PROBABLY THE BEST SIMPLE PID TUNING RULES IN THE WORLD

Sigurd Skogestad Norwegian University of Science and Technology (NTNU) N-7491 Trondheim, Norway

AlChE Annual Meeting Reno, USA, November 2001

Objective:

 Present analytic tuning rules which are as simple as possible and still result in good closed-loop behavior.

Starting point:

• IMC PID tuning rules of Rivera, Morari and Skogestad (1986)

New SIMC tuning method:

- Integral term modified to improve disturbance rejection for integrating processes.
- Any process is approximated as first-order plus delay processes using "half method"
- One single tuning rule easily memorized!

PROCESS INFORMATION

- ullet Plant gain, k
- ullet Dominant time constant, au_1
- ullet Effective time delay, heta
- \bullet Second-order time constant, τ_2 (use only for dominant second-order process with $\tau_2>\theta$, approximately)

For slow (integrating processes):

ullet Slope, $k'\stackrel{\mathrm{def}}{=} k/ au_1$

Resulting model:

$$g(s) = \frac{k}{(\tau_1 s + 1)(\tau_2 s + 1)} e^{-\theta s} = \frac{k'}{(s + 1/\tau_1)(\tau_2 s + 1)} e^{-\theta s}$$

Figure 1: Step response of first-order with delay system, $g(s)=ke^{- heta s}/(au_1s+1)$.

OBTAINING THE EFFECTIVE DELAY heta

Basis (Taylor approximation):

$$e^{-\theta s} \approx 1 - \theta s$$
 and $e^{-\theta s} = \frac{1}{e^{\theta s}} \approx \frac{1}{1 + \theta s}$

Effective delay =

"true" delay

+ inverse reponse time constant(s)

+ half of the largest neglected time constant (the "half rule") (this is to avoid being too conservative)

+ all smaller high-order time constants

The "other half" of the largest neglected time constant is added to τ_1 (or to τ_2 if use second-order model).

Example

$$g_0(s) = k \frac{(-0.3s+1)(0.08s+1)}{(2s+1)(1s+1)(0.4s+1)(0.2s+1)(0.05s+1)^3}$$

is approximated as a first-order delay process with

$$\theta = 1/2 + 0.4 + 0.2 + 3 \cdot 0.05 + 0.3 - 0.08 = 1.47$$

or as a second-order delay process with $\tau_1=2$

$$\tau_2 = 1 + 0.4/2 = 1.2$$

 $\theta = 0.4/2 + 0.2 + 3 \cdot 0.05 + 0.3 - 0.08 = 0.77$

IMC TUNING = DIRECT SYNTHESIS

• Controller:
$$c(s) = \frac{1}{g(s)} \cdot \frac{1}{(y/y_s)_{\text{desired}}} - 1$$

ullet Consider second-order with delay plant: $g(s) = k rac{e^{- heta s}}{(au_1 s + 1)(au_2 s + 1)}$

• Desired first-order setpoint response:
$$\left(\frac{y}{y_s}\right)_{\text{desired}} = \frac{1}{\tau_c s + 1} e^{-\theta s}$$

$$ullet$$
 Gives a "Smith Predictor" controller: $c(s) = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{k} \frac{1}{(\tau_c s + 1 - e^{-\theta s})}$

 \bullet To get a PID-controller use $e^{-\theta s} \approx 1 - \theta s$ and derive

$$c(s) = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{k} \frac{1}{(\tau_c + \theta)s}$$

which is a cascade form PID-controller with

$$K_c = \frac{1}{k} \frac{ au_1}{ au_c + heta}; \quad au_I = au_1; \quad au_D = au_2$$

ullet au_c is the sole tuning parameter

INTEGRAL TIME

Figure 2: Effect of changing the integral time τ_I for PF-control of "dow" process $g(s)=e^{-s}/(30s+1)$ with $K_c=15$. Load disturbance of magnitude 10 occurs at t=20.

Too large integral time: Poor disturbance rejection Too small integral time: Slow oscillations

SIMC-PID TUNING RULES

For cascade form PID controller:

$$K_c = \frac{1}{k} \frac{\tau_1}{\tau_c + \theta} = \frac{1}{k'} \cdot \frac{1}{\tau_c + \theta} \tag{1}$$
 Gives:

$$\tau_I = \min\{\tau_1, \frac{4}{k' K_c}\} = \min\{\tau_1, 4(\tau_c + \theta)\}$$
(2)

$$=\min\{ au_1,rac{k'}{k'}rac{K_c}{K_c}\}=\min\{ au_1,4(au_c+ heta)\}$$

$$=\tau_2\tag{3}$$

Derivation:

- 1. First-order setpoint response with response time τ_c (IMC-tuning = "Direct synthesis")
- 2. Reduce integral time to get better disturbance rejection for slow or integrating process (but avoid slow cycling $\Rightarrow au_I \geq \frac{4}{k^T K_c}$.

TUNING FOR FAST RESPONSE WITH GOOD ROBUSTNESS

SIMC:
$$\tau_c = \theta$$

4

$$K_c = \frac{0.5\tau_1}{k} = \frac{0.5}{k'} \cdot \frac{1}{\theta}$$
 (5)

$$\tau_I = \min\{\tau_1, 8\theta\}$$

$$\tau_D = \tau_2$$
(6)

$$au_D = au_2$$

Try to memorize!

Gain margin about 3

Process $g(s)$	$\frac{k}{\tau_1 s + 1} e^{-\theta s}$	$\frac{k'}{s}e^{-\theta s}$
Controller gain, K_c	<u>0.5</u> <u>τι</u>	<u>k' θ</u>
Integral time, τ_I	τ_1	
Gain margin (GM)	3.14	2.96
Phase margin (PM)	61.4^{o}	46.90
Allowed time delay error, $\Delta\theta/\theta$	2.14	1.59
Sensitivity peak, M_s	1.59	1.70
Complementary sensitivity peak, M_t	1.00	1.30
Phase crossover frequency, $\omega_{180} \cdot \theta$	1.57	1.49
Gain crossover frequency, $\omega_c \cdot \theta$	0.50	0.51

Table 1: Robustness margins for first-order and integrating delay process using SIMC-tunings in (5) and (6) $(\tau_c = \theta)$. The same margins apply to second-order processes if we choose $\tau_D = \tau_2$.

EXAMPLE

$$g_0(s) = k \frac{(-0.3s+1)(0.08s+1)}{(2s+1)(1s+1)(0.4s+1)(0.2s+1)(0.05s+1)^3}$$

EXAMPLE: Process from Astrom et al. (1998)

Figure 3: Load disturbance of magnitude 2 occurs at t=10.

$$g_0(s) = \frac{1}{(s+1)(0.2s+1)(0.04s+1)(0.008s+1)}$$

APPLICATION: RETUNING FOR INTEGRATING PROCESS

To avoid "slow" oscillations the product of the controller gain and integral time should be increased by factor $f \approx 0.1 (P_0/\tau_{I0})^2$.

Real Plant data

Period of oscillations
$$P_0 = 0.85h = 51min \Rightarrow f = 0.1 \cdot (51/1)^2 = 260$$

CONCLUSION 201 24 251

- It is simple (one single rule for all processes)
- It is excellent for teaching (analytical)
- It works very well for all of "our" processes

Full paper with many additional examples available at:

http://www.chembio.ntnu.no/users/skoge/publications/2001/tuningpaper_reno/

DERIVATIVE ACTION?

First order with delay plant $(\tau_2 = 0)$ with $\tau_c = \theta$:

Figure 5: Setpoint change at t=0. Load disturbance of magnitude 0.5 occurs at t=20.

- Observe: Derivative action (solid line) has only a minor effect.
- ullet Conclusion: Use second-order model (and derivative action) only when $au_2> heta$ (approximately)