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The Vmin diagram is introduced to effectively visualize how the minimum energy consumption
is related to the feed-component distribution for all possible operating points in a two-product
distillation column with a multicomponent feed. The classical Underwood equations are used to
derive analytical expressions for the ideal case with constant relative volatility and constant
molar flows. However, the diagram can also be used for nonideal mixtures. The Vmin diagram is
very insightful for assessing multicomponent separation in a single column and is even more
powerful for complex column arrangements, such as Petlyuk columns (parts 2 and 3 of this
series of papers).

1. Introduction

We assume constant molar flows, constant relative
volatilities, and an infinite number of stages and use
the classical Underwood equations to compute the
distribution of all of the components in the generalized
multicomponent feed as a function of the degrees of
freedom in a two-product distillation column (Figure 1).

The main result is the simple graphical visualization
of minimum energy as a function of the feed distribu-
tion. We denote this as the minimum-energy mountain
diagram or just the Vmin diagram.

The Vmin diagram can be used for quick determination
of the minimum energy requirement in a single binary
column with a multicomponent feed, for any feasible
product specification.

The equations of Underwood1-4 have been applied
successfully by many authors for the analysis of mul-
ticomponent distillation, e.g., Shiras et al.,5 King,6
Franklin and Forsyth,7 and Wachter et al.,8 and in a
comprehensive review of minimum-energy calculations
by Koehler et al.9 Minimum-energy expressions for
Petlyuk arrangements with three components have been
presented by Fidkowski and Krolikowski10 and Carlberg
and Westerberg.11,12 However, minimum energy require-
ments for the general multicomponent case, the topic
of this paper, have so far not been well understood.

Alternative methods for visualization of feed distribu-
tion regions for a single column have been presented
by Wachter et al.8 based on a continuum model and by
Neri et al.13 based on equilibrium theory.

Our original derivation of the Vmin diagram was based
on computing pinch zone compositions for columns with
an infinite number of stages. However, the Underwood
approach is simpler and may easily be extended to other
kinds of column section interconnections. Specifically,
the methods presented can also be used for Petlyuk
arrangements and for arrangements with side strippers

and side rectifiers. This is treated in detail in the thesis
by Halvorsen14 and in the succeeding papers on mini-
mum-energy consumption in distillation, parts 215 and
316 of this series. The behavior of composition profiles
and pinch zones in a column and how the required finite
number of stages depends on the component distribution
are also treated in more detail in the thesis.14

We may alternatively compute Vmin diagrams by other
means, e.g., by a few simulations for a real system with
a rigorous simulator. Thus, the insight provided by the
Vmin diagram is not limited to ideal systems. However,
with the Underwood equations and the ideal system
assumption, we are able to deduce exact analytical
expressions for minimum-energy calculations.

2. Problem Definition: Degrees of Freedom

With a given feed, a two-product distillation column
normally has 2 steady-state degrees of freedom of
operation. For a binary feed, this is sufficient to specify
any product distribution. In the case of a multicompo-
nent feed, however, we cannot freely specify the com-
positions in both products. In practice, one usually
specifies the distribution of two key components, and
the distribution of the nonkey components is then
completely determined for a given feed. In some cases,
the column pressure could be considered as a third
degree of freedom, but we will assume that the pressure
is constant throughout this paper because the pressure
has a limited impact on the product distribution.
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Figure 1. Two-product distillation column with a reboiler and
total condenser.
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For every possible operating point, we want to find
the normalized vapor flow rate (V/F), the overall product
split (D/F or B/F), and the distribution, here given by
the set of recoveries R ) [r1, r2, ..., rNc]. This can be
expressed for the top section as

It is sufficient to consider only one of the top or bottom
sections because the recoveries and flows in the other
section can be found by a material balance at the feed
stage. The feed properties are given by the composition
vector z, flow rate F, liquid fraction q, and relative
volatilities R. The recovery (ri) is the amount of compo-
nent i transported in a stream or through a section
divided by the amount in the feed. Nc is the number of
components.

3. Underwood Equations for Minimum Energy

3.1. Some Basic Definitions. The starting point for
Underwood’s methods for multicomponent mixtures1-4

is the material balance equation at a cross section in
the column. The net material transport (wi) of compo-
nent i upward through a stage n is the difference
between the amount travelling upward from a stage as
vapor and the amount entering a stage from above as
liquid:

Note that at steady state wi is constant through each
column section. In the following, we assume constant
molar flows (L ) Ln ) Ln-1 and V ) Vn ) Vn+1) and
constant relative volatility (Ri).

The vapor-liquid equilibrium (VLE) at an equilibri-
um stage is given by

In the top section, the net product flow is
D ) Vn - Ln+1 and

In the bottom section, B ) Ln+1 - Vn, and the net
material flow is

The positive direction of the net component flows is
defined upward, but in the bottom the components
normally travel downward from the feed stage and then
we have wi,B e 0. With a single feed stream, the net
component flow in the feed is given as

A recovery can then be regarded as a normalized
component flow:

At the feed stage, wi,F is defined as positive into the
column. Note that with our definition in (7) the recovery
is also a signed variable.

3.2. Definition of Underwood Roots. The Under-
wood roots (φ) in the top section are defined as the Nc
solutions of

In the bottom there is another set of Underwood roots
ψ given by the solutions of

Note that these equations are related via the material
balance at the feed stage:

(which is equivalent to ri,T - ri,B ) 1) and the change in
vapor flow at the feed stage given by the liquid fraction
(q) of the feed (F)

Computation of the Underwood roots involves solving
a straightforward polynomial root problem, but we
should be careful and make sure that the vector of
component flows wT or wB is feasible. This also implies
that in the multicomponent case there is a “hidden”
interaction between the unspecified elements in wT and
the Underwood roots.

3.3. Underwood Roots for Minimum Vapor Flow.
Underwood showed a series of properties of the roots
(φ and ψ) for a two-product column with a single reboiler
and condenser. In this conventional column, all compo-
nents flow upward in the top section (wi,T g 0) and
downward in the bottom section (wi,B e 0). With Nc
components there are, for each of φ and ψ, Nc solutions
obeying

When the vapor flow is reduced, the roots in the top
section will decrease, while the roots in the bottom
section will increase. Underwood2 showed that, at
minimum vapor flow for any given product distribution,
one or more pairs of roots coincide to a common root
(denoted θi, i.e., φi ) ψi+1 ) θi).

Recall that VT - VB ) (1 - q)F. By subtracting the
defining equations for the top and bottom sections (8)
and (9), we obtain the following equation, which is valid
for the common roots only (denoted θ):

We call this expression the feed equation because only
the feed properties (q and z) appear. It has also Nc roots,
but one of these cannot be a common root due to (12)
and (13), so there are Nc - 1 possible common roots that

VT ) ∑
i)1

Nc Riwi,T

Ri - φ
(8)

VB ) ∑
i)1

Nc Riwi,B

Ri - ψ
(9)

wi,T - wi,B ) wi,F ) zi,FF (10)

VF ) VT - VB ) (1 - q)F (11)

R1 > φ1 > R2 > φ2 > R3 > ... > RNc
> φNc

(12)

ψ1 > R1 > ψ2 > R2 > ψ3 > R3 > ... > ψNc
> RNc

(13)

1 - q ) ∑
i

Rizi

Ri - θ
(14)

[VT

F
, D

F
, RT] ) f(Spec1,Spec2,feed properties) (1)

wi ) Vnyi,n - Ln+1xi,n+1 (2)

yi )
Rixi

∑
i)1

Nc

Rixi

(3)

wi,T ) xi,DD ) ri,DziF (4)

wi,B ) -xi,BB ) ri,BziF (5)

wi,F ) ziF (6)

ri ) wi/wi,F ) wi/ziF (7)
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obey

We will denote a root θk an active root for the case
when φk ) ψk+1 ) θk. Inserting the active root in the
top- and bottom-defining equations gives the minimum
flow for a given set of component distributions (wT or
rT).

With Na active roots, this represents a set of Na
independent linear equations, which may be used to find
the exact set of the so-called distributing components
that appear in both products.

Note that the subscript min indicates minimum vapor
flow, and then we use a common root θ from (14) as
opposed to an actual root φ in (8).

3.4. Computational Procedure. Our task is to find
the Nc product recoveries (or component flows) and the
vapor flow, given any pair of feasible specifications. The
procedure on how to apply Underwood’s equations for
this purpose has been described by several authors, e.g.,
Shiras5 and Carlberg and Westerberg.11

The key to the general solution is to identify the
distributing components. A component in the feed is
distributing if it appears in both products or is exactly
at the limit of becoming distributing if the vapor flow
is reduced with an infinitesimal amount.

The computation procedure is as follows:
Consider a set of Nd distributing components, denoted

as {d1, d2, ..., dNd}. The recoveries in the top are trivially
ri,T ) 1 for all nondistributing light components (i < d1)
and ri,T ) 0 for the nondistributing heavy components
(i > dNd). Then, with a given distribution set, we know
the Nc - Nd recoveries of the nondistributing compo-
nents.

Then use another of Underwood’s results: For any
minimum vapor flow solution, the active Underwood
roots will only be those with values in the range between
the volatilities of the distributing components
(Rd1 > θk > θdNd). This implies that, with Nd distributing
components, the number of active roots is

Thus, from Table 1, we see that by making two
specifications we have enough information to determine
the solution completely.

Define the vector X containing the recoveries of the
Nd distributing components and the normalized vapor
flow in the top section:

(superscript T denotes transposed). The equation set

(16) can then be written as a linear equation set in
matrix form:

or

The elements in each column of M arise from the
terms in (16) related to the distributing components, and
we have one row for each active root. Z contains the
part of (16) arising from the nondistributing light
components with the recovery one in the top. The
recoveries for the heavy nondistributing components are
zero in the top, so these terms disappear.

There are Na ) Nd - 1 equations (rows of M and Z)
and Nd + 1 variables in X (columns in M). Thus, by
specifying any two of the variables in X as our degrees
of freedom, we are left with Nd - 1 unknowns which
can be solved from the linear equation set in (19).

To specify the product split, we introduce D/F as an
extra variable in X and the following extra equation:

Note that (19) is only valid in a certain region of the
possible operating space, namely, in the region where
components numbered d1 to dNd are distributing to both
products.

For nonsharp key specifications, components lighter
than the light key, and heavier than the heavy key, may
or may not be distributing. Then we usually have to
check several possible distribution sets. See work by
Halvorsen14 for more details.

For V > Vmin and an infinite number of stages, there
are no common Underwood roots. Thus, at most one
component may be distributing and its recovery is
independent of the actual value of V, but it is uniquely

Table 1. Number of Unknown Variables and Equations

total number of variables (VT, RT) Nc + 1
- no. of nondistributing components Nc - Nd

remaining unknown variables Nd + 1
- no. of equations ) no. of active roots Na Nd - 1

degrees of freedom 2

R1 > θ1 > R2 > θ2 > ... > θNc-1 > RNc
(15)

VT,min ) ∑
i

Riwi,T

Ri - θk

or VT,min ) ∑
i

Riri,TziF

Ri - θk

(16)

Na ) Nd - 1 (17)

X ) [rd1,T, rd2,T, ..., rdNd,T, VT
F ]T

(18)

M‚X ) Z (19)

[ Rd1
zd1

Rd1
- θd1

Rd2
zd2

Rd2
- θd1

‚‚‚
RdNd

zdNd

Rd1
- θd1

-1

Rd1
zd1

Rd1
- θd2

Rd2
zd2

Rd2
- θd2

‚‚‚
RdNd

zdNd

Rd1
- θd2

-1

‚‚‚ ‚‚‚ ‚‚‚ ‚‚‚ -1
Rd1

zd1

Rd1
- θdNd-1

Rd2
zd2

Rd2
- θdNd-1

‚‚‚
RdNd

zdNd

Rd1
- θdNd-1

-1
]‚

[rd1,T

rd2,T

‚‚‚
rdNd,T

VT/F
]) [-∑

i)1

d1-1 Rizi

Ri - θd1

-∑
i)1

d1-1 Rizi

Ri - θd2

‚‚‚

-∑
i)1

d1-1 Rizi

Ri - θdNd-1

]
D/F ) ∑ri,Tzi (20)
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related to D/F through (20):

4. Vmin Diagram (Minimum-Energy Mountain)

A nice feature, because there are only 2 degrees of
freedom, is that we can visualize the entire operating
range in two dimensions, even with an arbitrary number
of feed components. We choose to use (a) vapor flow per
unit feed (V/F) and (b) product split, expressed by the
distillate (D/F), as degrees of freedom (when we in some
places use V and D, then we are implicitly assuming
F ) 1). The choice of vapor flow rate on the ordinate
provides a direct visualization of the energy consump-
tion and column load. We chose to use the vapor flow
in the top (VT) on the ordinate when the feed quality
q * 1.

An important boundary is the transition from
V > Vmin to V ) Vmin. It looks like mountain peaks in
the D-V plane, as illustrated in Figure 2, the Vmin
diagram.

There is a unique minimum-energy solution for each
feasible pair of product recovery specifications, and the
solution is always found below or at the Vmin boundary.

Above the Vmin boundary, the operation is not unique
because we can always reduce the vapor rate down to
the Vmin boundary without changing the product speci-
fications. Below the Vmin boundary, we can identify a
set of polygon regions for each set of distributing
components. For the ternary case in Figure 7, the
regions where AB, BC, or all of ABC are distributing
are indicated. The boundaries between regions of dis-
tributing components are straight line segments in the
D-V plane due to the linear properties of (19) and (20).

Feasible operation requires positive vapor and liquid
flows in all sections:

In an ordinary two-product column, we must also
require D ) VT - LT g 0 and B ) LB - VB g 0 (note
that this is not a feasibility requirement for directly
coupled sections), which with a single feed translates
to (see Figure 3)

The procedure for computing points to draw the Vmin
mountain diagram for a general multicomponent case
(Nc components) is given in Table 2.

Because we assume constant relative volatility, only
adjacent groups of components can be distributing.

In the Vmin diagram, each peak represents minimum-
energy operation for sharp splits between adjacent

components (rj,T ) 1 and rj+1,T ) 0). Then there is only
a single active Underwood root, and the minimum vapor
flow and the corresponding distillate flow solved from
(16) are simplified to

4.1. Binary Case. Before we explore the multicom-
ponent cases, let us look closer at a binary case.
Consider a feed with light component A and heavy
component B with relative volatilities [RA, RB], feed
composition z ) [zA, zB], feed flow rate F ) 1, and liquid
fraction q. In this case we obtain from the feed equation
(14) a single common root θA obeying RA > θA > RB. The
minimum vapor flow is found by applying this root in
the defining equation (16):

We also have from (20)

The procedure in Table 2 becomes very simple in the
binary case because there is only one possible pair of
key components (A, B). We obtain the following results
as illustrated in Figure 3. There is one sharp split
(between A and B):

The two asymptotic points are

These three points make up a triangle as shown in
Figure 3. Along the straight line P0-PAB, we have
V ) Vmin for a pure top product (rB,T ) 0), and from (25)
the line can be expressed by the recovery rA,T or D/F:

Similarly, along the straight line PAB-P1, we have
V ) Vmin for a pure bottom product (rA,T ) 1), and the
line can be expressed by the recovery rB,T or D/F:

Inside the triangle, we may specify any pair of
variables among (VT, D, rA, rB) and use the equation set

Figure 2. Vmin diagram for a ternary feed (ABC).

D/F ) z1 + z2 + ... + rd1
zd1

(21)

VT > 0, VB > 0, LT > 0, LB > 0 (22)

VT g max[(1 - q)F, D] and 0 e D/F e 1 (23)

Peaks:
VT,min

j/j+1

F
) ∑

i)1

j Rizi

Ri - θj

and
D

F
) ∑

i)1

j

zi (24)

VT,min

F
)

RArA,TzA

RA - θA
+

RBrB,TzB

RB - θA
(25)

D
F

) rA,TzA + rB,TzB (26)

PAB:

[rA,T, rB,T] ) [1, 0] f [D, VT,min] ) [zA,
RAzA

RA - θA
]F

P0: [rA,T, rB,T] ) [0, 0] f [D, VT,min] ) [0, 0]

P1: [rA,T, rB,T] ) [1, 1] f [D, VT,min] ) [1, 1 - q]F

VT

F
)

RArA,TzA

RA - θA
)

RA

RA - θAF
D
F

because D
F

) rA,TzA (27)

VT

F
)

RAzA

RA - θA
+

RBrB,TzB

RB - θA
where D

F
) zA + rB,TzB (28)
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of (25) and (26) to solve for the others. This is exactly
the same equation set as given in (19) and (20) for the
general multicomponent case when both components are
distributing.

Above the triangle (Vmin mountain), where V > Vmin,
we have no active Underwood roots, so (25) no longer
applies. However, because only one component is dis-
tributing, we have either rA,T ) 1 or rB,T ) 0. This
implies that the recoveries are directly related to D, and
we have

which is equivalent to (21) in the general multicompo-
nent case. Anywhere above the triangle, we obviously
waste energy because the same separation can be
obtained by reducing the vapor flow until we hit the
boundary to region AB.

VT > D and VT > (1-q)F are required for feasible
operation of a conventional two-product distillation
column. The shaded area represents an infeasible region
where a flow rate somewhere in the column would be
negative. Note that the asymptotic points (P0 and P1)
are infeasible in this case.

We may also visualize the nonsharp split solu-
tions with specified component recoveries. This is il-
lustrated in Figure 4 for the example VT|rA)0.85(D) and
VT|rB)0.25(D) (dashed lines). Note that for V > Vmin these
become vertical lines. The unique solution with both
specifications fulfilled is at the intersection inside region
AB denoted as “Solution” in Figure 4.

4.2. Ternary Case. Figure 5 shows an example of
the Vmin diagram, or minimum-energy mountain, for a
ternary feed (ABC). To plot this diagram, we apply the
procedure in Table 2 and identify the following five
points:

Table 2. Computation Procedure for Construction of a Vmin Diagram

1 find all possible common Underwood roots [θ1, θ2, ..., θNc-1] from the feed equation (14)
2 use (19) and (20) to find the full solutions for a sharp split between every possible pair of light (LK) and heavy key (HK)

specifications; each solution gives the component recoveries (R), minimum vapor flow (Vmin/F), and product
split (D/F); these are the peaks and knots in the diagram (Pij), and there are Nc(Nc - 1)/2 such key combinations:

Nc - 1 cases with no intermediates (e.g., AB, BC, CD, ...); these points are the peaks in the Vmin diagram

Nc - 2 cases with one intermediate (e.g., AC, BD, CE, ...); these are the knots between the peaks,
and the line segments between the peaks and these knots form the Vmin boundary

...

two cases with Nc - 3 intermediates (Nc - 1 components distribute)

one case with Nc - 2 intermediates (the preferred split)
3 find the two asymptotic points where all recoveries in the top are 0 or 1, respectively:

VT,min ) 0 for D ) 0 and VT,min ) (1 - q)F for D ) F

Figure 3. Vmin diagram, or minimum-energy mountain, for binary separation between components A (light) and B (heavy). Visualization
of the regions of distributing components.

D
F

) rA,TzA for D
F
e zA or

D
F

) zA + rB,TzB for D
F
g zA (29)

Figure 4. Solution for a given pair of recovery specifications
visualized in the Vmin diagram.
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The peaks, which give Vmin for sharp splits A/B and
B/C (no distributing components):

The preferred split, which gives Vmin for sharp A/C
split (B is distributing):

where � is the recovery of B: � ) rB,T
A/C ) -RAzA(RB -

θA)(RB - θB)/RBzB(RA - θA)(RA - θB)
The trivial asymptotic points:

The two peaks (PAB and PBC) give us the minimum
vapor flow for sharp split between A/B and B/C,
respectively. The valley, PAC, gives us the minimum
vapor flow for a sharp A/C split, and this occurs for a
specific distribution of the intermediate component B,
known as the “preferred split” (Stichlmair19).

One part of the Vmin boundary, namely, the V-shaped
PAB-PAC-PBC curve, has been presented by several
authors, e.g., Fidkowski10 and Christiansen and Skoges-
tad.17 It gives the minimum vapor flow for a sharp split

between A and C as a function of the distillate flow, or
the distribution of the intermediate component (B).
Figure 5, however, gives the complete diagram for all
feasible operating points. In every region where more
than one component may be distributing to both prod-
ucts (AB, BC, and ABC), at least one Underwood root
is active, and we may find the actual flows and compo-
nent distribution using (19). Note that at the boundaries
one of the components is at the limit of being distribut-
ing:

4.3. Five-Component Example. A five-component
example is shown in Figure 6. Here we also plot the
contour lines for constant values of the recoveries in the
top for each component in the range 0.1-0.9, and we
clearly see how each component recovery depends on
the operating point (D, V).

Note that the boundary lines (solid bold) are contour
lines for top recoveries equal to 0 or 1 and that any
contour line is vertical for V > Vmin. The contour lines
for different recovery values of a certain component are
parallel in each region.

To draw the Vmin diagram for Nc components, we must
identify the Nc(Nc - 1)/2 points (Pij) given in the
procedure in Table 2, corresponding to the following
distribution regions: AB, BC, CD, DE, ABC, BCD, CDE,
ABCD, BCDE, ABCDE. Note that the behavior in a
region where only two components are distributing is
very similar to the simple binary case described in

Figure 5. Vmin diagram for a ternary feed mixture (ABC). V > Vmin above the Vmin boundary (the “mountain” P0-PAB-PAC-PBC-P1). All
minimum-energy solutions, [V ) Vmin(Spec1,Spec2)] are found in the distribution regions AB, BC, and ABC. The active Underwood roots
are also indicated in each region (when φi ) θi).

PAB:

[rA,T, rB,T] ) [1, 0] f [D, VT,min] ) [zA,
RAzA

RA - θA
]F

PBC: [rB,T, rC,T] ) [1, 0] f [D, VT,min] )

[zA + zB,
RAzA

RA - θB
+

RBzB

RB - θB
]F

PAC: [rA,T, rC,T] ) [1, 0] f [D, VT,min] )

[zA + �zB,
RAzA

RA - θB
+

RBzB

RB - θB
]F

P0: [rA,T, rB,T] ) [0, 0] f [D, VT,min] ) [0, 0]

P1: [rA,T, rB,T] ) [1, 1] f [D, VT,min] ) [1, 1 - q]F

At boundaries B/AB and ABC/BC: rA,T ) 1 (rA,B ) 0)

At boundary A/AB: rB,T ) 0 (rB,B ) 1)

At boundary C/CB: rB,T ) 1 (rB,B ) 0)

At boundaries B/BC and AB/ABC:
rC,T ) 0 (or rC,B ) 1)
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section 4.1 and can be expressed by the single active
common Underwood root in the actual region.

Figure 6 also illustrates that some combinations of
recovery specifications can be infeasible, e.g. rA,T ) 0.9
and rC,T ) 0.6. Observe that a combined specification
of D and an intermediate recovery may have multiple
solutions, e.g., D ) 0.2 and rB,T ) 0.3. The specification
of V and a recovery will be unique, as will the specifica-
tion of D and V. The specification of two (feasible)
recoveries will also be unique, and the solution will
always be a minimum-energy solution (V ) Vmin).

5. Vmin Diagram by Rigorous Simulation

So far, we have used analytical expressions to com-
pute the Vmin diagram for ideal mixtures with constant
molar flows and constant relative volatilities. However,
for real mixtures we may replace the analytical Under-
wood equations with numerical property calculations
and draw the Vmin diagram. To approximate the vapor
flow with an infinite number of stages, we should use
at least 4Nmin stages in the simulations, where Nmin is
the minimum number of stages for the separation (with
infinite flows).

In the example described below, we applied the Hysys
process simulator, using the Peng-Robinson equation
of state, for an equimolar feed mixture of n-pentane (A),
n-hexane (B), and n-heptane (C) at 745 kPa with 80%
liquid fraction. The results are visualized in Figure 7,
and the numerical values are listed in Table 3. The main
diagram can be constructed by three simulations at the
three characteristic points of the diagram (PAC, PAB,
PBC). In addition, we have also simulated some ad-
ditional operating points to verify the internals of the
diagram.

The Vmin diagram for the real mixture (solid), drawn
through the results of the rigorous simulations (circles),
is very close to the ideal Vmin diagram (dashed) com-
puted with the assumption of constant relative volatili-
ties (R ) [1.683, 0.9266, 0.5234], which are the K val-
ues at the feed stage from simulation no. 3 in Table 3).
The contour lines for constant recovery rA,T ) 0.8 and
rC,T ) 0.222 for the constant relative volatility case
are also shown (dotted). The match in region ABC is
very good, as expected, because the pinch zone composi-
tion and thereby the relative volatilities will be con

stant for the real mixture too. Further away from region
ABC we observe a certain deviation between the real
and ideal diagrams. The explanation is that the pinch
zone composition at the feed stage will change a little
outside region ABC and so will the real relative volatil-
ity.

However, we conclude that the Vmin diagram can be
applied for assessment of real mixtures too. Obviously
there can be some nonlinearities of the distribution
boundaries and some deviations in the height of the
peaks for the real mixture because the relative volatili-
ties and molar flows are not constants, but the main
picture is very similar.

Note that the vapor flow is the amount leaving the
feed stage. To get an exact prediction of the reboiler and
condenser flows, we have to take into account the
difference in heat of vaporization for the mixture at the
feed stage and in the respective column ends. We also
expect that the pinch zone compositions in each of the
column ends will be slightly different from those of the
ideal case because the relative volatilities and molar
flows will not be completely constant along the column.

In the example Fenske’s minimum reflux formula
gives 4Nmin ≈ 4 log ε-2/log min(Rij) ≈ 100, which is the
stage number used in the simulations. Note that with

Figure 6. Vmin diagram for a five-component feed (F ) 1). Contour
lines for constant top product recoveries are included.

Figure 7. Vmin diagram based on numerical simulations (solid)
and constant relative volatilities (dashed). Each numerical simula-
tion from Table 3 is indicated (circles). The contour lines for the
selected constant (nonsharp) recoveries (dotted) are computed with
constant relative volatilities. (Constant R values are from the
simulation at PAC).

Table 3. Rigorous Simulation Results for the Given Set
of Specifications

simulation constant Rspecification of 2 DOFs
(ε ) 0.001) D VT VT

1: PAB xB,T ) ε xA,B ) ε 0.333 1.30 1.34
2 rB,T ) 0.2 xA,B ) ε 0.399 1.14 1.16
3: PAC xC,T ) ε xA,B ) ε 0.467 0.977 0.977
4 xC,T ) ε rB,T ) 0.6 0.534 1.21 1.12
5 xC,T ) ε rB,T ) 0.8 0.601 1.45 1.42
6: PBC xC,T ) ε xB,B ) ε 0.667 1.69 1.63
7 rA,T ) 0.8 xB,T ) ε 0.267 1.04 1.08
8 rA,T ) 0.8 xC,T ) ε 0.374 0.783 0.783
9 rA,T ) 0.8 rC,T ) 0.222 0.492 0.611 0.611
10 xA,B ) ε rC,T ) 0.222 0.585 0.806 0.806
11 rB,T ) 0.8 rC,T ) 0.222 0.674 1.12 1.10
12 xB,B ) ε rC,T ) 0.222 0.740 1.35 1.32
13 rA,T ) 0.5 xB,T ) ε 0.167 0.647 0.672
14 xC,T ) 0.2 xB,B ) ε 0.833 0.937 0.917
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a finite number of stages we reach an approximate
distribution boundary by specifying a small composition
(here ε ) 0.001) of the component to be removed in the
appropriate product instead of zero recovery. In practice,
N ) 4Nmin can be regarded as close to the infinite
number of stages in a simulation.

6. Discussion

In the thesis by Halvorsen,14 some points on the usage
of the Vmin diagram and further analysis are discussed
in more detail. Here we only summarize a few of these
results.

1. Behavior of all of the Underwood roots as a function
of the operating point (pp 83 and 84). The Vmin diagram
is also very well suited to illustrate the behavior of the
Underwood roots in each section (φ, ψ) as we change
the operating conditions. Recall that Underwood showed
that, as the vapor flow (V) is reduced, a certain pair of
roots will coincide, and we get V ) Vmin. However, how
do we find which pair and what happens to the other
roots?

2. Relation to composition profiles and pinch zones
(pp 85-90, 101, and 102). It can be shown for the
ternary case that the pinch zone composition (subscript
P) when one component is removed completely some-
where in one of the column ends depends only on the
actual Underwood root between the volatilities of the
remaining components. In the top we obtain14

Thus, in the minimum-energy regions (AB and ABC)
where φA ) θA this result tells that the pinch zone
composition above the feed stage is constant. This is
extremely interesting when we consider the Petlyuk
arrangement because the feed stage of the succeeding
column is “connected” to this pinch zone.

3. Finite number of stages (pp 42-48, 90-92, and
126-129). It is straightforward to determine the mini-
mum number of stages in a section from the product
purity specifications with Fenske’s formula. The largest
number of real stages in order to carry out a sharp split
between the two most extreme components is required
close to the preferred split. Away from the preferred
split, the number of required stages in one of the
sections above or below the feed stage is reduced. Thus,
if the column is designed for operation on one side of
the preferred split, this can be taken advantage of by
reducing the number of stages in the appropriate
section. However, if the column is to be operated at or
on both sides of the preferred split, both sections have
to be designed with its maximum required number of
stages.

7. Conclusion

The distribution of feed components and correspond-
ing minimum energy requirement is easily found by just
a glance at the Vmin diagram. The characteristic peaks
and knots are easily computed from Underwood’s equa-
tions for an infinite number of stages. The heights of
the peaks, and thereby the energy requirement for
sharp splits, are determined by the relative volatilities
and the feed composition. The highest peak character-
izes the most difficult binary split.

The Vmin diagram can be computed for nonideal
systems too, e.g., by using a commercial rigorous
simulator with a large number of stages. Thus, this
graphical tool is not limited to the ideal system assump-
tions.

However, for ideal systems, we provide exact analyti-
cal expressions for minimum-energy calculations for
the entire feasible operating range of a distillation
column.

Although the theory has been deduced for a single
conventional column, the simple Vmin diagram for a two-
product column contains all of the information needed
for optimal operation of a complex directly (fully ther-
mally) coupled arrangement, such as the Petlyuk col-
umn. This is the subject of parts 2 and 3 of this ser-
ies.
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