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Abstract

We consider control structure selection, with emphasis on "what to control”, for a simple
plant with a liquid phase reactor, a distillation column and recycle of unreacted reactants. Plants
of this kind have been studied extensively in the plantwide control literature. Our starting
point is a clear definition of the operational objectives, constraints and degrees of freedom.
Active constraints should be controlled to optimize economic performance. This implies for
this case study that reactor level should be kept at its maximum, which rules out many of
control structures proposed in the literature from being economally attractive. Maximizing the
reactor holdup also minimizes the “snowball effect”. The main focus is on the selection of a
suitable controlled variable for the remanining unconstrained degree of freedom, where we use
the concept of self-optimizing control, which is to search for a constant setpoint strategy with
an acceptable economic loss. Both for the case with a given feedrate where the energy costs
should be minimined, and for the case where the production rate should be maximized, we find
that a good controlled variable is the reflux ratio L/F. This applies to single-loop control as
well as multivariable model predictive control.

1 Introduction

A common feature of many chemical processes is the presence of recycle. Variations of a plant with
reaction, separation and mass recycle, see Figure 1, have been extensively studied in the literature
(with different parameters, with and without a distillation column).

Gilliland et al. (1964) used this plant to study how the dynamics and steady state behavior are
changed by the positive feedback introduced by the recycle. Papadourakis et al. (1987) studied the
changes in steady-state RGA for the distillation column caused by introducing the recycle. Price and
Georgakis (1993) found that control of internal compositions, either distillate or reactor composition,
helps the control of bottom composition. Luyben (1993abc,1994) followed up Gilliland’s points and
focused on the high sensitivity that the recycle flowrate in some cases has to the feed-flowrate. He
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Figure 1: Reactor, separator (distillation) and recycle process.

called this the “snowball effect”, and as a remedy proposed to let the reactor holdup vary and as a
generic rule proposed that “one flowrate somewhere in the recycle loop should be flow controlled”
(Luyben 19935) Wu and Yu (1996) proposed that a better way of avoiding snowballing, and constant
reactor composition.

The recycle plant in Figure 1 has four degrees of freedom at steady state: one for the throughput
(feedrate Fy), one for the reactor (holdup M, ) and two for the distillation column (e.g. reflux and
boilup), see also Table 2. In the literature several alternative sets of controlled variables have been
proposed for the case with a given feedrate Fj and given (and controlled) product composition zp:

“Conventional” (denoted zp in the following): Control of M, and xp (fixed reactor holdup and
“two-point” distillation column control).

“Luyben’s structure” (LS) with varying reactor holdup: Control of F' and zp. (Luyben 1994).

“Balanced structure I” (with varying reactor holdup): Control of z, (reactor composition) and
zp. (Wu and Yu 1996).

“Balanced structure II” (with varying reactor holdup): Control of F/Fy and zp. (Wu and
Yu 1996).

“Luyben’s rule” (D or F') (Luyben 1993b) applied to case with constant reactor holdup: Control
of M, and D or F (structures CD or CF in Wu and Yu (1996)).

“Reflux ratio” (L/F): Control of M, and L/F (this paper).

Here Luyben’s structure (LS) and the balanced structures are “unconventional” in the sense that
the reactor level is left floating, which may at first may seem impossible. However, the reactor level
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has a steady-state effect through its effect on the conversion, and will therefore be indirectly given
by specifying some other variable, for example, x, or F' (If desired, for example for safety reasons,
one may install a reactor level controller as an inner cascade, with the level setpoint replacing the
flow used for level control as a degree of freedom. This will not affect the steady-state behavior).

The above works raise some issues that needs to be studied further. First, in most of the above
works, the overall operational objectives for the plant were not clearly defined. Second, a liquid
phase reactor should normally be operated at maximum holdup (liquid level) in order to optimize
steady-state economics, whereas the reactor level floats in the “unconventional” structures of Wu and
Yu (1996) and Luyben. This has an impact on the steady state economics, an issue that has been
overlooked by most researchers so far. Third, “Luyben’s rule” of controlling a flow in the recycle
loop (D or F) has not been properly substantiated. To the contrary, Wu and Yu (1996) found that
the “Luyben structure” (LS) resulted in snowballing in the reactor holdup, and that “Luyben’s rule
with constant reactor holdup” (D or F') could handle only very small throughput changes.

The objective of this paper is to study in a systematic manner the selection of controlled variables
for the reactor with recycle process. To this end we will use the general procedure of Skogestad (2000),
where we first define the economic and operational control objectives and identify the available
degrees of freedom. The goal is to find a self-optimizing control structure where acceptable operation
under all conditions is achieved with constant setpoints for the controlled variables. However, before
describing this procedure and applying it to the case study, we discuss in some more detail the
socalled snowball effect.

Plant data. The plant and design data are taken from Wu and Yu (1996). The model is simple
and assumes a binary feed (zo = 0.9 mol A/mol and F; = 460 kmol/h), isothermal reactor with
maximum holdup 2800 kmol, and a first-order reaction A — B with k = 0.341 h~!. The distillation
column has 22 stages including reboiler and condenser, liquid feed at stage 13, constant relative
volatility a4p = 2, and constant molar flows. The purity requirement for the product is zgp < 0.0105
mol A/mol. From the total mass balance of component A, the nominal reactor concentration is

Fy(zo — zp) _ 460(0.9 — 0.0105)
kM, ~0.341 - 2800

Ty =

= 0.43 (1)

2 The snowball effect

Luyben (1993a) introduced the term “snowball effect” to describe what can happen, for the recycle
process in Figure 1, in response to an increase in the fresh feedrate Fy. For our process, where all
the feed is converted to the product, the increase in F; must be accomponied by a corresponding
increase in the conversion in the reactor. Assume that we in Figure 1 have a liquid phase CSTR with
a first-order reaction. The amount of A converted in the reactor is then

kM,x, [molA/s]
We see that there are three options for increasing the conversion (Wu and Yu 1996):
1. Increase the reaction constant & [1/s| (e.g. by increasing the reactor temperature)
2. Increase the reactor holdup M, [mol]
3. Increase the reactor mole fraction z, [mol A/mol| of reactant A

We assume here that option 1 (incrasing &) is not available.



Option 2 (increasing the reactor holdup) is probably the “default” way of dealing with a feedrate
increase when seen from a design person’s point of view. More specifically, a design person would
increase all extensive variables (including flows) in the process proportionally to Fp, such that the
intensive variables (compositions) in the process were kept constant. This is also the idea behind
the “balanced” control structures of Wu and Yu (1996). However, changing the reactor holdup
(volume) during operation may not be possible, or at least not desirable since for most reactions
it is economically optimal to use a fixed mazrimum reactor volume in order to maximize per pass
conversion.

Assuming k£ and M, constant, the only remaining way to increase conversion is to follow option
3 and increase x,, which can be done by recycling more unreacted A. However, the effect of this is
limited, and the snowball effect occurs because even with infinite recycle D the reactor concentration
cannot exceed that of pure A (x, = 1). More precisely, for the process in Figure 1 the material
balance equations for component A and total mass are (Luyben 1994)

Overall process : Fyxg = Berg — kM,z,.; Fy=B

Column: Fzx, =Bxgp+ Dzxp; F=B+D

Here x4, xp and zp denote the mole fractions of component A in streams Fy, D and B, respectively.
By eliminating x, we find:

]{)MT(SED - 333) (2)
k‘MT.TD — F()(.’EQ — .TB)

If the reactor holdup is large relative to the feedrate, then we have almost complete conversion in one
reactor pass and no recycle, so D =~ 0 and F' =~ Fj, that is, the column feedrate F' increases linearly
with the fresh feedrate Fy. For larger values of Fj, the denominator in (2) will approach zero (and
x, will approach zp), and we will experience “snowballing” with very large increases in D and F in
response to only moderate increases in Fy. If the reactor holdup is too small compared to Fj, that
is if

F:FO

Fo(l“o - 333)

M, <
- k.’l?D

(3)
then the desired steady-state is infeasible (even with infinite flow rates for D and F'). In practice,
because of constraints, the flow rates will not go to infinity. Most likely, the liquid or vapor rate in the
column will reach its maximum value, and the observed result of snowballing will be a breakthrough
of component A in the bottom product, that is, we will find that we are not able to maintain the
product purity specification (zg).

To avoid this snowballing, Luyben et al. and Wu and Yu (1996) propose to use a varying reactor
holdup (option 2), rather than the “conventional” control structure with constant holdup (option 3).
Their simulations confirm that a variable holdup results in less snowballing in D and F', but these
simulations are misleading, because they do not consider the reactor holdup. In fact, the Luyben
structure (LS), with fixed D or F', may result in snowballing in the reactor holdup (Wu and Yu 1996).
This is confirmed by Figure 2, where we see that that an increase in the feedrate may result in:

e Conventional structure (constant xp) with constant reactor holdup: Snowballing in recycle
flow (this is the snowballing considered by Luyben)

e Luyben structure (LS) with varying reactor holdup: Snowballing in reactor holdup

e Luyben rule (constant D or F') with constant reactor holdup: Snowballing inside column
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Figure 2: Snowballing: Steady-state values of the recycle flow (D), reactor holdup (M,) and column
boilup (V) as a function of feedrate Fj for alternative control structures.

Actually, the snowballing in the recycle flow with the conventional structure is not as even as poor
as shown in Figure 2. This is because we here used an intermediate value for the constant reactor
holdup (M, = 2800 kmol), whereas from (2) we find that the lowest value of F for a given value of Fj
is when the reactor holdup M, is at its maximum — so with a fixed mazimum holdup the conventional
structure (xp) actually gives smaller flows (D and F') than the Luyben structure (LS) in all cases.

In summary, the “snowball effect” is a real operational problem if the reactor (or some other unit
in the recycle loop) is “too small”, such that we may get close to or even encounter cases where the
feedrate is larger than the reactor (or rather the system) can handle. The “snowball effect” makes
control more difficult and critical, but it is not a control problem in the sense it can be avoided
by use of control. Rather, it is a design problem which could have been be avoided by installing a
sufficiently large reactor to begin with. In conclusion, for an existing plant the best remedy against
snowballing is to use the maximum reactor holdup.

3 General procedure for selecting controlled variables

A plant generally has several operational degrees of freedom (manipulated variables) (there are six
for our recycle plant, see Table 2). The objective of the control system is to adjust these manipulated
variables to assist in achieving acceptable operation of the plant. Thus, to design a control system
in a systematic manner we first need to define the operational requirements (constraints) and the
goal of the operation. In general, we have upper and lower constraints on all extensive variables
in a process, and on many intensive variables. The goal of the operation is quantified by defining
a scalar cost function J to be minimized. The optimum (minimum value of J) usually lies at
some constraints, and usually most of the degrees of freedom are consumed to satisfy these “active”
constraints. However, in many cases there are unconstrained degrees of freedom, and the difficult
issue is to decide what to control (that is, what to keep at a constant setpoint) in order to satisfy these.
If we used optimal setpoints and there were no uncertainty or disturbances, then this choice would not
matter. However, there will always be uncertainty and disturbances, and the optimal setpoints for
the controlled variables should be insensitive to such changes. In addition, the shape of the objective
function should be “flat”, so that an implementation error will give a small loss (Skogestad 2000).
To address this is a systematic manner, we will consider the economic loss imposed by keeping a
given set of variables constant.

We assume that J is the economic cost, determined mainly by the plant’s steady-state behavior,
and from Skogestad (2000) adopt the following procedure for selecting the controlled variables:



Step 1: Degree of freedom analysis. Determine the degrees of freedom available for steady-state
optimization. The easiest way is to count the number of manipulated variables and subtract
the number of variables with no steady state that need to be controlled (e.g. reboiler and
condenser levels in distillation).

Step 2: Cost function and constraints. Define the optimal operation problem by formulating a
scalar cost function J to be minimized, and specify the constraints.

Step 3: Identify the important disturbances. Here “disturbances” include process distur-
bances, implementation errors in the controlled variables (sum of steady-state control error
and measurement noise), as well as the effect of changes and errors (uncertainty) in the model.

Step 4: Optimization. The steady-state optimization problem is solved both for the nominal case
and for the identified range of disturbances.

Step 5: Identify candidate controlled variables c. Active constraints should normally be con-
trolled, as this optimizes steady-state cost. To select between the remaining unconstrained
candidates we proceed to step 6.

Step 6: Evaluation of loss. Evaluate the loss for alternative sets of controlled variables c. Here
the loss is the difference between the cost with constant setpoints c¢; and the theoretical optimal
cost (with setpoints reoptimized for each disturbance d),

L = J(cy,d) = o (d) (4)
“Self-optimizing” controlled variables ¢ with a small loss L are preferred.

Step 7: Further analysis. Normally several candidates gives an acceptable loss, and further anal-
ysis may be based on a controllability analysis.

4 Selection of controlled variables for the recycle plant

In this section, we use the concept of self-optimizing control, introduced above, to select the controlled
variables for the recycle plant. To quantify the goals of operation, we define a scalar economic cost
function J to be minimized, or equivalently, a profit function P [$/s] to be maximized. We here
select P [$/h] as the difference between the value of the product B and the feed Fj, and subtract
the operational costs for distillation and recycling:

P=—-J=ppFy—pvV —ppD (5)

Here pg, [$/mol] is the difference between the product and feedstock prices and we have used B = Fj.
pyV is the energy cost related to distillation (since the column has a liquid feed and total condenser,
the vapor flows to be evaporated and condensed are approximately the same, and py [$/mol] is the
sum of the price for reboiling and condensing). The recycle cost ppD may include costs for pumping
and preprocessing (e.g. heating) the stream D. This cost is here neglected, but for gas phase systems
with compression the term is usually important.

In general, the optimal way of operating the plant depends on the relative prices. However, for
our problem the following two constraints are always active:

e Since the product (mostly B) is more valuable than the feedstock (mostly A), it is optimal to
put as much unreacted A into the product as possible, that is, it is always economically optimal
to operate with the bottom purity at its constraint (i.e. zp = 0.0105).
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e Since there is no economic penalty involved in increasing the reactor holdup, it is optimal for
this reaction to keep M, at its upper bound (i.e., M, = 2800). This maximizes conversion “per
pass”, which reduces recycle and thereby the load on the distillation column.

We will in the following consider two different cases:

Case I: Given feedrate. With F; given and negligible recycling costs (pp = 0), the profit P
is only influenced by the energy costs py'V for heating and cooling in the distillation column. Thus,
with a given feedrate Fj, optimal operation is obtained by minimizing the boilup V.

Case 1II: Variable feedrate. With Fj as an unconstrained degree of freedom, we find that it is
optimal to incease the feedrate Fj as much as possible (since the profit P increases linearly with Fj
when we increase all other flows in proportion to Fy). However, there are always capacity constraints,
and we assume here that the first one to become active is the vapor flow constraint V' < V,,,, in the
distillation column. With V' = V,,,, and negligible recycling costs, the profit P is only influenced
by the feedrate Fy. Thus, with variable feedrate, optimal operation is obtained by maximizing the
feedrate (and production rate) Fj.

All the results in this section are based on a steady-state analysis. Table 1 summarizes the results
which are further discussed below.

4.1 Case I: Given feedrate, minimize operation cost (energy)

Step 1: Degree of freedom analysis. From Table 2 we see that there are 4 degrees of freedom
at steady-state, including Fj.

Step 2: Cost function and constraints. As noted above the objective is to minimize the vapor
boilup, i.e. J = V. There are constraints on the reactor holdup (M,), product quality (zp) and
column capacity (boilup V). In addition the feedrate Fj is given.

Step 3: Disturbances. The main disturbance is in the feedrate F,, and we consider £20%
changes. We also consider disturbances in the feed composition, o = 0.9 & 0.1, but these turn
out to be of much less importance. The implementation error is assumed to be £20% in each of the
candidate variables, and we also consider a +0.002 implementation error (possibly caused by poor
dynamic control) in the product composition z. (Other possible disturbances, not considered here,
include a change in the reaction rate constant k, and a change in the reactor holdup M,).

Step 4: Optimization. Table 3 shows the results of the nominal optimization. As expected, the
two constraints on xp and M, are active. Since the feedrate Fj is given, we are then left with one
unconstrained degree of freedom.

Step 5: Candidates for control. We choose to control the active constraints in order to optimize
operation, i.e. M, and zg are controlled. This rules out the “unconventional” structures with variable
reactor holdup, including the “Luyben structure” and the “Balanced structures”.

Some of the candidates for the remaining degree of freedom are listed in Table 1. Two candidate
variables have already been eliminated:

e The reactor composition x, cannot be specified independently and is thus not a candidate for
control. This follows from (1), since the feed is given (Fy and o) and xz and M, are controlled
at their constraints.



CASE I: MIN. OPERATION COST (ENERGY)

Step 1: Degree of freedom analysis (see Table 2)

CASE II: MAX. PRODUCTION RATE

Degrees of freedom at steady state 4

Degrees of freedom at steady state

Step 2: Cost data
Objective function
minimize %
Constraints
Reactor level M, < 2800
Product quality zp < 0.0105
Feedrate Fy = Fyy e = 460

Step 3: Identify most important disturbances
Disturbances
Feedrate Fo mas = 20%
Implementation error +20%

Step 4: Optimization

Objective function
maximize F,
Constraints
Reactor level M, < 2800
Product quality zp < 0.0105
Vapor boilup V < V4. = 1500

Disturbances
Maximum vapor boilup Ve, £+ 20%
Implementation error +20%

Active constraints at the optimum
Mr, IB, 1%

- Active constraints at the optimum 3
MT, IB, F()
= Unconstrained degrees of freedom 1

Unconstrained degrees of freedom

Nominal optimum: V=1276

Nominal optimum: Fy=497.8

Step 5: Identlfy candidate controlled variables for unconstralned DOF (c)

L L F D
F L D aF VaxDa Fo’ F

L L D
F L Da D> Fa VaxDa Fo’ Fo

Step 6: Evaluation of loss with constant nominal setpoint, ¢ = ¢)

Good candidates
zp, L/F, L/D
Poor candidates
F,D, L, F/Fy, D/F,, L]V

Step 7: Further analysis.

Good candidates
zp, L/F, L/D

Poor candidates
F,D,L,F/Fy, D/Fy, L]V

Ratio control (L/F or L/D) is easier than composition control (zp).

Conclusion
Control % or % (4 active constraints M,, zp, Fy)

Control £ or £ (+ active constraint M,, zp, V)

Table 1: Summary of self optimizing control analysis.



Manipulable variables 6
Product flow B
Vapor boilup V
Reflux L
Recycle (distillate) D
Reactor effluent F
Feed Fj
- Controlled variables with no steady state effect 2
Condenser level Mp
Boiler level Mpg
= Degrees of freedom at steady state 4

Table 2: Degrees of freedom analysis.

Case I: Min. V' Case II: Max. Fj

Feedrate Fj 460 497.8 [kmol/h]
Reactor effluent F 958 1113 [kmol/h]
Vapor boilup V 1276 1500 [kmol/h]
Reflux L 778 885 [kmol/h]
Recycle (distillate) D 497 615 [kmol/h]
Recycle composition zp 0.82 0.83 [mol A/mol]
Bottom composition zp 0.0105 0.0105 [mol A/mol]
Reactor composition z, 0.43 0.46 [mol A/mol]
Reactor holdup M, 2800 2800 [kmol]

Table 3: Nominal optimization results for the two cases.

e The boilup V in the column is not a candidate for control as specifying it below its minimum
(optimum) value results in infeasible operation.

Step 6: Evaluation of the loss. Figure 3 shows the loss in energy (i.e., increase in boilup V)
imposed by keeping alternative controlled variables fixed at their nominal setpoints. The losses due
to implementation errors (third row) and disturbances in Fy (first row) are quite large for some
variables. For example, we see from the first row that with L constant (left plot) a decrease in
feedrate by 10%, results in using about 5% more energy than the optimal; this is reduced to less
than 0.1% if we keep zp constant and less than 0.01% if we keep L/F constant (right plot). The
disturbances in feed composition zy (second row plots) result in very small losses in all cases. The
loss due to a back-off in bottom composition from 0.0105 to 0.0085 is about 3% for all structures
(last row).

In summary, Figure 3 shows that control of zp, L/F or L/D give small losses (right plots), while
control of F', D, L, L)V, F/F, or D/Fy give large losses (left plots). In particular, we find that
Luyben’s rule of fixing one flow in every recycle loop, corresponding to fixing D or F', results in very
large losses and even infeasibility, because V' goes to infinity when Fj increases (left plot in second
row).

Step 7: Other considerations. The conventional control configuration with maximum reactor
holdup (M,), constant product composition xp and constant setpoint for the distillate composition
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(zp) has very good self-optimizing properties with small economic losses. However, it may be costly
to obtain on-line measurements of zp, and two-point distillation composition control (of zp and zp)
is known to be a difficult control problem due to interactions. In any case, the analysis shows that
control of the internal distillate composition xp is not really needed, since in terms of economic loss,
control of L/F (or L/D) performs almost equally well. The latter results in a simple control problem

and is therefore preferred. Figure 4 shows a possible control structure involving the following single
loops: M, <+ F, L/F < L, x5 <V, Mp <> D and Mg < B.

4.2 Case II: Maximize the feedrate

We now consider the case where the feedrate is a degree of freedom and should be maximized. This
case is of more practical importance, since small losses in production rate usually have a large impact
on overall plant economics.

Step 1: Degree of freedom analysis. As before, there are four degrees of freedom at steady
state, see Table 2.

Step 2: Cost function and constraints. The goal here is to maximize the production rate,
i.e. to minimize J = —Fj, and there are constraints on vapor boilup, reactor holdup and product
composition.

Step 3: Disturbances. The main disturbance is in the actual value of the (maximum) boilup
Vinaz, Which may vary, for example, due to variations in the column pressure or available heat to the
column.

Step 4: Optimization. Table 3 shows the results from the nominal optimization. We find as
expected that all three constraints are active, including the maximum constraint on the vapor boilup.
This leaves one unconstrained degree of freedom.

To understand why the production rate is limited, consider Figure 5. At low production rates
(Fy) there is almost a linear relation between D and Fy. But as Fj is increased, the load to the
distillation column increases (F' = Fy + D increases), and since V = V4, is constant we eventually
experience “snowballing” with breakthrough of product B in the top of the column. This results in a
decrease (rather than the desired increase) in the fraction z, of A in the reactor, and the production
rate drops. This happens at Fy = 492.6 kmol/h (the optimal point).

Step 5: Candidates for control. We consider the same candidate variables as in case 1.

Step 6: Evaluation of the loss. Figure 6 shows the loss in production rate due to a disturbance
in V' and due to implementation error. Although the details are different, the results are similar to
case I, with small losses for control of xp, L/F and L/D.

Step 7: Other considerations. Again, since controlling L/F or L/D gives a much easier control
problem for the distillation column it will be preferred over control of . A possible control structure
is shown in Figure 7. To be able to handle also case I, we have included is a cascade flow control
loop where we obtain Fy = Fy, by adjusting V, but this flow control (FC) loop is not used in case
IT where we have maximum vapor boilup (V = V42 )-
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Comment: The same variable, L/F or L/D, turned out to be a good unconstrained controlled
variable for both cases I and II. This is generally attractive, as it may reduce the effort in reconfiguring
the loops when, for example, the economic conditions change from case I (given production) to case
IT (maximize production).

5 Closed-loop simulations

In Figure 8 we show for case I (given feedrate Fp, no capacity limit on V') the closed-loop dynamic
responses in bottom composition to a 20% increase in feedrate Fy for the following structures:

Conventional (zp) : M, & F,2p < L, 25 <V, Mp <> D and Mg < B.
Reflux ratio (L/F) : M, <> F,L/F <> L, z3 <V, Mp <> D and My < B.
Luyben rule (F) : M, <> D, F constant, g <+ V, Mp <> L and My < B.

Luyben structure (LS) (varying reactor holdup): F' constant, zp <> L, xp <> V, Mp <> D and
MB + B.

Note that we have used single-loop controllers and <+ means “is paired with” or more precisely “is
controlled by”. The pairings are based on a relative gain array analysis, and Pl-settings are found
using the IMC-tuning approach. We selected 0.25 min as the desired closed-loop time constant for
the level loops and 2.5 min for the other loops. For the three first structures we have constant
maximum reactor holdup, M, = 2800 kmol.

The conventional structure and reflux ratio structure yield very similar and acceptable dynamic
responses.

The Luyben rule with constant F' for the case with constant reactor holdup yields instability. It
is not able to maintain the desired bottom composition even for small increases in the feedrate. This
confirms the steady-state results in Figure 3 and the findings of Wu and Yu (1996). This is easily
explained: As the feedrate Fj is increased, we must with constant F' = Fy+ D reduce the recycle D to
the reactor (which is the opposite of what we would like to do). This results in snowballing inside the
distillation column with accumulation of unreacted component A, and operation eventually becomes
infeasible.

The Luyben structure (LS) (with varying reactor holdup) clearly yields the best dynamic response
in xp; this is because the varying reactor holdup serves as a surge tanks which helps to smooth
(average out) the feedrate disturbance. However, the response in zp for the Luyben structure is
unrealistic since we have allowed the reactor level M, to exceed its maximum value, and we see from
the right plot in Figure 8 that there is actually a snowballing in the reactor level (Wu and Yu 1996).
To guarantee feasibility (M, < M, nq;) for feedrate changes, we would for the Luyben structure need
to “back away” from the reactor level constraint (using a nominal holdup significantly smaller than
M, 1n4z), which would give non-optimal economic operation with about 50% higher energy usage (V)
in the distillation column, or even worse, inability to handle the desired feedrate due to capacity
limitations in the distillation column.

On the other hand, if we for the other structures (with constant holdup) introduce a back-off in
bottom composition 2 from 0.0105 to 0.0085 (in order to handle the control variations in Figure 8)
then the increase in energy usage (V') is only by about 3% (see lower plot in Figure 3). Alternatively,
we may avoid the need for back-off in zp (and the resulting 3% energy increase) by using a product
tank with mixing to average out the dynamic variations in xp.
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6 Discussion

6.1 Alternative sets of active constraints

We have in this paper considered case I with a given feedrate and case II with an unconstrained
feedrate, and these resulted in two different control structures. What other cases are there? We
here define a “case” in terms of the set of active constraints. For our recycle plant the following four
upper constraints are of interest:

B S L B,mazx, Mr S M'r‘,maza FO S FO,max; V S Vmaz

Here, as explained earlier, the economic conditions are such that the two first constraints are always
active, and at least one of the two latter constraints are active. We are then left with only three
cases:

Case I : Constraint on Fj .., is active and V' is unconstrained. This happens for low values of
the available feedrate Fj 4, (or large values of V,,,,,), where it is optimal to process all the
available feed while minimizing the value of V.

Case II : Constraint on V,,,, is active and Fj is unconstrained. This happens for high values of
Fo,maz (or low values of V,,,4, ), where the available feedrate Fj 4, exceeds the optimal maximum
feedrate.

Case III : Constraints on Fp e, and V., are both active. This happens for intermediate values
of the available feedrate Fj 45, provided there is some penalty on recycle, i.e. pp > 0.

The details depend on the cost function —J = pg,Fy — pyV — ppD. The feedrate range where
case III is economically optimal is often quite small, especially if recycle costs are small compared
to distillation costs. In this paper we have assumed no recycle costs (pp = 0) and we go directly
from case I to case II. For example, with pp = 0 and V4, = 1500 [kmol/h], we have case I for
Fomazr < 468.6 and case II for Fp ., > 468.6. With recycle costs included (pp > 0) it is optimal to
use more energy in the distillation column, and we get a region where both constraints are active (case
III). For example, with the cost function —J = Fy; —0.01V —0.1D (i.e., pr, = 1,py = 0.01,pp = 0.1)
and Vinez = 1500, we have case I for Fjmq, < 468.6, case III (both constraints active) for 468.6 <
Fomaz < 493.2, and case II for Fpmae > 493.2. Note here that the economic maximum capacity of
493.2 is somewhat less than the achievable maximum capacity of 497.8 [kmol/h].

In the above discussion we have considered the “available feedrate” Fp mq, (inequality constraint
Fy < Fymagz)- For the closely related case with a “given feedrate” (Fy = Fp mqz) We have the following:
At low feedrates Fy we have case I with V' unconstrained. As the feedrate increases, the boilup V' also
increases (the change in V for a small change in Fj may be large if we experience snowballing), and
eventually the column reaches its capacity limit (Vj,4;). With constant boilup (V' = Vj44), it may
be possible to increase the feedrate further by reducing the distillate purity = and increasing the
recycle (case III) , but eventually the column becomes a bottleneck (case II) where it is not feasible
to process any more feed while maintaining the given product composition.

Comment: The fact that the distillation column is a bottleneck in case II, does not necessarily
mean that production rate can be much increased by increasing its capacity V.., because if the
system is close to snowballing, then increasing M, n,q, is the only effective way of increasing plant
capacity.
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6.2 Decentralized control and reconfiguration of loops

The focus in this paper is to decide on which variables to control, and we have recommended to use the
“reflux ratio” structure with control of L/F. The analysis has been based on steady-state economics,
and is independent of the actual implementation. However, in the closed-loop simulations we assumed
decentralized control, where each controlled variable was paired with a manipulated input. A main
problem with decentralized control is that reconfiguration of loops is generally required when the
active constraints change. Let us consider this in more detail for our proposed reflux ratio structure.

We have already proposed pairings for cases I and II. In the intermediate case III there are no
unconstrained degrees of freedom, that is, the economic optimal control structure is to use all four
steady-state degrees of freedom to control the active constraints. A possible control structure for
case III is then: M, <+ F,xp <> L, Fy = Fy 40,V = Vinas, Mp <+ D and My < B. Note that the
reflux L is here used to control bottom composition. In summary, we then have for the “reflux ratio”
structure (in all cases we use Mp <+ D and Mp < B):

Casel: M, F L/F< L Fy=Fmm t<V
Casell: M, Fy, L/F+ L V=V zpcF
Case III: M, < F Fy=Fymaz V =Viar T L

We note that two loops (control of M, and zp) need to be reconfigured as we go from case I to case
I1. To minimize the need for reconfiguration we may use the inflow F to control the reactor level in
all cases (this corresponds to setting the production rate at the column bottleneck (V') in all cases).
We then get the control structure in Figure 7:

Casel: M, Fy L/IF+< L Fo<V g F

In this case no reconfiguration is required as we go between cases I and II. The disadvantage is
that control of feedrate Fj is indirect so Fy will deviate from Fj 4, When the process is disturbed.
However, if we have a storage tank for the feed then this does not matter as the variations will
average out over time.

6.3 Multivariable constraint control (MPC)

To avoid the logic in reconfiguring loops when switching between cases I, Il and III, one may use a
multivariable controller with explicit handling of constraints (e.g. model predictive control, MPC)
that “automatically” reconfigures the control tasks when the active constraints change. However,
also here one needs to decide on what variables to setpoint control to satisfy the unconstrained
degrees of freedom (cases I and II). Thus, our recommendation of controlling the reflux ratio (L/F)
applies also to MPC.

The objective of the model predictive controller would then be to control zp (first priority) and
L/F (second priority) at their setpoints (and possibly also the reactor level, condenser level and
reboiler level, but we assume these are controlled by a lower-layer level control system), using the
degrees of freedom Fy, V and L (assuming here that ', D and B are used for level control in the
lower layer), subject to given constraints on Fy and V. The setpoints which may vary with time, are
supplied by the layer above MPC. This may be a steady-state optimizer or an operator.

6.4 Economics not important

We have in this study excluded the “unconventional” control structures with variable reactor holdup
(Luyben 1994) (Wu and Yu 1996) from being economically optimal. However, with a given feedrate
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Fy, low energy and recycle costs (py and pp small), and no capacity constraints (V.. large), the
economic penalty of using M, < M, ., may be small, and it may be more important to operate the
plant as smoothly as possible, for example, to reduce the effect of disturbances on other parts of the
plant. In such cases, a variable reactor holdup structure, such as one of the balanced structures of
Wu and Yu (1996), may be better, because the reactor is effectively used as a surge tank to “average
out” disturbances in the column feedrate. Nevertheless, we do not recommend the Luyben structure
(LS) (Luyben 1994) with a fixed flow in the recycle loop, since it results in snowballing in the reactor
holdup (Wu and Yu 1996); see also Figure 8. This is also explained since we in response to an
increase in feedrate clearly should increase the recycle (and not keep it constant).

7 Conclusion

We have presented a systematic approach for selecting controlled variables for the liquid phase reactor
with recycle plant. To optimize economics we need to control active constraints. Both for the cases
of minimizing operating costs (case I) and maximizing production rate (case II), it is optimal to keep
the reactor holdup at its maximum. This makes the Luyben structure (LS) and the two balanced
structures of Wu and Yu (1996) economically unattractive. For the unconstrained variables we look
for self-optimizing variables where constant setpoints give acceptable economic loss. Both in cases I
and II, the reflux ratio (L/F or L/D) appears to be such a variable. In order to avoid the socalled
“snowball” effect, it has been proposed in the literature to “fix a flow in a liquid recycle loop”.
However, the rule seems to have limited basis, as it leads to control structures that can handle only
small feedrate changes (constant reactor holdup), or that result in large variations in the reactor
holdup (variable reactor holdup) (Wu and Yu 1996).
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Figure 3: Case I: Losses in energy (V') with alternative controlled variables (Fy, = 460, M, =

2800, x5 = 0.0105).
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Figure 6: Case II: Losses in production rate (Fp) for alternative controlled variables (V' = 1500, M, =

2800,z = 0.0105)
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Figure 8: Dynamic responses in zg (left) and M, (right) to a 20% step increase in F (Case I) for
alternatice control structures

zp : Conventional structure (constant zp and M,)

D/L,L/F :Reflux ratio structures (constant D/L or L/F and M,)

F : Luyben rule for case with constant M, (constant F' and M)

LS : Luyben structure with varying reactor holdup (constant F' and zp)
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