controller gain is approximately equal to the input
change required for disturbance rejection divided by the allowed
output variation. Thus, if the inputs and outputs are scaled with
respect to their expected variations (such that|u0| ≈ |ymax|),
the minimum controller gain is approximately 1. A lower value
than 1 may be used for cases where the disturbance is handled
by the integral action in the controller.
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y ≈ (I + G̃C)-1G̃d(s)d; ω < ωc (30)

G̃d ≡ ΛGd ) G̃G-1Gd (31)

yi ≈ (1 + giici)
-1g̃d,i(s)d; ω < ωc (32)

|1 + giici(jω)| g |g̃d,i(jω)| ‚ |d0|/|yi,max|; ∀ω < ωc

|ci(jω)| g |ci,min(jω)| )
|g̃d,i(jω)|
|gii(jω)| ‚

|d0|
|yi,max|

; ∀ω < ωc

(33)

G ) (87.8 -86.4
108.2 -109.6); Gd ) (8.81

11.19)

RGA ) (35.1 -34.1
-34.1 35.1 );

PRGA) Λ ) G̃G-1 ) (35.1 -27.6
-43.2 35.1 )

G̃d ) ΛGd ) (-0.4
11.7 )

|c(jω)| g |cmin(jω)| )
|gd(jω)|
|g(jω)| ‚

|d0|
|ymax|

; ∀ω < ωc (14)
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skoge
Note
Actually, this is a slight misprint: 
It applies for any disturbance and not only a load disturbance. For a load disturbance, we have u0=d. 
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