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Abstract 
 

Ziegler and Nichols published their famous paper “Optimum settings for automatic 

controllers” in 1942. Based on Ziegler and Nichols experience with the transient for 

many types of processes they developed a method for tuning of closed-loop response. In 

the literature there are still discussed whether they used a controller with a configuration 

in accordance with the cascade or the parallel form. The question was examined through 

literature study and by reproduction of the simulations Ziegler and Nichols presented in 

their paper. A series of simulations was carried out and the results pointed out that 

Ziegler and Nichols tunings was most likely for an ideal PID controller. Coughanowr and 

Koppel have derived a transfer function for the Taylor Fulscope controller Ziegler-

Nichols had been using when developing their tunings. According to that function for 

infinite baffle-nozzle gain, Ziegler and Nichols tunings could not be applied strictly to a 

Taylor Fulscope controller. A more complex controller transfer function with finite gain 

would be on a modified cascade form. Ziegler-Nichols also used a mechanical 

differential analyzer at MIT to simulate processes at a higher speed. Transfer function for 

a PID controller had to be implemented on the analyzer and a PID controller on the ideal 

form would most probably have been applied to the differential analyzer. It was 

according to the experimental results and references in the literature concluded that 

Ziegler-Nichols tunings are for ideal controller 

 
Performance values reflect controller stability and robustness. Different PID controller 

tunings were judged by the performance values Integral Absolute Error (IAE), computed 

for the process output, and Total Variation (TV), computed for the process input 

(controller output). Ziegler-Nichols tunings gave a generally fast but a more unstable 

response. This was evident by low values for integral absolute error (IAE) and higher 

values for total variation (TV). Skogestad’s tunings gave in general somewhat slow 

response. This corresponded in higher IAE values and lower TV values. It was concluded 

that Skogestad’s tunings offered the best stability and robustness of the reviewed tunings.  
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1. Introduction 
 
Ziegler and Nichols published their famous paper “Optimum settings for automatic 

controllers” in 1942. The tuning rules were developed after numerous simulations with 

the pneumatic Taylor Fulscope controller. It is however some disagreement in the 

literature if this pneumatic controller was really working according to an ideal or a 

cascade PID (proportional-integral-derivative) controller transfer function. The effect of 

this confusion is important when considering the derivative action added to the PI-

controller. The main objective of this report is to try to answer the question regarding 

which form represents the pneumatic controller (cascade or ideal). The question is to be 

examined through literature study and by trying to reproduce the simulations Ziegler and 

Nichols presented in their paper. 

 

Controller performance is an important subject to investigate. Different performance 

values reflect the controller stability and robustness. PID-controller performances for 

different controller tunings are to be tested. The integral Absolute Error (IAE), i.e. 

deviation from the set point, is to be calculated for the process output. Total Variation 

(TV) for the process input (controller output) was the second performance criteria that 

were to be calculated. Performances for Skogestad’s tunings are to by compared with 

other well known tuning rules. 
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2 Theory  

2.1 Ziegler-Nichols Tuning rules 
In 1942 Ziegler and Nichols, who were engineers for a major control hardware company 

in the United States (Taylor Instruments Co), proposed tuning rules for the ”Optimum 

settings for automatic controllers”1. Based on their experience with transient for many 

types of processes they developed a method for tuning of closed-loop response, this 

implied keeping the controller in the closed loop as an active controller in automatic 

mode. The principal control effects found in PID-controller where examined and practical 

names and units proposed for each effect.  They suggested that ultimate controller gain, 

Kcu, and ultimate period, Pu, where to be obtained from a closed-loop test of the actual 

process, and not from a study of frequency responses. The basis for proportional, 

sensibility, adjustment was a reduction of amplitude at a 1:4 rate. The basic steps in 

determining the controller setting are described in the next section. 

 

2.1.1 Z-N controller settings 

1. When the process is in steady state within the normal level of operating, the integral 

and the derivative modes of the PID-controller are removed leaving only the 

proportional control. On some controllers, this might require setting the deviate time 

to its minimal value and the integrating time to its maximum value.  

2. Disturb the system by adding an increasing value of proportional gain to the 

controller, until the system response with a sustained constant oscillating output. The 

corresponding Kc is denoted as the ultimate gain, Kcu, and the period of oscillation is 

the ultimate period, Pu. 

3. The Ziegler-Nichols tuning rules, given in Table 2.1, are then used to set the 

controller parameters for a Proportional (P)-, a Proportional-integral (PI)- or a 

Proportional-integral-derivative (PID) - controller. 
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Table 2-1 Controller settings with reference to Z-N 

Type of controller  KC τI τD 
Proportional (P) 0.5 * KU - - 
Proportional-integral (PI) 0.45 * KU 

2.1
UP

 
- 

Proportional-integral-derivative (PID) 0.6 * KU 

2
UP

 
8
UP

 

 

The Z-N tuning rules are given in the table above. The tunings and variations of them are 

frequently used in the industry because they are simple to implement 

 

2.1.2 Controlled process in the Ziegler-Nichols article 

It was stated that a paper cowering laboratory and field data and developed mathematical 

relations were not to be presented in their article. They considered most important that 

the information were available for use by persons interested in the application of 

automatic-control instruments. The article therefore included only a single illustrative 

example. For this example effects of load disturbance and different controller settings 

were shown. 

 

The controller gain in the paper was referred to as the proportional-response sensitivity, 

or only sensitivity. The applied controller had a range of gain from 1000 to 1 psi per inch, 

as the output pressure change per inch of the tracker pen travel. The tracker pen speed 

was 0.625 min per plot unit The adjustment of the gain affects primarily the stability of 

control. The “ultimate sensitivity, KCU” was obtained by disturbing the process by 

altering the controller gain until the output had a sustained oscillation.  
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Figure 2-1 Offset versus sensitivity. Effect of load change. 

 

The amplitude ratio 1:4 corresponded to a controller gain, KC, equal ½ * KCU, which was 

the recommended setting for a P-controller according to Z-N. This was evaluated for load 

change when a P-controller was applied to the process. The process response had an 

increasing offset from the set point with a decreasing value for KC lower than the KCU, as 

seen in Figure 2-1. At KCU the response was a sustained oscillation with period Pu. 

 

The period of oscillation (Pu) at the stability limit, produced a good index of required 

integration time, τI. The Pu of the process was 0.8 min, see Figure 2-1, and the optimum 

setting for a PI-controller was according to Z-N KC = 0.45*KCU and τI = Pu /1.2. 

Integration time, τI, was inverse the denoted reset rate in the article. The gain was 

reduced compared with the P-controller, because otherwise the amplitude ratio would 

have been increased markedly.   
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Figure 2-2 Reset-rate versus recovery. Load change. 

 

The derivative action part of the controller was introduced in the last experiment for the 

closed-loop example. τD or pre-act-time improved the controller performance for this 

example.  The optimum τD was reported to be 1
8 UP  (for further details 1). 
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Figure 2-3 PID-Controller. Load change. 

A supplementary piece of information in the paper was that when the gain, integral and 

derivative action used in the last example in the paper (Figure 2-3):  

- The maximum deviation form the set point was cut 71 percent T, 

- the period of oscillation was reduced by 43 percent,  

- and the time required for the oscillation to die out was halved. 

 

2.2 2.2 Controller configuration 

The industrial pneumatic PID-controllers, which were used at the time Ziegler and 

Nichols wrote the paper on simple tuning rules, had mainly two different setups. The 

ideal (or parallel) and the cascade (or series) arranged PID-controllers, with general 

transfer functions show in the next equations and in the figures.  

 

1. An ideal PID-Controller:  

1(1 )C C D
I

G K s
s 

    Equation 2-1 Ideal PID-controller. 
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An ideal PID – controller was however physically unrealizable. Commercial controllers 

approximated the ideal behavior by using transfer functions of the following forms, with 

α typical between 0.05-0.1:  

 

2. Cascade transfer function for a pneumatic PID-controller. 

I

I

1 1( )( )
1

D
C C

D

G K   
   
  

 
 

 Equation 2-2 Pneumatic cascade PID-controller 

 

Figure 2-4 Series/Cascade -coupled PID-controller  

The restrictors shown in the figure were placed after one another, i.e. the controller was 

on the cascade form.    

 

3. Ideal (1) transfer function for a pneumatic PID-controller. 

I

I

1 )
1

D
C C

D

G K   
   

          
Equation 2-3 Pneumatic ideal (1) PID-controller 

 

4. Ideal (2) transfer function for a pneumatic PID-controller 2.  

I

I

1 1 )
1

D
C C

D

G K   
   

           
Equation 2-4 Pneumatic ideal (2) PID-controller 
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Figure 2-5 Parallel-coupled pneumatic PID-controller 

 

The first industrial PID controllers were of the interacting type. These were designed to 

solve a process control problem, and not a particular mathematical as today’s PID 

controllers 3. The principal design differences between the two controller setups, are 

placement of the derivative and integrating functions in series or parallel, which brought 

about different kind of interaction between the modes. The result of the interaction was 

that in real pneumatic controllers the proportional, integral and derivative parts produced 

actions that differed from those of a completely ideal controller, which would have had 

no interaction between the modes. This is described in detail in the follow text, mainly 

through function analysis of a pneumatic PID controller.     

 

2.2.1 Taylor Fulscope, a pneumatic PID-Controller 

Transfer function for a three-mode controller (Figure 2-6) was compared with the 

previous ones descried earlier. The Taylor Fulscope was a PID controller with interacting 

controller parts. The functional behavior of the Fulscope controller has been described in 

several publications 4, 5, 6 , 7, and is described in the follow section. The main components 

in the controller is the baffle-nozzle system, bellows, resistances and the relay ( see 

Figure 2-6).    
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Figure 2-6 The Taylor Fulscope controller 

A schematic diagram for the same controller is presented in Figure 2-7. This arrangement 

has the integral and derivative action restrictors in parallel. 

 

 

Figure 2-7 A schematic diagram 

 

The parameters in the diagram and equations are described below:   

- p is controller output pressure. 

- c is the amplification factor relating a small flapper movement to a large change in 

output pressure. 
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- a and b are the relative effect of movement of the deviation and feed-back linkages. 

- g is the spring constant of the feed-back bellows. 

- θ is the distance between the nozzle and the flapper, or the error detecting device. 

- p1 and p2 represent bellow pressures. 

- τ1 is the time-constant of the derivative action restrictor and the space surrounding the 

bellows in the drum.  

- τ2 is time constant of the integral action restrictor and feed-back bellows.  

 

The differential equations for the Taylor are shown in the following equations4,5. 

2 1

2
1

2
1

( )

1 ( )

1 ( )

b ap c cg p p
a b a b

dp p p
dt s

dp p p
dt r

    
  

  

  

Equation 2-5 

After the equation was rearranged and with the assumption c>>1, which is equivalent to 

stating that c approaches infinite or an infinite baffle-nozzle gain, this gave an equation 

that was similar to an ideal controller. 

1 2 1 2

1 2 1 2 1 2

11
( )C

bG s
ag s

    
      

             
 Equation 2-6 Taylor Fulscope 

The Equation 2-6 gives an ideal controller when inserted for the following parameters.  

1 2

1 2

1 2

1 2

1 2

'C

I

D

bK
ag

  
  

   
   

  

   
 

  

 
 

Equation 2-7 Taylor Fulscope on the “ideal” form 

 

For the intermediate frequencies, the response is that of an ideal controller, except that 

the gain, derivative time, and the reset time differ from the dial settings 6. They are KC, τI 

and τD and given in the Equation 2.2-5. The dial controller settings are therefore only 
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nominal values. The effective values may differ from the nominal values by as much as 

30%, because off the interactions among the modes 2. The effect of the interaction on the 

controller gain could be even larger, since the gain is increased by a factor of about  

(τ1 + τ2)/(τ1 -τ2). This can be denoted as an interaction factor, I, according to an 

approximated ideal formula: 

1(1 )D
C C D

D D

G K s
s

   
   

 

 

 
   

 
Equation 2-8 

According to the equation, as τ1 approaches τD, the gain approaches infinity. When  τ2 is 

greater than τ1 the denominator term containing affecting the gain becomes negative, 

indicating unstable behavior. This instability arises because the pressure in the reset 

(derivative) bellows changes more rapidly than the pressure in the feedback bellows.  

The interaction factor (τI + τD)/(τI -τD) becomes infinite and therefore the gain of the 

controller becomes infinite 5. The controller would in such situations behave as a 2-step 

(on/off) action controller when τI = τD. This must clearly be avoided if the controller is to 

be operated as a continuous 3-action controller. It should in accordance with the facts 

above be emphasized that the interacting character of such controllers means that they 

have to be calibrated for different derivative and the integrating tasks.  

 

2.3 Cascade PID- Controller 

The instability arising from too much derivative action in a parallel controller can be 

avoided by putting the derivative and integral resistances in series 6. The two resistances 

and capacities form a dead-end interacting system, or a “series arrangement”, as 

illustrated in Figure 2-4.     

 

Aikman and Rutherford 4 have derived a transfer function and the corresponding blended 

parameters for such a controller.  
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1 1

1 1
2 2 2 2

11
2 12

2

1(1 2 ) 1
(1 2 ) 1 2

, (1 2 ),
1 2

C C

C I D

G K s
s

bK
ag

  
  

 
  
 

  
  

    

  
      
      

    
 

 Equation 2-9 Cascade PID 

The interaction factor, I, has become greater than that with parallel feedback, but the 

controller is stabile for all derivative times. This is because the controller gain stays finite 

for τD = τI. Generating proportional, integrating and derivative signals separately and then 

combining the signals would have eliminated the interaction factors which parallel and 

cascade old fashion controllers have. A fully ideal controller would have required a more 

complex pneumatic controller, but in such cases an electrical instrument with ideal 

response would be installed nowadays.     

 

2.4 Literature references for Ziegler- Nichols’  pneumatic PID controller  

Several authors have discussed the pneumatic controller Z-H used to regulate processes 

and thereby derived their tuning rules for industrial controllers. In the next part, some of 

the views will be introduced. 

 

PID controllers were at the time Z-N did their experimental work of the interacting 

according to Shinskey 3. He states that the Z-N used a single stage pneumatic controller, 

which was on some sort of cascade form, when they developed their tuning rules. This 

affected the proportional action (P) . The Peffective differed from the action a non-

interacting controller in the following way according to Shinskey: 

)(1*)(1

P  Peff

I

D

I

D

τ
τ

τ
τ

−+
= Equation 2-10 Effective Proportional action 

This was a serious limitation to that controller. Setting τD = τI forced the proportional 

gain to maximum, and setting τD > τI reversed the action for the controller. Because of 

this, Ziegler and Nichols kept the ratio τD/τI = ¼ stated Shinskey.   
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Connell 8 argued that Z & N were obliged to promote the “ideal” Taylor Fulscope 

controller (section 2.2.1), which had the reset and derivative needle valves in parallel. 

Applying the same position to the two needles valves would make the controller go into 

on-off control. This equal setting the ratio integrating to derivative action equal to one 

other (see previous section dealing with the same matter). Seborg2 has also pronounced 

the ideal controller configuration for the controller used by Ziegler and Nichols. 

 

The story of the development work and simulator tests on the Fulscope 100 by Ziegler 

and Nichols is cover in “Modern Control Started with Ziegler-Nichols Tuning”9. Ziegler 

did preliminary tests of the PID-Fulscope controller using the demonstration room in the 

factory. It consisted of a series of tanks and capillaries to simulate a multicapacity system 

for a “typical” process to control pressure. The system offered slow data collection so 

they rented out the differential analyzer at MIT, to increase number of simulated 

processes. 

 

2.5 Integrated Absolute Error, IAE, and Total Variation, TV.  

IAE is an object or a performance criterion, which can be used to determining the best 

curve hence the controller tuning which produces the best curve function 2. The design 

criterion used by Ziegler and Nichols was the ¼ amplitude decay ratio for closed loop 

response. This is often judged to be too oscillatory by plant operating personnel and only 

the two first peaks of the closed-loop response are considered. IAE (below) is a controller 

design relation based on a performance index that considers the entire closed-loop 

response.  

∫= dteIAE  Equation 2-11 Integral of absolute values of the error 

Total Variation, TV, is also a performance criterion for closed-loop response, but in 

contrast to the IAE, the objective for TV is to measure the total variation in the controller 

output signal, u. 

∑ −−= 1ii uuTV  Equation 2-12 
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3 Results 

3.1 An approximate to Z-N’s process example 

Ziegler and Nichols have in their paper1 a single illustrative example. The controller 

setup, cascade or parallel, was to be found. The first goal of this experimental part was 

therefore to establish a model of the process though a transfer function, which had the 

same behavior as the process example in the paper. This could subsequently make it 

possible to determine the controller setup. 

 

In accordance with the procedure in section 2.1.1 the ultimate gain and period of the 

resulting sustained oscillation, referred to as ultimate period, Pu, was given in the paper. 

One parameter for the process was therefore known. The ultimate period was 48 seconds, 

and this was used to establish possible transfer functions for the described process. A 

routine (minbode.m in Appendix D) programmed in Mathlab® calculated among other 

values the exact phase angle for transfer functions. One could then at the phase crossover 

frequency, ω180, determine the ultimate period, 
180

2
ω
π

=UP .  

It was also known that the process had deadtime, roughly estimated by Ziegler and 

Nichols to be 12 seconds. The known foundation for experiments and comparisons was 

then a process with deadtime, process output from Ziegler and Nichols shown in section 

2.1.2 and the value for ultimate period. The controller setups (cascade and parallel) that 

were investigated are displayed in the two next figures. A difference in controller output 

and performance would only occur when the three controller modes were in action. The 

cascade setup was used in simulations with P- and PI-controllers.   
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Figure 3-1 Block diagram for a cascade control system in Simulink®..  
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Figure 3-2 Block diagram for parallel control system in Simulink®.. 

3.2 Simulation results 
 

Table 3-1 Symbols used in this section were: 

Descriptions Symbol Unit 
Ultimate period Pu Second 
Deadtime θ Second 
Ultimate gain KU - 
Controller gain KC - 
Integral time constant τI Second 
Derivative time τI Second 
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The load disturbance occurred 10 seconds after simulation was started, and was 

magnitude a unit. The process transfer function was simulated in Simulink®, a dynamic 

system simulation tool in Mathlab®, with proportional, proportional-integral and 

proportional-integral-derivative controllers according to ZN-experiments.   

3.2.1 Deadtime process 
SesG θ−=)(1 Equation 3-1 (G = Process transfer function) 

 

 Table 3-2 Process 1, simulation parameters and results.  

 Process parameter 
Simulation Num. θ Pu KU 

1 12 48 0.1309 
 

The ultimate period and gain could also have been calculated through the follow 

equations: 

θ
π

θ
πωπθππω

1
2

1

1
2

,
2

: 180180

⋅=⇒=

⋅=−=⋅−−

UKGM
   Equations 3-2 

The result for the simulation was that a pure delay process was not comparable with the 

process Z-N controlled.   

3.2.2 Process with integrating action and deadtime 

τ
ε

ε
θ 1,1

S2 =
+

= − Se
s

G  Equation 3-3 

Table 3-3 Process 2, simulation parameter and results 

 Process parameter Results 
Simulation Num. θ, sec τ, sec Pu, sec KU 

1 12 infinite 48.00 0.1389 
2 12 100 45.8717 0.1373 
3 12 20 40.1104 0.1644 
4 12 10 36.0471 0.2010 
5 14 30 48.2899 0.1343 
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The transfer function was evaluated within a range for the process parameters. Some of 

the results are presented in the table above. Figure 3-3 shows the results for  

KC = KU . 0.45 which were compared with the results from Z-N (Figure 2-2). The process 

had, as seen from the simulations, too little oscillatory behavior and too short period. 

 

Proscess 2 P-Controller (Kc=0.45*Ku)

0
2
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12
14
16

0 100 200 300 400

time [s]

ou
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ut
 y

infinite

100

20

10

30 (14)

 

Figure 3-3 Simulation results Process 2.  

3.2.3 Processes with deadtime, integrating action and a first-order transfer 

function.  

Se
ss

sG θ

τ
−

+
⋅=

1
11)(

1
3  Equation 3-4 

The number of possible solutions was increasing with the complexity of the transfer 

function. Table 3-4 shows some tested parameter, and the ultimate values for the process, 

at 12-second deadtime.  

Table 3-4 Results from calculations in Mathlab.  

 Process parameter Ultimate values 
Simulation Num. θ, sec τ1, sec Pu, sec KU 

1 12 0.01 48.0400 0.1308 
2 12 0.5 49.9974 0.1259 
3 12 1.0 51.9807 0.1218 
4 12 5 66.6909 0.1041 
5 12 10 82.1466 0.0963 
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The first parameter, which the process should have fulfilled, was the ultimate period 

(48s). The period for sustained oscillation was the most accurate and useful information 

given in the paper for the preliminary search. Feasible solutions were screened, by using 

the minbode.m routine in Mathlab, for ranges of deadtimes and time constants, τ1. 

Results for some of the feasible points after the calculations are in Table 3-5.  

Table 3-5 Sample results from calculations in Mathlab  

 Process parameter Ultimate values 
Simulation Num. θ, sec τ1, sec Pu, sec KU 

1 6 7.5 47.6578 0.1854 
2 7 6 48.3885 0.1646 
3 8 4.4 47.9661 0.1512 
4 10 2 47.8231 0.1358 
5 11 1 47.9774 0.1321 

 
 

Process 3, P-Controller
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Figure 3-4 Process simulation results for P-Controller 
 
The controller parameters were set according to experiments in the paper:  

P-controller: KC = 0.45*KU and PI-controller: KC = 0.45*KU, τI = PU/1.2 and τD = 0 
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Process 3, PI-Controller
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Figure 3-5 Process simulation results for PI-Controller 

Results from simulations (1-5) were only in some agreement with the results that ZN 

obtained in their process example. The crossover did not occur in Ziegler and Nichols 

experiments.     

 

3.2.4 Processes with deadtime and a second-order transfer function 

Se
ss

sG θ

ττ
−

+
⋅

+
=

1
1

1
1)(

21
4   Equation 3-5 

The number of possible solutions was further increased by the introduction of another 

first order transfer function. The assumed process dynamic in this section was a second 

order transfer function. The feasible region was therefore to be truncated by some 

assumptions. The derivative action used in the last part of Ziegler and Nichols 

experiments, remarkably improved the controller performance in PID- setup. The 

derivative part was assumed to be almost equal to the deadtime, because this could result 

in a canceling of this term. A selection of the promising parameters for the transfer 

function resulting from the evaluation of period and simulations are presented in  

Table 3-6. 
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All the parameters for the transfer function were simulated with P and PI- controller 

actions in accordance with the experiments performed in the article (P-controller: KC = 

0.45*KU and PI-controller: KC = 0.45*KU, τI = PU/1.2 and τD = 0).   

Table 3-6 Parameters for the 2.order transfer function. 

 Process parameter Ultimate values 
Simulation Num. θ, sec τ1, sec τ2, sec Pu, sec KU 

1 6 14 25.5 47.8314 7.3174 
2 6 11.5 37 47.8478 8.984 
3 7 9 35 47.9281 7.2628 
4 7.5 8.5 30 48.0073 6.0607 
5 8 7.5 32 48.4974 5.9462 
6 8 7 35 48.0890 6.3437 
7 8.5 6.5 29.5 47.8298 5.2625 
8 8.5 7 25.5 47.8098 4.7518 
9 9 5 38.5 47.7629 6.1788 

10 9 5 40 47.9502 6.379 
11 9 6 27 47.9335 4.6788 
12 10 4 34 47.9882 5.1504 
13 10 4.5 27 47.8756 4.2759 
14 11 2.5 39 47.7993 5.4978 
15 12 2 30 48.1570 4.1751 

 

The simulation results for the parameters given in Table 3-6 resulted in a reduction of the 

feasible region for possible solutions to the transfer function (deadtime [8 10], τ1 [5 7.5] 

and τ2 [30 40] (see appendix A). Parameters given for simulations 5 to 10 gave the most 

promising outputs when compared with Z-N’s measured process output  (see Figure 2-3 

and Figure 3-6). These values were therefore used in the closing simulations, for cascade 

and the two ideal setups for PID-controllers. The PI-controller actions were as described 

above.  
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Process 4, PI-controller
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Figure 3-6 Results for parameters 5 to 10.    

Parameters for Process 4 used in the simulations above, were then simulated with the 3 

considered controller transfer functions. The sets of parameters were renumbered from 1 

to 5.  Knobs setting for the 3 controllers are the same as described by Ziegler and Nichols 

in their 3-mode controller experiment (see Figure 2-3).   

 

Table 3-7 Controller settings for PID experiments.  

Controller settings Experiment Num. 
KC τI τD 

1 0.45 * KU PU /1.2 PU /8 
2 0.90 * KU PU /2.08 PU /8 

 
The two experiments listed above were simulated for each of the controllers and 

graphical presentations of the results are shown in the following parts. 
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3.2.4.1 Ideal (1) PID Controller. Transfer function for an ideal PID controller 

.

Ideal (1) PID-Controller
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Figure 3-7 Ideal(1) PID Controller. Experiment Num.1.  
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Figure 3-8 Ideal (1) PID-Controller. Experiment Num. 2 
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3.2.4.2 Ideal (2) PID Controller (page 7). Transfer function for an ideal PID 
controller stated by Seborg et al 2 
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Figure 3-9 Ideal(2) PID Controller. Experiment Num.1 
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Figure 3-10 Ideal (2) PID-Controller. Experiment Num.2 
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3.2.4.3 Cascade PID controller (see page 7) 

Cascade PID-Controller
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Figure 3-11 Cascade PID-Controller. Experiment Num.1 
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Figure 3-12 Cascade PID-Controller. Experiment Num.2 
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Simulation results from the ideal(1 ) PID-controlled processes gave responses that were 

in agreement with the results from Z-N. Tests with wider a controller setting area, i.e. 

used ZN-tunings as circa specification because of the reported difficulties setting the 

interacting control modes, but this just slightly improved the result conformities. 

Calculations were done iterative in Mathlab, by using the improvement effect of 

derivative action added compared with PI-action as convergence criteria. 
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3.3 Performance criteria for controllers 

There exist different tuning rules for controller settings and some of these tunings were 

applied to the processes in this section. The equations and the tuning rules are the same as 

those found in Skogestad’s “Probably the best simple PID tuning rules in the world”10. 

The tunings rules used were SIMC, IMC, ZN, Aströms and Tyreus-Luyben. The 

performance values Integrated Absolute Error, IAE, and Total Variation, TV, for 

controllers with different tunings were calculated.  

 

Tuning rules and the derivation of the corresponding controller parameters for simulated 

processes can be found in Skogestad10 except of ZN PID tunings. The applied controller 

was on the cascade form and processes were regulated with P-, PI and PID-controllers. 

The processes were simulated in Simulink, and IAE and TV were calculated in Mathlab 

by using the script IAEandTV.m (see Appendix B). A set point change and a load change 

were disturbances for the processes. IAE was calculated for process output (y) and TV 

was calculated for process input (u).  

 

Ziegler and Nichols tuning rules were assumed to be valid for a controller on the ideal 

form. Coefficient for a cascade-controller had to be calculated from coefficient for the 

ideal form 11. Primed values are for the cascade form. According to ZN-PID tunings the 

ratio τD/τI was equal ¼ and thereby canceled the last term in the equation below.    

' 1 1 4 /
2

' 1 1 4 /
2

' 1 1 4 /
2

D I

I
I D I

I
D D I

KK   

    

    

       

       

       

Equations 3-6 
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Seven process examples were simulated. Integral absolute error, IAE, and total variation, 

TV, were calculated from the resulting process input (controller output) and output. 

Results from simulation outputs are shown in Appendix C. The set point change was a 

unit, ys, and the input load disturbance, du, was of magnitude 0.5 if no other is specified 

for the process.        

 

3.3.1 Pure dead time process 
SkesG θ−=)(1  Equation 3-7 Time delay process 

  
Tunings KC 

. k K I. k . 
θ 

IAE  
(set point)

IAE 
(load) 

TV (set 
point) 

TV 
(load) 

SIMC (τc =θ) 0 0.5 2.17 1.07 1.08 0.54 
Astrom (Ms = 1.4) 0.16 0.47 2.13 1.05 0.84 0.50 
Astrom (Ms = 2.0) 0.26 0.85 1.54 0.75 1.18 0.72 

ZN 0.45 0.27 3.72 1.84 1.05 0.75 

Table 3-8 Process 1 Tunings and performance values 
  

3.3.2 Integrating process 

s
eksG

Sθ−

= ')(2  Equation 3-8 Integrating process with time delay. 

 Table 3-9 Process 2- Tunings and performance values 

Tunings KC 
. k’.θ τI / θ τD / θ IAE (set 

point) 
IAE 

(load) 
TV  

(set point) 
TV 

(load) 
SIMC (τc =θ) 0.5 8.00  3.92 8.00 0.72 0.78 

IMC 0.59   2.10 infinite 0.73 0.62 
Astrom  

(Ms = 1.4) 
0.28 7.00  5.77 13.75 0.43 0.82 

Astrom  
(Ms = 2.0) 

0.49 3.77  4.21 4.58 1.06 1.07 

Tyreus-
Luyben 

0.49 7.32  3.95 7.47 0.72 0.79 

ZN-PI 0.71 3.33  3.93 2.79 2.14 1.44 
ZN-PID 0.47 1 0.25 3.05 1.79 1.87 1.39 
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3.3.3 Process examples 
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Table 3-10 Processes 3, tunings and performance value. 

Tunings KC 
. k τI τD IAE  

(set point) 
IAE 

(load) 
TV 

(set point) 
TV 

(load) 
SIMC- PI 0.85 2.50 0 3.57 1.49 1.05 0.63 

SIMC- PID 1.30 2.00 1.2 2.65 0.77 1.81 0.74 
ZN-PID 1.28 1.33 1.33 2.80 0.57 3.21 1.11 
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Table 3-11 Processes 4, tunings and performance value 

Tunings KC 
. k τI / τO τD / τO IAE  

(set point)
IAE 

(load) 
TV 

(set point) 
TV 

(load) 
SIMC-PI 0.30 1.50  5.59 2.70 0.85 0.55 

SIMC-PID 0.50 1.50 1.00 4.32 1.59 0.82 0.58 
ZN-PI 1.80 5.24  4.68 1.47 4.64 1.35 

ZN-PID 1.20 1.57 1.57 3.30 0.75 3.02 1.17 
 
 

)1008.0)(104.0)(12.0)(1(
1)(5 ++++

=
ssss

sG  

Table 3-12 Process 5, tunings and performance values. 

Tunings KC τI τD IAE (set 
point) 

IAE 
(load) 

TV (set 
point) 

TV (load) 

SIMC-PI 3.72 1.10  0.45 0.59 4.43 2.82 
SIMC-PID 17.90 1.00 0.22 0.26 0.11 38.50 5.18 
Astrom-PI 
(Ms=2.0) 

4.13 0.59  0.58 0.31 7.46 4.09 

ZN-PI 13.61 0.47  0.58 0.31 7.46 4.09 
ZN-PID 9.07 0.14 0.14 0.39 0.06 43.96 8.24 

 
Remark: Ziegler-Nichols tunings on a PI-controller would have led to instability. 

)1028.0()1(
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Table 3-13 Process 6, tunings and performance values. 

(Load disturbance of magnitude 2) 
 

Tunings KC τI τD IAE  
(set point) 

IAE 
(load) 

TV  
(set point) 

TV 
(load) 

SIMC-PI 0.296 13.52  6.54 91.53 0.44 3.35 
SIMC-PID 1.397 2.894 1.33 1.91 4.17 5.57 6.41 

Aström  
(Ms = 2.0) 

0.47 7.01  5.24 30.02 1.04 4.68 

ZN-PID 1.923 0.905 0.905 3.41 2.66 19.36 14.81 
 

ZN’s PI- tunings gave an unstable response, i.e. increasing amplitudes, if it were applied 

to the controller. 
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4 Discussion  

4.1 The PID controller of Ziegler and Nichols. 

4.1.1 The preliminary evaluation of processes  
Based on Ziegler and Nichols experience with the transient for many types of processes 

they developed a method for tuning in closed-loop. They suggested that ultimate 

controller gain, Kcu, and ultimate period, Pu, where to be obtained from a closed-loop test 

of the actual process. They published their paper in 1942, but in the literature there are 

still discussed whether they used a controller with a configuration in accordance with the 

cascade or the parallel form.  

 

Trough finding a process model matching the one Ziegler and Nichols were controlling, 

one should have had a good start point for investigating different controller transfer 

functions. The simulation results in the previous chapter gave reasons for some notes. 

Implementations of the oscillation results were done only with the means of visual 

interpretation. This was however judged to give enough accuracy, because transferring 

the plotted results from ZN to data output could only be done at low precession. The dead 

time process, Process 2 and Process 3 were tested, but gave too little oscillatory 

movement when comparing with the results from ZN. Adding more dynamical behavior 

through a 2.order transfer function with dead time (process 4, p.19) was therefore an 

approach to the transfer function for Z-N’s process. Numerous variations in transfer 

function parameters, i.e. dynamical responses, were tested and compared with ZN’s. 

Presented process responses for parameters 5 to 10 in Table 3-6 were judged comparable 

to experimental example in the paper.  

  

4.1.2 Settings and simulation results for PID-Controllers 
Figure 3-7 to Figure 3-12 showed simulation results for the different PID-controllers. 

Results from the first experiment for the cascade controller agreed visual with the 

corresponding ZN results (Figure 2-3). The second experiment on the other hand had 

response not in agreement. The output oscillated with some amplitude decrease around 
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zero, rather than having a ¼ amplitude reduction ratio, which was the aim in Ziegler-

Nichols tuning rules and also the result from their experiment.    

 

The ideal pneumatic PID-controller (Ideal-2) equation proposed by Seborg et al.2, had 

simulation results far from the Ziegler-Nichols’. Experiment 1 gave considerable 

amplitude decrease, but the second experiment gave an unstable response with increasing 

amplitude. The unsuitability was an effect of the major difference between this controller 

and the two other. Ideal-2 controller brought along an extra term in the derivative part. 

( I

I

1 1 )
1

D
C C

D

G K   
   

           
Equation 2-4)   

An increase of the proportional gain to 90 % of the ultimate gain, which was the case for 

the last experiment, would almost denote a doubled proportional action for this type of 

controller. The controller gain was therefore brought higher than the corresponding gain 

margin permitted for closed loop stability.   

 

Simulation results for closed loop response for the Ideal (1)-controller distinguished itself 

in the aspect of approximating the ZN -process and thereby the controller transfer 

function. The Ideal (1) was the controller equation with most resemblance to a 

completely ideal controller. Visual interpretations of results were earlier considered 

accurate enough. Ziegler-Nichols gave however for the PI- and PID-experiments the 

effect of adding derivative action (see chapter. 2.1.2). The effect of adding derivative 

action for the control of Process 4 was a 38 percent reduced deviation from the set point 

(ZN had 71 percent) and period of oscillation was reduced by 26 percent (ZN reported 43 

percent). The process could therefore be sub-optimal and/or the almost ideal transfer 

function did not represent the reel one used by Ziegler-Nichols. Other parameters than 

presented in this report were also tested in the 2.order transfer function with dead time. 

This was done iteratively with a fixed increment on the parameter within wide ranges, but 

gave poor result improvements. An optimizing problem could have been formulated, but 

this would then have required an effective solver, which integrated both Mathlab-scripts 

and a Simulink-model, and the solver had to handled constraints. Higher order transfer 

function could then have been investigated effectively if this was formulated. The lack of 
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accuracy in ZN’s reported data and the true controller equation would still cause 

problems. 

 

4.1.3 The Taylor Fulscope Controller and related topics  
According to the article “Modern Control Started with Ziegler-Nichols Tuning 9,   

Connell 8 and others, Ziegler and Nichols were using the Taylor Fulscope controller when 

they developed their tuning rules. The choice of controller was obvious because they both 

worked for Taylor Instrument Companies, and were actively participating in finding 

application for the controller.  

 

Ziegler-Nichols tuning rule for PID-control is to have τI = 4 .τD, and this is assumed to be 

for an ideal controller: 

 

1(1 )C C D
I

G K s
s 

   
 Equation 2-1 

Comparing the ideal equation with the one derived for Taylor Fulscope controller; 

1 2 1 2

1 2 1 2 1 2

11
( )C

bG s
ag s

    
      

             
 Equation 2-6 

and inserted for τI = 4 .τD, this would eventually mean having τ1 = τ2. The actual gain 

would at this point approach infinity and the response would be unstable. If instead one 

tried setting τ2 = 4 .τ1 the corresponding effective time constants would have be τD = 

25/4.τI. The ratio 25/4 differs considerable from Ziegler-Nichols tuning rules presented in 

the paper. Ratio value for their last experiment in the paper was τD = 3.85.τI, and 

consequently the controller settings should have led to instability. This aspect stands in 

contrast to what ZN reported, which was a considerable improved control performance. 

The simple Taylor Fulscope equation had also some resemblance with a controller on the 

cascade form. The difference was the interaction term for the controller gain, which could 

lead to infinite gain. If the equation above was assumed to be correct, a cascade controller 

setup should have been a good approximation to the controller transfer function.   
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The equation for Taylor Fulscope controller was derived for infinite baffle-nozzle gain. 

Infinite gain is however not physically realizable. An equation describing the controller 

should perhaps take a limited gain in to count. Hougen12 derived an equation for a 

pneumatic parallel PID-controller with finite gain. Deriving a transfer function with finite 

gain for the Taylor Fulscope controller gave results agreeing with Hougen’s results. The 

function complexity was increased, and thereby the reducing the ease to compare it with 

an ideal PID controller transfer function.    

1 2(1 )(1 )
(1 )(1 )C C

a b

s sG K
s s

  
  

   
  

  Equation 4-1 PID transfer function from Hougen 

Where τa and τb are dependent on both τ1 and τ2. 

  
1 2

2
1 2 1 2

(1 )(1 )
(1 ) (1 ) 1C

s sG K
s s

  
      

  
     

 Equation 4-2 PID transfer function from C&K 

The equation above was derived from the book of Coughanowr and Koppel 7, by using 

nomenclature and assumptions from their derivation of PI- and PD-equations for the 

Taylor Fulscope controller. As earlier noted are these equations more difficult to handle 

than the simpler one with infinite baffle-nozzle gain, the constants in the denominators 

have to be calculated after experimental work according to Hougen. The transfer 

functions shown above maybe less restrictive to τD/τI ratios, and thereby not have the 

strange limitation that their own tunings could not be applied to the Taylor Fulscope 

controller.           

 

Pneumatic controllers depart from the “theoretical” ideal controller. Ziegler-Nichols used 

the differential analyzer at MIT to speed up data collection from simulated processes 9. 

The analyzer consisted of mechanical integrators that solved differential equations. A 

PID controller could be utilized on this device through differential equations. The 

controller could then be ideal, only limited by the machine accuracy and mechanical 

limits. A mathematical analysis of the functional behavior of the pneumatic PID-

controller was yet to be done at that time. Implementing a PID controller on the analyzer 
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would therefore have had more similarities with an ideal equation than a pneumatic 

controller. 

 

4.2 Performance criteria for controllers 
Set point changes or load changes were the process disturbances. The integral absolute 

errors for the process outputs, y, and total variation were depending on applied tuning 

rules to the controllers. The controller gain, KC, given from the different controller 

settings was varying considerably from setting to setting. Ziegler-Nichols tunings had in 

most cases the highest KC values. Increasing the controller gain leads to a larger change 

in the controller output. Increasing the gain to a certain limit can lead to response 

instability, causing overshoots and oscillation if the process is disturbed. An effect of the 

high-controller gain from ZN-tuning is relatively low IAE values, but on the other hand 

the controller output tends to oscillate with corresponding higher values for total 

variation, TV (see Table 3-8 to Table 3-13). Skogestad’s settings have relatively low KC 

values and hence slower response also observed by Holm et al.13, but do not have the 

same problem with robustness and stability. Aström’s settings gave controller gain in the 

mid-area compared with ZN’s and Skogestad’s settings. 

 

The offset from set point is reduced at different rates for the tunings. ZN’s tunings have 

relatively small integral time constants and therefore a faster response to error. As for the 

high-gain, a small integral time reduces the stability (see figures in Appendix C). This 

would easily be seen in a Bode-diagram by the lowered gain and phase margins. The 

IAEs for set point and load changes were small, but because the controller output often 

oscillated a higher total variation was reached. Skogestad’s settings had in general higher 

τI’s and with those had somewhat slower response to error, but the stability was kept. 

Skogestad’s rules gave small IAEs for set point changes. At load disturbance the integral 

absolute errors were slightly larger because of the slower response. Derivative action in 

the controller adds sensitivity to the direction of the error, and generally reduced the 

overshot and IAE. For Skogestad’s tunings the process output tends to oscillate for 

processes with small time constants, because of the slower response, with corresponding 

higher TV as in example Process 5.  
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5 Conclusion 
Based on the results from the simulations of different processes with controllers on the 
cascade and ideal forms, a conclusion could be drawn. Simulations with a controller on 
the ideal (1) form (Equation 2-3) gave results that were agreeing with Ziegler-Nichols 
results in the paper. The two other tested controller settings gave results that were not 
corresponding to ZN’s results. Ziegler and Nichols tunings are therefore most likely for 
an ideal PID controller. They were running simulations on the Taylor Fulscope controller, 
and several authors have done functional analysis of this pneumatic controller. 
Coughanowr and Koppel derived a transfer function for the Taylor instrument, but 
according to that function with infinite gain, Ziegler and Nichols tunings could not be 
applied to the Fulscope controller. Transfer function with finite gain should therefore be 
considered if a true picture of the pneumatic controller is sought. The transfer function 
would then be a more complex interaction function, which would be difficult to transpose 
to an ideal equation. Ziegler-Nichols used a differential analyzer at MIT to simulate 
processes at a higher speed. Transfer function for a PID controller had to be implemented 
on the analyzer and a PID controller on the ideal form would most probably have been 
applied to the differential analyzer. Depending on the true transfer function for the Taylor 
Fulscope controller, tuning results from MIT could only been used on the pneumatic 
device after translating them. An accurate translation would be troublesome without 
knowing the Fulscopes transfer function. There are according to mentioned aspects 
reasons to believe that the tuning rules are for ideal controller, and were mainly worked 
out on a mechanical differential analyzer. Verifying this statement could be done in an 
extension to this report. A functional analysis of the Taylor Fulscope controller should be 
done. The easiest way to verify this conclusion is to run experiments where Ziegler-
Nichols tunings are applied to the Taylor Fulscope controller. 
 

Different tunings for PID-controllers for were judged by performance criteria, Ziegler-
Nichols tunings gave a generally fast but unstable response. This was evident by the low 
values for integral absolute error (IAE) for the process output, and the higher values for 
total variation (TV). Skogestad’s tunings gave in general somewhat slower but more 
stable response. This corresponded in higher IAE values and lower TV values. 
 
 

_______________________________ 
Sigurd Myhre Hellem      Trondheim, 26.11.2001  
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