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Abstract

This paper considers the selection of controlled variables for the unconstrained degrees of
freedom, such that near-optimal operation is achieved with constant setpoints (“self-optimizing
control”). From a second-order Taylor approximation around the optimal point, we derive an
exact local method. This may be used to find the optimal linear combination of measurements
to use as controlled variables. We also derive the approximate singular value rule, which is very
useful for quick screening and elimination of poor candidate variables.
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Figure 1: Hiearchical implementation with separate optimization and control layers. Self-optimizing
control is when near-optimal operation is achieved with ¢, constant.

In this paper we consider optimal operation a steady state. The first step is to quantify the
desired operation by defining a scalar cost function. The second step is to optimize the operation
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by minimizing the cost with respect to the available degrees of freedom. The third step, equally
important in our view (but not considered to be an important issue by most people), is the actual
implementation of the optimal policy in the plant by use of its control system. Obviously, from a
purely mathematical point of view, it would be optimal to use a centralized on-line optimizing con-
troller with continuous update of its model parameters. However, for a number of reasons, we almost
always decompose the control system into several layers, which in a chemical plant typically include
scheduling (weeks), site-wide optimization (day), local optimization (hour), supervisory/predictive
control (minutes) and regulatory control (seconds). In this paper we consider the interaction be-
tween the local optimization layer and the feedback control layer, see Figure 1. The two layers
interact through the controlled variables ¢, whereby the optimizer computes their optimal setpoints
¢cs (typically, updating them about every hour), and the control layer attempts to implement them
in practice, i.e. to get ¢ = ¢;. The issue to be considered in this paper is then: What variables ¢
should we control? So far very little theory has been available to analyze this important problem,
and the objective of this paper is to study the problem from a local (linear) point of view.

Let us describe the issues in a little more detail. The setpoints ¢, for the controlled variables ¢
are kept constant between each update. However, this constant setpoint policy will, for example due
to disturbances d and implementation errors n, result in a loss, L = J — J,,, when compared to the
truly optimal operation. If this loss is acceptable, then we have a “self-optimizing” control system:

Self-optimizing control (Skogestad 2000) is when we can achieve acceptable loss with
constant setpoint values for the controlled variables (without the need to reoptimize when
disturbances occur).

The term was selected because of its close relation to “self-regulating control”, which is when
acceptable dynamic performance can be achieved with no control (i.e., with constant manipulated
variables). Correspondingly, “self-optimizing control” is when acceptable economic performance can
be achieved with no optimization (i.e., with constant setpoints ¢5). The term “self-optimizing control”
was used in an early paper by Kalman (Kalman 1958) to denote what is now called “optimal control”,
but the term has hardly been used in this context since then.

We assume in this paper that the optimally active constraints and are always enforced (imple-
mented), and consider the implementation of the remaining unconstrained degrees of freedom. It
is for such cases that the choice of controlled variables is an important issue, and Skogestad (2000)
presents three approaches for selecting controlled variables for self-optimizing control:

1. Select variables ¢ that satisfy certain properties which are derived below. The properties are
useful for identifying candidate controlled variables, but do not provide a quantitative means
for selecting the best variables.

2. Mintmum singular value rule: Select variables that maximize the minimum singular value of
the appropriately scaled steady-state gain matrix G’ from inputs (u) to the selected controlled
variables (c¢). This rule is derived below. It is not exact, but very simple and often works
surprisingly well. It is especially useful for eliminating poor candidates.

3. Exact method based on “brute-force” evaluation of the loss with alternative sets of controlled
variables kept at their setpoints.

The last method is normally very expensive numerically. However, in this paper we derive an
exact local method with a much smaller numerical load. Importantly, this local method may also be
used to find the optimal measurement combination to control.



U “base set” for the unconstrained degrees of freedom

d disturbance variables (slow-varying)

J(u,d) cost function to be minimized

L=1J— Jop(d) loss

Uopt () optimal value of u for given d

€y = U — Ugpt (d) deviation from optimal v (that results in a positive loss)

y = fy(u,d) measured variables

c=h(y) = f.(u,d) selected controlled variables; (function A free to select); dim(c) = dim(u)

Linearized: Ac = HAy = GAu + G4Ad
Copt (d) = fe(uopt(d),d)  optimal value of ¢ for given d
n=c— Cg implementation error
V= C5 — Copt(d) setpoint error
ec = € — Copt(d) = v +n  deviation from optimal ¢ (resulting in loss)
* nominal operating point (normally assumed optimal)

Table 1: Summary of important notation

The reader is referred to Skogestad (2000) for references to related work on selection of controlled
variables. Of the earlier work, Morari et al. (1980) came closest to the ideas presented in this paper.
Morari et al. (1980) considered a local second-order expansion of the cost, but did not consider the
expansion of the loss in terms of e, = ¢(d) — copt(d) (With a “moving” disturbance d), which is a key
element in this paper. They also did not consider the implementation error.

Although our background is in process control, and we make some references to this area, the
issue of selecting controlled variables and the idea of “self-optimizing” control has applicability in
most other fields of control.

2 Optimal operation

2.1 Mathematical formulation

The most important notation is summarized in Table 1. For simplicity, we do not in this paper
include time as a variable, that is, we assume that the cost can be evaluated using a pseudo steady-
state assumption (Morari et al. 1980). We assume that the optimal operation of the system can be
quantified in terms of a scalar cost function (performance index) J, which is to be minimized with
respect to the available degrees of freedom u, € R™o,

n&n Jo(x, Uy, d) (1)

subject to the constraints
91(z,ue,d) =05 go(z,up,d) <0 (2)

Here d € R™ represents all the disturbances, including exogenous changes that affect the system
(e.g. a change in the feed), changes in the model (typically represented by changes in the function
g1), changes in the specifications (constraints), and changes in the parameters (prices) that enter
in the cost function and the constraints. = € R" represents the internal variables (states). The
equality constraints (g; = 0 ) include the model equations, which give the relationship between the
independent variables (u, and d) and the dependent variables (z). The system must generally satisfy
several inequality constraints (go < 0), for example, we usually require that selected variables are
positive. The cost function .J, is in many cases a simple linear function of the independent variables
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with prices as parameters. In many cases it is more natural to formulate the optimization problem
as a maximization of the profit P, which may be formulated as a minimization problem by selecting
Jo = —P.

In most cases some of the inequality constraints are active (i.e. g5 = 0) at the optimal solution.
Implementation to achieve this is usually simple: We adjust the corresponding number of degrees
of freedom u, such that these active constraints are satisfied (the possible errors in enforcing the
constraints should be included as disturbances). In some cases this consumes all the available degrees
of freedom. For example, if the original problem is linear (linear cost function with linear constraints
g1 and go), then it is well known that from Linear Programming theory that there will be no remaining
unconstrained variables. For nonlinear problems (e.g. ¢; is a nonlinear function), the optimal solution
may be unconstrained, and such problems are the focus of this paper.

Since our considerations in this paper are of local nature, we assume that the set of active
inequality constraints does not change with changing disturbances, and we consider the problem in
reduced space in terms of the remaining unconstrained degrees of freedom (which we henceforth call
u). We divide the original independent variables u, in the “constrained” variables u' (used to satisfy
the active constraints g, = 0) and the remaining unconstrained variables u. The value of v’ is then
a function of the remaining independent variables (v and d). Similarly, the states x are determined
by the value of the remaining independent variables. Thus, by solving the model equations (g; = 0,
and for the active constraints g5, = 0) we may formally write x = z(u,d) and v’ = u(u,d) and we
may formally write the cost as a function of v and d: J = J,(x, u,, d) = J,(z(u, d), {v'(u,d),u},d) =
J(u,d). The remaining unconstrained problem in reduced space then becomes

min J (u, d) (3)

where u € R™ represents the remaining unconstrained degrees of freedom. J is not generally a
simple function in the variables v and d, but rather a functional. This is the problem studied in
this paper. For any value of the disturbances d we can then solve the (remaining) unconstrained
optimization problem (3) and obtain u,p(d) for which

min J(u,d) = J (vope (d), d) & Jopa(d)

The solution of such problems has been studied extensively, and is not the issue of this paper. In
this paper the concern is implementation, and how to handle variations in d in a simple manner.

2.2 Implementation of optimal operation: Obvious approaches

In the following we let d* denote the nominal value of the disturbances. Let us first assume that the
disturbance variables are constant, i.e., d = d*. In this case implementation is simple: We keep u
constant at us = uept(d*) (here u, is the “setpoint” or desired value for u), and we will have optimal
operation. (This assumes that we are able to achieve u = u,, which may not be possible in practice
due to an implementation error n = u — u, (Skogestad 2000)). But what should we do if d changes?
In this case uqp(d) changes and operation with a fixed value u, is no longer optimal. Two “obvious”
approaches from a mathematical point of view are:

1. If we do not have any information on how the system behaves during actual operation, or if
it is not possible to adjust u once it has been selected, then the optimal policy is to find the
best “average” value u, for the expected disturbances, which would involve “backing oft” from
the nominally optimal setpoints by selecting u, different from wqpi(d*). The solution to this
problem is quite complex, and depends on the expected disturbance scenario. For example,
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we may use stochastic optimization (Birge and Louveaux 1997). In any case, operation may
generally be far from optimal for a given disturbance d.

2. In this paper we assume that the unconstrained degrees of freedom u may be adjusted freely.
Then, if we have information (measurements y) about the actual operation, and we have a model
of the system, we may use these measurements to update the estimate of the disturbances d,
and based on this perform a reoptimization to compute a new optimal value uqp(d), which is
subsequently implemented, u = uqpt(d).

Both of these approaches are complex and require a detailed model of the system, and are not likely
to be used in practice, except in special cases. Is there any simpler approach that may work?

2.3 Implementation of optimal operation: Self-optimizing control

If we look at how real systems operate, then we see that in most cases a feedback solution is used,
whereby the degrees of freedom wu are adjusted in order to keep selected controlled variables c at
constant values c¢;. Here ¢ is a selected subset or combination of the available measurements y;
see Figure 1. Obviously, the idea must be that the optimal value of ¢, denoted copt(d), depends
only weakly on the disturbances d, such that keeping ¢ at a constant value ¢y indirectly results in
near-optimal operation. This basic idea was formulated more than twenty years ago by Morari et
al. (1980). who wrote that “we want to find a function ¢ of the process variables which when held
constant, leads automatically to the optimal adjustments of the manipulated variables, and with
it, the optimal operating conditions. [...] This means that by keeping the function c(u,d) at the
setpoint c,, through the use of the manipulated variables u, for various disturbances d, it follows
uniquely that the process is operating at the optimal steady-state.”

Let us summarize how the optimal operation may be implemented in practice:

1. A subset u' of the degrees of freedom u, are adjusted in order to satisfy the active constraints
g5 = 0 (as given by the optimization).

2. The remaining unconstrained degrees of freedom (u) are adjusted in order to keep selected
controlled variables ¢ at constant desired values (setpoints) c;.

Ideally, it is possible to find a set of controlled variables ¢ such that this results in “self-optimizing
control” where no further optimization is required, but in practice some infrequent update of the
setpoints c; may be required. If the set of active constraints changes, then one may have to change the
set, of controlled variables c, or at least change their setpoints, since the optimal values are expected
to change in a discontinuous manner when the set of active constraints change.

2.4 Self-optimizing control: Optimal controlled variables

Let us consider in more detail the “closed-loop” (self-optimizing) implementation where we attempt
to keep the variable(s) ¢ € R™ constant at the setpoint ¢,. The variables ¢ are selected functions
or combinations of the measured variables y = fyo(z,u,,d) € R™. The (candidate) measurements
y includes all the information we have of the system behavior, including possible measured values
of the disturbances d and independent variables u,, and information about changes in cost function
parameters (prices) and the specification (values) of the active constraints. We consider the uncon-
strained problem in reduced space, and by formally eliminating the states using the model equations
and active constraints, we may write

y = fy(u,d) (4)
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The controlled variables ¢ are selected functions of the y’s,

¢ = h(y) (5)
where the function A is free to choose. Substituting (4) into (5) gives
¢ = h(fy(u,d),u) = fe(u,d) (6)

We assume that the number of controlled variables ¢ equals the number of independent variables u,
or more exactly that we starting from ¢ = f.(u, d) can derive the inverse relationship

u=f(c,d) (7)

where the function f, ! exists and is unique. The number of included measurements (y’s) must then
at least be equal to the number of independent variables (u’s), but preferably it should be larger to
be able to correct for disturbances and measurement error.

Examples of possible controlled variables are the difference between two measurements, h(y) =
Y1 — Y2, the ratio between two inputs, h(y) = u1/us (assuming that the inputs are measured), linear
combinations, h(y) = h1y; + hoys + hau1 + haus, and so on. Provided the variables u can actually be
manipulated, an open-loop policy is obtained with h(y) = u.

To compare the alternative choices for ¢ we consider the loss with constant setpoints ¢;. The loss
L is defined as the difference between the actual value of the cost function obtained with a specific
control strategy and the truly optimal value of the cost function, i.e.

L=J(c,d) = Jop () (8)

In the feedback policy we adjust adjust u such that ¢ = ¢s + n, where n is the implementation error.
More precisely, the actual value of the controlled variable ¢ will differ from its optimal value cqpt(d)
due to the presence of

1. Setpoint error
v(d) < Cs — Copt () (9)

For a nominally optimal system, v(d*) = 0. The (change in) setpoint error is caused by changing
disturbances d.

2. Implementation error:
def

n'=c—cs (10)
The implementation error 7 is the sum of the measurement error and the control error. The
control error is often large if we use an open-loop policy (¢ = u), because the actually imple-
mented value of u differs from u,;. With a closed-loop implementation, the steady-state control
error is zero if we use a controller with integral action, so in this case the implementation error
n is equal to the measurement error (“noise”).

The total error that results in a positive loss is then

€c défc—copt(d) =v(d)+n (11)

!Figure 1 is a bit misleading as it (i) only includes the contribution to n from measurement errors, and (ii) gives
the impression that n is the measurement error in ¢, whereas in reality n in Figure 1 represents the combined effect
on c of the measurement errors for y.



Since the disturbances d and implementation errors n are generally assumed to be independent, we
have that the two errors v(d) and n are independent. Clearly, we would like to have both v(d) and
n small.

The optimal self-optimizing control structure may then be formulated mathematically as the
solution to the following problem:

mhin J(u, d) (12)

subject to
y = fy(u,d) (13)
h(y)=cs+n (14)

where the measurement combination h must be such that the function h(f,) is invertible (see above),
and J is some average value (or norm) of the cost over the sets of possible disturbances and imple-
mentation errors,

deD, neN (15)

In (14) it is assumed that the implementation error n is directly on c. This is reasonable if ¢
consists of individual measurements. However, if ¢ consists of measurement combinations then (14)
is reasonable only for the control error, which as argued above is zero in most cases. The only
contribution to the implementation error then comes from the measurement error for the individual
measurements y, so in this case (14) should be replaced by

h(y +n) = ¢ (16)

~ Instead of minimizing the average cost J in (12), we may equivalently minimize the average loss
L. In this paper, we consider the induced (or worst-case) 2-norm of the loss,

L= max L (17)
lF7l2<1

where (i) f' = el is the weighted control error (when deriving the minimum singular rule) and (ii)

dy . . . . .
= (ny’> is the vector of weighted disturbances and implementation errors (for the exact local

method).

3 Local Taylor series analysis

In the rest of this paper, all our considerations are of local nature, and, as discussed above, we
assume that the set of active inequality constraints does not change with the disturbances (Morari
et al. 1980).

3.1 Linearized models

The controlled variables (outputs) ¢ are related to the inputs and disturbances by the relationship
¢ = f.(u,d) in (6). For small deviations from the nominal point (denoted *) we may use a linearized
relationship between the unconstrained degrees of freedom u and any candidate set of controlled
variables ¢. The linearized model in reduced space becomes

Ac = GAu + GyAd (18)



where Au=u—u*, Ad=d—d*, Ac=c—¢*, G = (0f./0u)*T and G4 = (8f./0d)*T. Similarly, a
linearization of the relationship y = f,(u,d) in (4) yields

Ay = GYAu + GYAd (19)
where GY = (0f,/0u)*" and GY = (0f,/0d)*T, and linearization of ¢ = h(y) in (5) yields
Ac= HAy (20)
where the matrix H = (3h/dy)" is free to choose. Combining these equations yields
G=HGY; G,=HGY (21)

From a linear point of view, the issue of selecting controlled variables is then to find the optimal
choice for the matrix H.

3.2 Expansion of cost function (around fixed nominal point)

We assume that the cost function J is smooth, or more precisely twice differentiable, at the operating
point we are considering (for more detailed conditions, see the assumptions for the implicit function
theorem, as stated in Ganesh and Biegler (1987)).

A second order Taylor series expansion of the cost function about the nominal point(u*, d*) then
gives

Tud) = T+ T ) 4 T3 = ) (= 0 T )
1
+§(d —d)' T (d —d*) + (d — d)' T3, (u — u*) + O3 (22)

where

\ e e e (OI\T ., [(OJ\" ., ?J\" I\, 92T \"
J_J(u7d)"]u_<%)a‘]d_<%>>Juu_<w>a‘]dd_<w>a‘]du_<m>

We can write the expansion in (22) more compactly as

T(u,d) = J* + (J* J;‘)T(iZ)-i—%(ﬁZ)T’H*(ﬁZ) (23)

, : : : Au\"
where H* is the Hessian matrix of J with respect to ( AZ) ,
J* *
- (5 )
o Jia
The Hessian matrix is always symmetric, so J;, and J, are symmetric and J;, = J3, .

If the nominal point is optimal (so J is at a minimum) then

1. J; = 0 because the gradient with respect to the independent variables must be zero at the
optimum.

2. Aul'J¥, Au is positive for any nonzero vector Au, i.e. J*, is positive definite: J*, > 0 (if the
minimum is a saddle, then Au®J? Au is zero in some direction and J, is positive semidefinite,
ie. Jr, >0).



3.3 Optimal input as a function of d

We assume here that the nominal operating point (u*,d*) is optimal so we have d = d* and u* =
Uopt (@), and the gradient must be zero,
oJ\"
I=(2=) =0

Next, consider a disturbance and input change so that the new operating point is (u, d) with the new

gradient
_oJ

J, = —
ou

An first-order expansion of the gradient gives
Ju=Jdp 4+ Jo(u—u®) + I3, (d — d*)

We assume that we change the input so that also the new operating point is optimal, i.e. © = uop(d).
Then also the new gradient is zero, i.e. J, = 0, and we get

0= Ty (topt (d) — topt(d*)) + Jog" (d — d*) (24)

and introducing Augp = Uept(d) — uopt(d*) and Ad = d — d*, we derive a first-order accurate
approximation of the sensitivity in the optimal input to disturbances,

Augpy = =I5, " 5 Ad (25)

If we consider the original optimization problem (1) with the state variables included, then the
sensitivity can be evaluated as shown in Ganesh and Biegler (1987).

We may also express the setpoint error v(d) = ¢; — copt(d) directly in terms of the disturbance.
From the linearized model in (18) we have Acopy = GAugp, + GaAd, and assuming the setpoints are
nominally optimal, ¢; = copt(d*), (25) gives a first-order accurate approximation of the setpoint error

v(d) = Copt (4") = Copt(d) = —ADcop = (GJ5, " J5, — Ga) Ad (26)

3.4 Expansion of loss function (around moving optimal point)

Above we expanded the cost function at the nominal point (u*,d*), and this required a term for the
deviation of the disturbance from its nominal value, Ad = d — d*. Here, we instead expand the loss
function at the optimal point (uep(d), d) for each given disturbance d, that is, the point about which
we expand moves with the disturbance, and no term d — d* is needed. For a given disturbance d, a
second-order Taylor expansion of the cost function J(u,d) about the optimal point gives

J(u,d) = J(“Opt(d)a d) + JuT(“ - uom(d)) + %(“ - uom(d))TJuu(u — Uopt (d)) (27)

CIANE
= ()" o

2 opt
Juu - 8—J
ou?

9
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The loss function is defined as
L(u,d) = J(u,d) — J(uopt(d), d)

and we derive the following very useful second-order expansion of the loss function (Skogestad and
Postlethwaite 1996)

L(ut,d) = 5 (= top () T (1 — tega(d)) = 31 Tuues (28)

This expression quantifies how a (suffciently small) input deviation e, % u — Uopt (d) affects the loss.
From (18) we have, for a given disturbance d, that the corresponding deviation in the controlled
variables ¢ is ¢ — copt(d) = G (U — ugpt(d)). Here G is assumed to be invertible, see (7), and using
(11) we derive

ew = G (v(d) +n) (29)

where v is the setpoint error and n the implementation error for c. Note that (28)-(29) do not require
that the setpoints c, are nominally optimal.

For the case where the setpoints ¢, are nominally optimal, ¢, = copt(d*), substitution of (26) into
(29) gives

ew= (13, " T3y — G'Ga) (d—d") + G ' (30)

and we find that the loss L = el J;, e, may be expressed as a function of d and n.

Remarks:

1. As an alternative to (28) we can express the loss in terms of e, e Copt(d) = v(d) + n:
L r
L= ¢ Jece (31)

where Joo = G117 J,,GL.
2. In (28) and (31) the disturbance d enters implicitly through the errors e, and e..
3. The Hessian matrix Jy,, is independent of the choice of controlled variables c.

4. Note that Jy, in (27) is evaluated at the point (uept(d),d) which is different from the nominal point (u*,d*)
considered in (22). However, if the nominal point is optimal and the disturbance change is small (Ad = d — d*
is small) then Jy, = J7,.

4 Selection of controlled variables: Simple methods

4.1 Requirements for controlled variables

To minimize the loss L = Zel J, e, we want a small input error e,. From e, = G *(v(d) +n) in (29)
we then derive the following four requirements for a good candidate controlled ¢ variable
(Skogestad and Postlethwaite 1996):

Requirement 1. Its optimal value is insensitive to disturbances (so that the setpoint error v is
small)

Requirement 2. Tt is easy to measure and control accurately (so that the implementation error n
is small)
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Requirement 3. Its value is sensitive to changes in the manipulated variables u, that is, the gain G
from u to ¢ is large (so that the norm of G~ is small). (Equivalently, from (31) J.. = G 1 J,,G
should be small, that is the optimum should be “flat” with respect to the variable c.)

Requirement 4. For cases with two or more controlled variables, the selected variables are not
closely correlated (such that G is not close to singular, resulting in a large G™1).

All four requirements need be satisfied. In short, these requirements tell that we should select
variables ¢ for which their variation in optimal value and implementation error is small compared
to their adjustable range (the range ¢ may reach by varying u) (Skogestad and Postlethwaite (1996),
page 408).

Note that requirement 1 says that its optimal value should be insensitive to disturbances, and
not that its value should be insensitive to disturbances. Actually, we usually want its value to be
sensitive to disturbances so that we can detect them (and thus correct for them).

4.2 Minimum singular value rule

From (28) and (29) we have that
1 1
L= 565Juueu = 5”2”3 (32)
where
2= JY?e, = J2G e, (33)

where e, = ¢ — copt(d) = v +n, JY2JY2 = J,,, and ||z||; denotes the 2-norm of the vector. We
assume that each controlled variable ¢; is scaled such that the sum of its optimal range (v;) and
its implementation error (n;) is unity, and that for combined errors the 2-norm is less than 1, i.e.
letlla = [Id — chll2 = 1. We also assume that each “base variable” u is scaled such that a unit

change in each input has the same effect on the cost function J (such that the Hessian J),, = (%)
is a scalar times unitary matrix, i.e. J, = aU). We use primes (') to show that the variables u
and y have been scaled, and G’ denotes the scaled steady-state gain matrix from u’ to ¢. Then the

resulting worst-case loss is
1
2

1 1 a 1
M2 — 207 1/200-1\2 — 2 m1/20m-1y2 _ @
11 = 507G 1Y = 5(olal?6 Y = §

L = max
[let]]2<1

max 34
llecll2<1 (34)
where the constant o = (J},) is independent of the choice of ¢, and g(G’) denotes the minimum
singular value of the matrix G’ from u' to ¢!. The second equality follows since & is the induced
2-norm of a matrix. The third equality holds provided J;, is unitary. The last equality follows since
(G =1/a(@).

Thus, to minimize the loss L we should maximize g(G'), and we have derived the following rule:

Assume that the base variables u are selected and scaled such that they all have a similar
effect on the cost (or more precisely such that J,, = aU where U is a unitary matriz),
assume that we have scaled each candidate controlled variable ¢ such that the expected
variation in ¢’ —cq, is of magnitude 1 (including the effect of both disturbances and control
error), and let G' denote the resulting scaled gain matriz from v’ to y' (Ay' = G'AY’).
Then select controlled variables ¢ that mazimize the minimum singular value of G, o(G").

The expression (34) generally overestimates the value of the worst-case loss. This is because of
the following two limitations with the singular value rule when applied to multivariable systems (with
more than one controlled variable):
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1.

We have assumed that it is possible to scale the inputs such that J', = (8%2J/0u?)*™ is a
constant times unitary matrix. If this is not the case then one should search for another set of
“base case” inputs. This may not always be possible.

More seriously, we have assumed that any output deviation e. = ¢’ — ¢, satisfying [le.[[> < 1
is allowed, including the “worst-case” combination corresponding to ¢(G”). For this to be true,
we must assume the variations ¢; —¢;  for the each variable ¢; are independent. This generally
holds for the implementation error n;, but not for the setpoint error v; since their optimal

values as a function of d are generally correlated.

Some comments on the singular value rule:

5

1.

Interestingly, we note that this rule does not depend on the actual expression for the objective
function J, but it does enter indirectly through the variation of c,py with d, which enters into
the scaling. A more detailed procedure with scaling is given in the Appendix.

Because of the limitation 2 we must be a bit careful about eliminating candidate controlled
variables with a small value of g(G") (at least for cases where the setpoint error v is larger than
the implementation error n). However, we generally have that u — usy = G~'(v 4+ n), where
from the identity 6(G™') = 1/a(GQ) a small value of o(G) implies that G™' is large in some
direction. Furthermore, as just noted, the implementation errors n; are generally independent,
so any combination (direction) in n is allowed. It then follows that if we scale the outputs ¢
with respect to the implementation errors only, i.e. select cs; = |n;| (see Appendix), to obtain
the scaled matrix G”, then we may safely eliminate candidate controlled variables with a small
value of ¢(G"), because these will be sensitive to implementation errors.

The minimum singular value rule applies also to the case with “back-off”, since we do not
assume optimal nominal setpoints. We thus find that we should not use back-off for variables
that correspond to large directions of G~! (small directions of G), because then G~'v and thus
the loss L is large.

In this paper we use the minimum singular value rule to select controlled variables (outputs).
The minimum singular value can also be used as a tool for selecting manipulated inputs variables
(inputs) (Morari 1983), but this is actually an unrelated condition which requires a different
scaling of the variables.

Selection of controlled variables: Exact local method

In this section we assume that the setpoints are nominally optimal,

Cs = Copt(d”)

Upon substitution of (30) into (28) we can write the loss as

1
L=3I8 (3)

where

2= I [(oh Jua — G7'Ga) (d — d) + G™'n] (36)

First, let the elements in the positive diagonal matrix W, represent the expected magnitudes
of the individual disturbances. Second, and let the elements in the positive diagonal matrix WY
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represent the magnitude of the implementation error (measurement noise) associated with each of
the candidate measurements y. Recall that the controlled variables ¢ are selected functions of the
measurements y, which we linearly write as Ac = HAy. The expected magnitudes of the disturbances
and implementation errors are then

d—d* = Wyd
n= ngny’ = W,n¥

where d' and n¥Y are normalized to have magnitude less than 1, More precisely, we will assume
that the combined disturbances and implementation errors are two-norm bounded (see the discussion
section for a justification on why to use the two-norm),

dl
17 < 150 () (37)
Under these assumptions the worst-case loss is
_o(M)?
s b= (38)
where
M=(My; M,) (39)
My = J3f? (Jptdua — G™'Ga) Wa (40)
M, = J/2G~'w, (41)

and the dependency of M on the measurement combination matrix H enters through the matrices
G=HGY;, G4=HGY% W,=HW! (42)

The equality in (38) follows from the identity z = M f’ and the fact that the induced (“worst-
case”) 2-norm of a matrix is equal to its maximum singular value. Minimization of the loss L for any
(worst-case) combination of disturbances and implementation errors is then equivalent to minimizing
a(M).

Note that this method does not suffer from the two limitations of the singular value rule. In
particular, the disturbances d and measurement errors nY are generally independent variables, so
that any combination satisfying the two-norm bound in (37) is allowed (see the discussion section
for more on this).

5.1 Procedure for exact evaluation of loss

The exact local procedure for analyzing candidate sets of controlled variables ¢ then becomes:
1. Define the optimal operation problem (specify the cost function J).

2. Solve the nominal optimization problem with respect to the degrees of freedom u and find the
second-order derivatives of the cost, J,, and J,q4.

3. For each candidate set ¢ of controlled variables obtain the linear model Ac = GAu + G4Ad.
4. Define the uncertainty by obtaining the matrices W, and W,,.

5. For each candidate set ¢ compute the singular value a(M) of the matrix M in (39).

13



6. The set ¢ with the smallest value of (M) minimizes the loss L = 25(M)?.

Some comments:

1. It is clear from M, in (41) that G ' should be small to minimize effect of implementation
errors.

2. Yi and Luyben (1995) suggest to select controlled variables that minimize the input usage in
response to disturbances, (0u/dd). = G7'G4. This makes some sense as it is certainly clear
from M, that we do not want to make this term very large. However, from M, in (40) we see
that we do not want to make G™'G, zero (unless J.!J,q is zero, which it rarely is) , so this
certainly is not a general rule.

5.2 Optimal linear combination of measurements

Assume that we from a given a set of candidate measurements y (which generally also includes the
variables u,), want to find the best linear combination to control,

Ac= HAy (43)

Here the matrix H is free to choose, except that we make the restriction that the number of controlled
variables (¢’s) equals the number of independent inputs (u’s). From (38) the optimal local measure-
ment combination, in terms of minimizing the loss when there are disturbances and implementation
errors bounded as in (37), is obtained by searching for the matrix H that minimizes the 6(M), i.e.

Hypy = arg mbi[n (M) (44)

The optimal matrix H,p is generally a “full” matrix, that is, it is generally optimal to combine
all available measurements y in the controlled variables c.

6 Examples

Example 1

Problem statement. As a simple example we consider a scalar unconstrained problem. The
cost function is J = (u — d)? where nominally d* = 0. For this problem we have three candidate
measurements,

y1 =0.1(u —d); yo=20u; y3=10u—5d

We assume that unit magnitude of the disturbance and implementation errors (measurement noise),
that is, |d| <1 and |n}| < 1.

The question is: What should we select as the controlled variable ¢ (and keep constant at the
value ¢ = ¢;+n, where ¢; = cope(d*))? We first consider the use of the three individual measurements
¢ =1Yyi,c= 1Y and ¢ = y3. At the end, we will consider the optimal measurement combination.

Optimization. For this problem we always have J(d) = 0 corresponding to uep(d) =
d, Y1.0pt(d) = 0,y20p(d) = 20d and ysp(d) = 5d. For the nominal case with d* = 0 we thus
have ugpt(d*) = 0 and yopt(d*) = 0 for all measurements (i.e., we will use ¢; = copt(d*) = 0).

Exact nonlinear evaluation of loss. The losses can for this example be evaluated analytically,
and with the three measurements as controlled variables (c' = y1,¢® = yo,¢® = y3) ? we find that

L'=(10nY)?% L2 = (0.05n% — d)?; L = (0.1nY — 0.5d)

2Superscript k, e.g. c¥, is used to denote controlled variable set no. k.
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(For example, with ¢ = y3;, we have u = (y3 + 5d)/10 and with ¢ = ¢* + n® = nf we get
J?> = (u—d)? = (0.1n§ + 0.5d — d)?). With |d| <1 and |n?| < 1 the worst-case values of the losses
(with |d| =1 an |nY| = 1) are L' = 100, L? = 1.05%2 = 1.1025 and L? = 0.6> = 0.36, and we find that
the ¢ = y3 is the best overall choice for self-optimizing control and ¢ = y; is the worst. (However,
with no implementation error y; would be the best, and with no disturbances ys would be the best.)
We will now compare this result with the linear methods derived in this paper.
Linearized models. The linearized models for the three choices of controlled variables

=y : G'=01, G,=-0.1
=y G*=20, G:=0
S=y3: G=10, G3=-5
We have J, = 2(u — d), Jg = —2(u — d), Jyu = 2, Jug = —2, and at the nominal operating point we
have (where we as before omit the superscript * to simplify notation).

Ju:O: Jd:O: Juu:27 Jug = —2

1. Singular value rule. For the three choices of controlled variables we have without scaling
o(GY) = 0.1, g(G?) = 20 and ¢(G?) = 10. This would indicate that ¢* = y, is the best choice, but this
is only correct with no disturbances. The reason for the error is that we have not scaled the controlled
variables properly; in particular, we have not take into account the effect of the disturbances on the
magnitude of ¢ — copt(d).

Let us now follow the singular value procedure given in the Appendix. We use Method B since
the Hessian matrix is available.

1. Scale each input u; such that a unit deviation in each input from its optimal value has the
same effect on the cost function J:

Dy = usq = 1/\/ Juu = 1/\/§

2. For each candidate controlled variable obtain its maximum setpoint error vy,q,,; due to variation
in disturbances:

V; = Ci,opt(d*) - Ci,opt(d) = [GJJUIJud - Gd)] (dmaw B d*)

i

Here, (dpmar — d*) = 1 and for ¢ = y; we get
v' =01-=-(=2)—(=0.1)=0

and similarly, v2 = —20 and v® = 5.
3. For each candidate controlled variable c* it is given that the implementation error is n* = 1.

4. Scale each candidate controlled variable such that the sum of the magnitudes of v; ® and the
implementation error n; is 1, that is, use cse; = |v] + |ni]. We get
1 1
Dc:Cscl:O+1:1
D?=c,=20+1=21

D=, =5+1=6

scl —

3Subscript i, e.g. v;, refers to element no. i in the vector (although the vector v here happens to be a scalar.
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5. Obtain from (50) the scaled gain matrix, G' = D_'GD,, and from (34) the worst-case losses:

1
1 _ . I__. — . 1: =
=y G=1 0.1/v/2=10.071; L el 100

1
2 — : = _.9 2=0.67 L?= =1.102
C=y: G= 0/v2 = 0.67; G 025
1
3 — qa =21 2=1.18 L3 = =0.
=y G = 0/v2 8 G 0.360

6. Select as candidates those sets of controlled variables that correspond to a large value of the
minimum singular value ¢(G"): For a scalar G, ¢(G) = |G|, and the singular value rule tells us
(as expected) that y3 is the best choice for the controlled variable, followed by ys and ;.

We note from the computed losses, that for this scalar case, the singular value rule gives identically
the same results as the “exact” procedure, but this will not generally be the case when have more
than one unconstrained degree of freedom (such that c is a vector).

2. Exact local method. Minimization of the loss L for any (worst-case) 2-norm combination of
disturbances and implementation errors is equivalent to minimizing o(A) in (39)-(41) where we in
this case have Wy =1 and W,,, = 1. We find for ¢! = y;:

My = J3f? (Jotdua = G Ga) Wy = V2 (27" (=2) = 017"+ (=0.1)) - 1 =0

M, = J2G'W,, =v2-0.171 -1 =10v2
which gives
o(M)
2
Similarly, we find with ¢2 = y, and ¢ = ys:

L'= = %(5(0 10v/2)) = 100

I? = 5(];4)2 = %(a(—\/i V2/20)) = 1.0025
I = 5(24)2 = %(a(—\/iﬂ V2/10)) = 0.26

The reason for the slight difference from the ”exact” nonlinear results presented initially (L' =
100, L? = 1.1025, L3 = 0.36) is not due to nonlinearity, but that we in the nonlinear evaluation
allowed d and n individually to be less than 1, whereas we in the linear method assume that the
combined 2-norm of d and n is less than 1. (For example, in the nonlinear evaluation the worst case

was |d| = 1 and |n| = 1 which has a combined 2-norm of || (1) |lo = 1.414, which is not allowed in

the exact local method where the combined 2-norm must be less than 1.) As argued in the discussion
section, the use of the combined 2-norm is usually more reasonable from a practical point of view.
3. Optimal combination of measurements. Above we considered control of the individual
measurements 41, ¥y, and y3. We now want the best linear combination ¢ = Hy of all candidate
measurements

T
y=(y1 % ys u)
We have here included also the input u as a candidate measurement, with an assumed unit imple-
mentation error, n* = 1. We then have
Wy=1

n
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where WY is a 4 x 4 matrix. Furthermore, we have as before J,, = 2, J,g = —2,W; =1, and
GY=(01 20 10 1)"

GY=(-01 0 —5 0)"

We want to find the optimal matrix H = (hy he hs hg) by minimizing minimizes (M) as given
in (44). Numerical optimization yields Hop = (0.02094 —0.23296 0.97797 —0.01164), that is,
the optimal combination of the three measurements and the manipulated input u is

¢ = 0.02094y, — 0.23296y, + 0.97797y; — 0.01164u

We note, as expected, that the most important contribution to ¢ comes from the variable y3. The
loss is L = 0.04055, so it is reduced by a factor 6 compared to the previously best case (L = 0.26)
with ¢ = y3. The reason for this large reduction is because we are able to reduce the magnitude of
M, in (40) to almost zero. It should also be noted that in the optimal matrix H we have hy/hy = 20,
which is not surprising, since this is the ratio between the effective noise level for these otherwise
identical variables (recall that yo = 20u and y4 = u).

Example 2

The purpose of this example is to illustrate the limitations of the minimum singular value rule for
case with two or more independent variables u.

We consider a problem with two independent variables, u = (u; ug )T, and one disturbance d
of unit magnitude. The cost function is

J = (.Il — 332)2 + (331 — d)2
where the states depend linearly on u and d,

r = Gu + G%d

. (11 10\ . (10
G_(m 9>’Gd_(1o)

At the optimal point we have 21 = o = d and Jyp(d) = 0. At the nominal point we have d* = 0
which gives u = 0, z = 0, and we find

; _(244 222) J _(198)
we T \222 202/ 7T \180
We assume that the states are measured (y; = x1, y2 = ¥2), and assume an implementation (measure-

ment) error of magnitude 1 on each candidate measurement, y = (y1 Yo w1 U )T. We consider
three candidate sets for the controlled variables:

with

1

c :(yl yz)Ta 02:(111 U1)Ta c*

= (uw U2)T

(the latter is an “open-loop” policy). The unscaled gain matrix for three sets are
11 10 11 10 10
1_ 2 _ 3 _
G_(IO 9)’G_(1 0)’G_(0 1)
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Applying the scaling procedure in the Appendix (Method B) gives the following scaled gain matrices

Gl'—(0'352 0.352) Gg,_<0.352 0.352) G3,_(0.0064 0 )
- \0.320 0.317)° ~ \0.0064 0 ’ N 0 0.0070

with minimum singular values
a(G") = 0.0017, o(G*) = 0.0045, o(G?*) = 0.0064

We want to maximize the minimum singular value, so from this it seems that the open-loop policy
(¢* = u) is the best. However, computing the losses using the exact local method in (38) gives

L'=3,1>=271° =303

and we find that the open-loop policy is clearly the worst with a very large loss of 303, whereas the
two other policies have a loss of 3 and 2.7, respectively. This is close to the optimal, since a numerical
search for the optimal combination of all 4 measurements gave a loss of L = 1.999 and

H _(0.913 0.085 0.887 0.274)
°rt =\ 0.469 0.743 1.223 —0.118

The mimimum singular value rule therefore gives the wrong order. In addition, the losses L computed
based on the minimum singular values using (34) are a factor 100 or more too high.

This example was constructed with an almost singular matrix G, and the reason why the mini-
mum singular value rule fails in this case is that the optimal values of all the variables (y1, y2, u1, t2)
are strongly correlated, such that the assumption of independent variations in ¢ — copy does not hold.

11 -10
( 10 9
we find that the minimum singular value rule works well. In this case the minimum singular values
of the scaled gain matrices are

If we consider the same example, but with G* = >, which is not ill-conditioned, then

a(GY) =0.22, ¢(G*) =0.015, o(G*) = 0.031

(indicating that controlled variable ¢! is clearly the best), and this compares nicely with the exact
losses computed from (38),
L'=3,L*=761,L° =535

from which we see that ¢! gives by far the lowest loss.

7 Discussion

7.1 “Ideal” choice of controlled variables

If we for the moment disregard the implementation error n, then the ideal choice of controlled
variables would be to have v(d) = ¢; — copt(d) = 0 for any value of d. Here ¢, = ¢* is constant,
so to achieve this, we need the optimal value of the controlled variable to be independent of the
disturbance.

From a linear point of view, it is clear from (26) that a controlled variable that achieves G = Jy,
and G4 = J,4 is independent of disturbances.
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More generally, an ideal controlled variable would be a direct measurement of the gradient of the
cost function with respect to the input (since it is optimal for any disturbance to have this gradient
zero, we could directly specify its setpoint at zero). In particular, the controlled variable

0J (u,d)

c= fe(u,d) = 5

+ oy =0 Ju + og (45)
where o and oy are constants, is “ideal” in terms of having copt(d) independent of d. In general,
the realization of the “ideal” variable assumes that we can measure all the independent variables,
including the disturbances d.

In Example 1 we have J, = 2(u—d), so disregarding the implementation error, an ideal controlled
variable for this case would be ¢ = ay(u — d) + as. In general, however, the implementation error
n may be a very important factor in practical cases, and the “ideal” controlled variable may not be
the best after all (as confirmed by Example 1 where ¢ = y; = 0.1(u — d) actually came out as the
poorest controlled variable).

7.2 Use of 2-norm for noise and disturbances

!
nl

would have allowed for the “extreme” case with all variables simultaneously at their “worst-case”
values (|dg| =1, |n;| = 1). However, two reasons for using the 2-norm in (37) are:

Instead of the 2-norm in (37) we could have used the vector infinity-norm, || (d ) oo < 1, which

1. From (35) the loss is given by the 2-norm of the vector z, and it is therefore mathematically
convenient to use the 2-norm also for the disturbance and noise.

2. With the 2-norm it is not possible to have all the individual disturbance and noise variables
simultaneously at their “worst-case” values (|di| = 1, |n;| = 1). We argue that this is reasonable
from a physical point of view, since it is unlikely that this extreme worst case occurs in practice.

For example, for the case with three variables, the following three variable combinations have
2-norm equal to 1:

1 0 1/v/3
o] le=1 Q{1|le=1 [I|1/V3]l:=1
0 0 1/V/3

We note that we can have only one variable at a time equal to 1, and if all three variables are
equal in magnitude then their maximum value is 1/4/3 = 0.577.

This property of the vector 2-norm is also reasonable from a statistical point of view, from which
we expect that the use of many independent measurements reduces the variance. For example,
assume that we have p independent measurements y; of the same variable y, and we take their
average yj = 1—1) >, yi.- The noise (implementation error) on each individual measurement y; is
n;, i.e. y; = y + n;, and we assume that the noise satisfies ||n||; < 1, where n is vector of the
individual noises n;. We assume that the true variable is equal to zero (y = 0). We then have
y; = ny, and § = %Zle Yi = % (1-n), where1=(1 1 --- 1) is a row vector of length
p, and n is a column vector of the individual noises. The worst-case value of the measured
average is then

9] =

max (1-n) = %6(1) = %\/15: 1/vp

1
D linll2<1™
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(the first equality is the definition of the average, and the second equality follows from the
definition of the maximum singular value). That is, the worst-case average is reduced as we
increase the number p of measurements, and, importantly, this reduction goes as 1/ /P, which
is equal to the (estimated) reduction in statistical variance when we have p measurements
(samples) with the same mean. This agreement with statistics further justifies the use of the
vector 2-norm to bound n (On the other hand, if we used the vector infinity-norm, then we
would not get any benefit of adding extra measurements, which is unreasonable).

7.3 Relationship to indirect and partial control

Consider a problem which from the outset is a setpoint problem, that is the objective is to keep the
“primary” controlled variables y; at their setpoints y;,. This may be written on the form considered

in this paper by defining
1

1
J = 5(91 — 1) (41— y1s) = 56{61 (46)

To make the problem interesting we assume that the “ideal” choice ¢ = y; can not be used because

direct control of y; is difficult or impossible. Instead, the idea is to use indirect control, where we by

controlling a set of “secondary” variables c, indirectly achieve good control of y;. The linear models
relating the variables are

Ayl = GlAu + GdlAd (47)

Ac = GAu+ G4Ad (48)

where Au = u—u*, etc. We assume that the nominal operating point (u*, d*) is optimal, i.e. y; = yis.
Differentiation gives

Ju = (G1Au + Gd1Ad)TG1, Juuw = Gth Jua = G1TGd1

and we can compute the matrix M in the exact method (39) and search for the optimal measurement
combination. Note in particular that the term (J ! J,q — G 'Gy) in My is equal to (G1Gay — G1Gy)
where G = (GTG,)'GT is the pseudo inverse of G. From this it is clear that My = 0 for the ideal
(“uninteresting”) case with ¢ = y; (as expected). The goal of indirect control is to search for other
(“interesting”) choices for the controlled variables ¢ (measurement combinations) with Af; small or
even zero.

Additional insight about indirect control is obtained by solving (48) with respect to Au to obtain

Au=G1'Ac— GG Ad

As before, n is the implementation error in the controlled variables ¢ so Ac = ¢—c¢; = n. Substituting
into (47) and using e; = y; — Y15 then yields

e1 = GG 'n+ (Gar — G1G_1Gd) Ad — Ay (49)
T ~ ; vl
Yy d

where P are called the partial control gains. P, gives the effect of disturbances on e; with closed-
loop (“partial”) control of the variables ¢, and P, gives the effect of the control error. An alternative
form of (49) is e; = Py(n + v) = Pye.. To minimize J we want e; small and (49) shows that we
should select controlled variables ¢ such that the “‘partial gains” P, and P; are small. This simple
approach has been used on a distillation case study (Havre 1998). Here we find that we can not
use temperature measurements at the end of the column because of sensitivity to implementation
error n (measurement noise) (ie., P, is large at the column end), and we can not use measurements
close to the middle at the column yield because of sensitivity to disturbances (i.e., P, is large in the
middle). The best balance between sensitivity to measurement noise and disturbances is found when
the measurements are located somewhere between the end and the middle of the column.
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8 Conclusion

We have derived an exact and numerically efficient local method for evaluating the loss when con-
trolling the variables ¢ at constant setpoints, by evaluating (M) where M is given in (39). This
approach may also be used to numerically search for the optimal linear measurement combination,
Ac = HAy, to use as controlled variables.

A simpler method is to evaluate the minimum singular value ¢(G’), of the scaled gain matrix
G' from the “inputs” u to the controlled variables ¢. For the multivariable cases this method is not
exact, but it provides a simple method for quickly screening candidate sets of controlled variables.
This follows since a small value of g(G’) is always bad, as it implies that there is a combination of
implementation errors (n) that result in a large loss.

Appendix. Singular value rule with scaling

A procedure for use of the minimum singular value to select controlled variables is summarized
below. A key part of this procedure is the scaling, and we let a prime (") denote the scaled model and
variables. We have in the original units Ac = GAu. We scale each input j and controlled variable ¢
by a scaling factor
;G r Uy
¢ = , U=
Cscel,i uscl,j

The model in scaled units is then Ac¢' = G'Av’ with

G'= D,'GD, (50)
where the diagonal scaling matrices are

D, = diag{csa,i}, D, = diag{usa,;} (51)

Note that the scaling changes the units, but the problem itself is unchanged. Two method for
generating the scalings are given:

Method A: Direct use of the nonlinear model (this is usually preferred in practice due to its sim-
plicity)

Method B: Use of Hessians and linear model matrices obtained by linearizing the problem.
The procedure is then:

1. Scale each input u; such that a unit deviation in each input from its optimal value has the
same effect on the cost function J:

Method A: For each input find the change wu,q, ; that increases the loss L from 0 til 1 (or
more generally, select usy; = Auj/vAL).

Method B: Select us; = 1/4/[Juul i (the inverse of the square root of the corresponding
diagonal element of J,,).

2. For each candidate controlled variable obtain its maximum optimal variation vp.;; due to
variation in disturbances:
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Method A: From the nonlinear model compute the optimal parameters (inputs and outputs)
for various conditions (disturbances, operating points). (This yields a “look-up” table of
optimal parameter values as a function of the operating conditions.). From this identify

)

Method B: Assuming that the setpoints are nominally optimal, i.e. ¢; = copt(d*), we have
from (26)

V; = max <|C-9i - Ciopt,max" ‘Csi - ciopt,min

Vi = Ci,opt(d*) —_ Ci,opt(d) = [GJu_ulJud —_ Gd)]z (dmam — d*)

where d,,., — d* is a vector consisting of the expected magnitude of each disturbance.

3. For each candidate controlled variable obtain its expected implementation error n; (sum of
measurement error and control error).

4. Scale the candidate controlled variables such that for each variable 7 the sum of the magnitudes
of v; and the implementation error n; is similar, which corresponds to selecting the scaling

Cscli = "Uz‘ + ‘n1|

5. Compute the scaling matrices D, and D, from (51) and obtain the matrix G' = D;'GD, from
(50).

6. Select as candidates those sets of controlled variables that correspond to a large value of the
minimum singular value ¢(G’).

References

Birge, J.R and F. Louveaux (1997). Introduction to stochastic programming. Springer.

Ganesh, N. and L.T. Biegler (1987). A reduced hessian strategy for sensitivity analysis of optimal
flowsheets. AIChE Journal 33, 282—296.

Havre, K. (1998). Studies on controllability analysis and control structure design. PhD thesis. NTNU
Trondheim. Available from http://www.chembio.ntnu.no/users/skoge/.

Kalman, R.E. (1958). Design of a self-optimizing control system. Transactions of the ASME pp. 468
478.

Morari, M. (1983). Design of Resilient Processing Plants -III. Chemical Engineering Science
38(11), 1881-1891.

Morari, M., G. Stephanopoulos and Y. Arkun (1980). Studies in the synthesis of control structures
for chemical processes. Part I.. AICRE Journal 26(2), 220-232.

Skogestad, S. (2000). Plantwide control: the search for the self-optimizing control structure. J. Proc.
Control 10, 487-507.

Skogestad, S. and I. Postlethwaite (1996). Multivariable Feedback Control. John Wiley & Sons.

Yi, C.K. and W.L. Luyben (1995). Evaluation of plant-wide control structures by steady-state dis-
turbance sensitivity analysis. Ind. Eng. Chem. Res. 34, 2393-2405.

22



