PROBABLY Objective:
THE BEST SIMPLE PID TUNING RULES

e Present analytic tuning rules which are as simple as possible and still
IN THE WORLD

result in good closed-loop behavior.

Sigurd Skogestad Starting point:
Norwegian University of Science and Technology (NTNU) e IMC PID tuning rules of Rivera, Morari and Skogestad (1986)
N-7491 Trondheim, Norway
New SIMC tuning method.
e Integral term modified to improve disturbance rejection for integrating
processes.
AIChE Annual Meeting e Any process is approximated as first-order plus delay processes using
“half method”

Reno, USA, November 2001
e One single tuning rule — easily memorized!

PROCESS INFORMATION :
e Plant gain, k ”M
e Dominant time constant, 7 o1}

0.63
06

o Effective time delay, 6

osF

e Second-order time constant, 7 (use only for dominant second-order |
process with 79 > 6, approximately) o

0.2

For slow (integrating processes):

def
e Slope, k' € k/
_”Nmmc _.—.._Sm 30&0_” Figure 1: Step response of first-order with delay system, g(s) = ke™% /(15 + 1).
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OBTAINING THE EFFECTIVE DELAY ¢ Example

Basis (Taylor approximation): 5 (—0.3s + 1)(0.085 + 1)
go(s) =k
o5 1 — s and o5 Lo 1 (25 4+ 1)(1s + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)3
e’s 140s
Effective delay = is approximated as a first-order delay process with
:.—.._\CGZ ﬁ_m_m \NlH_. — N I_I H\M — MW

. y . 0=1/2+04+0.2+3-0.05+0.3 —0.08 =1.47
+ inverse reponse time constant(s) or as a second-order delay process with
+ half of the largest neglected time constant (the “half rule”) =2

(this is to avoid being too conservative) TH=1+04/2=12

+ all smaller high-order time constants 0=04/2+02+3-0.05+0.3—0.08=0.77

The “other half” of the largest neglected time constant is added to 7;
(or to 7y if use second-order model).

IMC TUNING = DIRECT SYNTHESIS INTEGRAL TIME
e Controller:  ¢(s) = ﬁwv e ; M . . . .
o (4/vs) desired v 16
. . ) - e b0s
o Consider second-order with delay plant:  g(s) = k(. 155051 14
. . . _ 1.2
o Desired first-order setpoint response: Ahv =L e ts
Ys/desired  Tes+1 -
. M . . " . _ (ms+1)(ms+]) 1 °
e Gives a “Smith Predictor” controller:  ¢(s) = ' e os
e To get a PID-controller use e ~ 1 — fs and derive 06
?.Tw + C?.w% + C 1 0.4
c(s) =
k Aﬂn + %vm 02
which is a cascade form PID-controller with s m = - m = o
H_, qu time
NAM = M %q T = T1; ™D = T2 Figure 2: Effect of changing the integral time 7; for Pl-control of “slow” process g(s) = ¢7*/(30s + 1) with K, = 15.
T+ Load disturbance of magnitude 10 occurs at ¢ — 20

® 7. is the sole tuning parameter . . . .
‘ &P Too large integral time: Poor disturbance rejection

Too small integral time: Slow oscillations



SIMC-PID TUNING RULES TUNING FOR FAST RESPONSE WITH GOOD ROBUSTNESS

For cascade form PID controller:

1 7 1 1 0 SIMC: 71.=4
Ke= &+ = 1
C H .
kte+60 kK 71.+0 Gives:
‘ L 05T 05 1
. . c = — = .« —
71 = min{7, Ew = min{7,4(7c + 6)} (2) ko K 0
¢ 77 = min{7y, 86}
TD=To (3) _
ivati ™D = T2
Derivation: )
Try to memorize!
1. First-order setpoint response with response time 7. (IMC-tuning = Gain margin about 3
Direct synthesis”) =TT e aarTe
. . . . i Controller gain, K, Uy 951
2. Reduce integral time to get better disturbance rejection for slow or el tme 7 L
R . R . r\w Gain Emﬂm_:. GM 3.14 2.96
integcratin r void slow lin > Phase margin (PM) 614° | 46.9°
tegrating process AU:ﬁ avoid slo cycling = 71 = k wm‘qv Allowed tince delay error, A8/ 2.14 159
Sensitivity peak, M 1.59 1.70
Complementary sensitivity peak, M, || 1.00 1.30
Phase crossover frequency, wgg * € 1.57 1.49
Gain crossover frequency, w, - 6 0.50 0.51
Table 1: Robustness margins for first-order and integrating delay process using SIMC-tunings in (5) and (6) (7. = 6). The same margins apply to
second-order processes if we choose 7p = Ta.
EXAMPLE EXAMPLE: Process from Astrom et al. (1998)
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Figure 3: Load disturbance of magnitude 2 occurs at t = 10.
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. (—0.35 + 1)(0.08s + 1) gols) = (5+ 1)(0.25 + 1)(0.04s + 1)(0.008s + 1)
gols) = (25 + 1)(1s + 1)(0.45 + 1)(0.2s + 1)(0.05s + 1)3




APPLICATION: RETUNING FOR INTEGRATING PROCESS DERIVATIVE ACTION ?

To avoid “slow” oscillations the product of the controller gain and First order with delay plant (75 = 0) with 7. = 6:
integral time should be increased by factor f ~ 0.1(Py/77¢)>. e —

Real Plant data: 1ot

Period of oscillations Py = 0.85h = 51min = f = 0.1+ (51/1)% = 260
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AFTER ¢ (Ke=-385, tauis Wwin) , Figure 5: Setpoint change at £ = 0. Load disturbance of magnitude 0.5 accurs at ¢ = 20.
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e Observe: Derivative action (solid line) has only a minor effect.

g% e
Qualve pes. . . . .
e e Conclusion: Use second-order model (and derivative action) only when

O Wb e _dn ik dn ol < 9 > 6 (approximately)

CONCLUSION

B B ]m:mm 4: Industrial case study of retuning reboiler level control system
e It is simple (one single rule for all processes)
e It is excellent for teaching (analytical)

e It works very well for all of “our” processes

Full paper with many additional examples available at:

http://www.chembio.ntnu.no/users/skoge/publications/2001/tuningpaper reno/



