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Abstract: Self-optimizing control is achieved if a constant setpoint policy results in
an acceptable (economic) loss L (without the need to reoptimize when disturbances
occur). Skogestad (2000) presented a method for selecting controlled variables based
on steady-state economics. The simplest is to select the setpoints of the controlled
variables equal to their nominal optimum values. In this paper we extend the method
by finding the robust optimal setpoints, or equivalently the optimal back-off from
the nominal, for a given set of disturbances and implementation errors. As a case
study we consider a reactor-separator-recycle process. For this process the control
structures based on Luybens rule (“fix a flow in every recycle loop”) give infeasibility
if we use the nominal optimal setpoints, but it is feasible with acceptable loss with

robust optimal setpoints.
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1. INTRODUCTION

This paper is concerned with the implementation
of an optimal control policy. We consider a strat-
egy where the optimization layer sends setpoints
for the controlled variables to be implemented
by the control layer, see figure 1. There are two
classes of problems:

e (Constrained: The optimal solution lies at ac-
tive constraints for all expected disturbances

e Unconstrained (the focus of this paper): One
or more of the optimization degrees of free-
dom are unconstrained for all or some ex-
pected disturbances.

Two important decisions are to be made:

e Decision 1: Selection of controlled variables
(c): This is a structural decision which is
made off-line before implementing the control
strategy.
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Fig. 1. A typical optimization system incorporating local
feedback: The process is disturbed (d) and the control
system tries to keep the controlled variables (c)
at their setpoints (cs). Steady-state optimization
based on measured disturbances (dm ) is performed
regularly to track the optimum by updating the
setpoints.

e Decision 2: Selection of setpoints (cs) for
the controlled variables. This is a parametric
decision which is usually done on-line.

For the constrained problem, we usually se-
lect the active constraints as controlled variables



(Maarleveld and Rijnsdorp, 1970). To remain fea-
sible it may be necessary to back off from the
optimal value of the constraints, for example,
when the constraints are difficult to measure or
difficult to control due to poor dynamics. This is
thoroughly discussed by Perkins and coworkers,
e.g. Narraway et al. (1991). An exception to the
rule of using active constraint control is when
the optimal active constraint may move, and in
order to avoid reconfiguration we choose to control
unconstrained variables with good self-optimizing
properties. For the unconstrained problem, the
selection of what to control (Decision 1) is cru-
cial. The controlled variables should yield feasible
operation, that is, not violate any constraints for
the expected disturbances and implementation er-
rors. Otherwise, there may be both dynamic and
steady-state problems such as instability, input
saturation and operation outside constraints. To
avoid such problems it may be necessary to back-
off from the nominal optimum (Decision 2), for
example , using robust optimization (Glemmestad
et al., 1999). Although the required back-off can
be reduced by using logic, model predictive con-
trol and/or on-line optimization, a good choice of
controlled variables may reduce the need for these
remedies and give a simpler and cheaper system.

2. SOME DEFINITIONS
2.1 Optimal operation

From a steady-state point of view optimal opera-
tion for a given disturbance (d) can be found by
solving the following problem:

min J(z, u, d)

f(@,u,d) =0 (1)
g(z,u,d) <0

The scalar objective function J describes the qual-
ity (cost) of operation, f is the process model, g is
the inequality constraints connected to operation,
u is the independent variables (inputs) we can af-
fect, d is the independent variables (disturbances)
we cannot affect and x consists of internal vari-
ables, e.g. states. The inequality constraints are
usually upper and lower bounds on the output
and input variables.

2.2 Feasibility

From a steady-state point of view operation is fea-
sible when the following constraints are fulfilled:

flz,u,d)=0 (2)
<0

A constant setpoint policy is feasible if, with
constant setpoints for the controlled wvariables
(c(z,u,d) = cs + e), none of the constraints are
violated for expected variations in disturbances
(d € D) and implementation errors (e ¢ E).

The implementation errors e is the sum of the
measurement errors (¢, —c) and the control errors
(cs — cm), see figure 1. We distinguish between
hard and soft constraints. Soft constraints may be
violated in transients, but not at steady-state (av-
erage). Hard constraints must neither be violated
in transients nor at steady-state. For controlled
variables related to soft constraints we should
only include the steady-state implementation er-
ror which with integral action equals the steady-
state measurement error. For controlled variables
related to hard constraints we must also include
the worst-case dynamic control error.

2.3 Self-optimizing control

A set of controlled variables has good self-
optimizing properties, when constant setpoints
yield acceptable operation for expected varia-
tion in disturbances and implementation errors
(Skogestad, 2000). More precisely, the loss L
should be acceptable. The loss for a given dis-
turbance (d) and implementation error (e) is the
difference between the cost by keeping a set of
controlled variables constant and the cost by re-
optimizing

L(d,e) = J(cs + e,d) — Jopt(d) (3)

Figure 3 shows loss as function of disturbances for
different sets of controlled variables. One problem
is that in general it is not clear off hand whether
such a self-optimizing controlled variable set ex-
ists.

2.4 Back-off

Back-off from nominal optimal setpoints is some-
times needed to achieve feasible operation, see
Figure 2. The “back-off” is the difference between
the actual setpoints and the nominal optimal set-
points b= c; — cs 0. The optimal back-off is

bopt = Cs,robust — Cs,0 (4)

where c; o is the nominal optimal setpoints found
by solving equation (1) with respect to nomi-
nal disturbances (dp), and the robust optimal
setpoints ¢, ropust are found by minimizing the
“mean” weighted cost (w.J) over all disturbances
(d) and implementation error (e) (Glemmestad et
al., 1999):
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Fig. 2. Cost (J) as function of the controlled variable
(¢) at nominal point (do, lower curve) and with
disturbance (di, upper curve). With the setpoint
fixed at the nominal optimum ¢; = ¢s,0) we get
infeasibility with the disturbances, but with back-
off (cs = cs,0 + b) we get close to optimal operation
in both cases. Data are from the recycle case study
with boilup as the cost (J = V), feedrate as the
disturbance (d = Fp), and distillation feedrate as the
controlled variable (¢ = F).
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Fig. 3. Loss as a function the disturbance with reopti-
mized setpoint (lower curve) and constant setpoint.
Data are from the recycle case study with boilup
as the cost (J = V), feedrate as the disturbance
(d = Fp), and distillation feedrate (¢; = F) and
reflux ratio as alternative controlled variable (c2 =
L/F). We see that the loss is negligible with ¢z as a
controlled variable.

min E wiJ(z;,u4,d;)
Ti,Ui,Cs N

f(xi)uiadi) =0

g(xi,us, d;) <0 (5)
c(zi,uiyd;) =cs + €;
d; € D
e; € K

The problem is infinite dimensional, but we have
here simplified it by considering a discrete number
of operation points (i = 0,n where 0 denotes the
nominal point and n is the number of “disturbed”
operation points): The weights w; in the objective
(cost) function can be chosen in different ways.
Using a nominal objective (wp = 1, w; = 0 when
i # 0) gives zero backoff if the nominal opti-
mal setpoints are feasible. Preferably, the weights
should be chosen equal to the probability for oper-
ation in the respective points. However, feasibility
may be very important, and this can be handled
by distinguishing between an economic and a fea-
sible region, see figure 4, where we use w; = 0

Feasible region

Fig. 4. Feasible and economic region

outside the economic region. The constraints must
be fulfilled in the feasible region, whereas the cost
is average in the economic region.

3. METHOD FOR SELECTING
CONTROLLED VARIABLES AND ROBUST
SETPOINTS

In the method presented by Skogestad (2000) the
nominal optimal setpoints were used to identify
promising sets of controlled variables. Here we
focus on achieving feasible operation by imple-
menting setpoints found by robust optimization
(” optimal back-off”). We use a five step procedure:

(1) Initial system analysis:
Identify the number of degrees of freedom,
define objective function and constraints,
identify main disturbances and candidates
for controlled variables, optimize at nominal
and for expected disturbances (equation 1).

(2) Identify sets of candidate controlled variables:
Eliminate variables with no steady-state ef-
fect, use active constraint control, eliminate
variables with large losses by using short-cut
loss evaluation, eliminate variables based on
process insight.

(3) Ewaluate loss and select setpoints for different
sets of controlled variables, by using nominal
optimization.

(4) Ewvaluate loss and select setpoints for different
sets of controlled variables, by using robust
optimization (equation 5).

(5) Final evaluation and selection of control
structures:

Stabilization, controllability analysis, selec-
tion of control configuration and simulation
of proposed control structures.

The method is applied to a reactor, separator and
recycle process in next section.

An alternative to initial screening (step 2) before
evaluating the loss (step 3 and 4) is mathematical
programming to find sets of controlled variables
which imply small losses. The robust optimization
is then the inner problem in a MINLP-problem.
If including a controllability test (step 5) for dif-
ferent sets of controlled variables, the selection of
controlled variables is done automatically.



4. EXAMPLE: REACTOR, SEPARATOR AND
RECYCLE PROCESS

The process consists of reactor, distillation col-
umn and liquid recycle. There is no inert in the
feed, and no purge is required. The model param-
eters and operation data are from Wu and Yu
(1996). Larsson et al. (1999) identified promising
sets of controlled variables for this process using
nominal optimal setpoints.

%

Fig. 5. Reactor/separator process with liquid recycle

4.1 Initial system analysis

The process has five manipulated variables (valves)
which give five dynamic degrees of freedom.

u" =[LV B D F]

However, two of them (the reboiler holdup (M;)
and condenser holdup (My)) have no steady-state
effect. There are then 3 degrees of freedom at
steady-state. These may, for example, be selected
as the reactor holdup (M), product composition
(zp) and recycle composition (z4). The economic
objective is to maximize the profit (the value of
the products minus the cost of the utilities and
raw materials). Since Fy is given, B is given and
L depends directly on V', the objective can be
simplified to minimize the boilup flow rate:

J=V
The reactor volume and product purity are con-

strained:

0 < M, < 2800
zp < 0.015

The main disturbances are feed flow rate (Fp) and
feed composition (xg):

corner-points of the two disturbances. We find
that the product composition (x;) and the reac-
tor holdup (M,) are always at their constraints,
leaving one unconstrained degree of freedom.

The 20 candidate controlled variables (9 manip-
ulated variables and measurements and 11 flow
ratios) are:

" =[x, xy xg L/JF V/F B/F D/F V/L ...
B/L D/L B/V D]V B/D F|F)]

The implementation error for the unconstrained
variables are initially assumed as +10% for flow
rates, +£0.5% (absolute) for compositions and
+1% for holdups. The average L is computed with
w; = 1 for the nominal point and the n = 10
perturbed points (two for each of the two distur-
bances and two three implementation errors).

4.2 Identify sets of candidate controlled variables

The 20 candidate controlled variables and three
steady-state degrees of freedom give 1140 alter-
native sets of controlled variables, and we need
to reduce the number of sets. We choose to con-
trol the active constraints, and then left with 18
candidate controlled variables and 1 steady-state
degree of freedom, which give 18 possible sets.

Initial screening is performed by maximizing the
steady-state gain (|G(0)|) where G(0) is obtained
with the active constraints ¢; = xp and ¢s = M,
kept constant (Skogestad, 2000). The candidate
controlled variables c3 are scaled with respect to
variation in optimal values and implementation
errors. From Table 1 we see that z4 and L/F are
the most promising controlled variables. However,
this screening is based on a linear (local) analysis
and need to be interpreted with care, although we
will find that the ranking is surprisingly accurate.

At steady-state the product flow rate must be
equal to the feed flow rate (B = Fp). Thus,
keeping the product flow rate B constant when
the feed flow rate changes, does not give feasible
steady-state operation. Hence the product flow
rate (B) is eliminated as a candidate controlled
variable (agrees with the gain analysis in Table 1).
Furthermore, the product flow rate (B) is given
by the component balance of the product: B =
kM,z,/x, Here M, and z; are controlled at their
active constraints, whereas, as just noted, B = Fj.
Thus the reactor composition (z,) is fixed and can
be eliminated as a candidate controlled variable

" = [Fy @] = [460 % 92 kmol /h 0.90 = 0.05 molA/m(gl lso agrees with the gain analysis in Table 1).

We perform steady-state optimization, see (1),
at the nominal operation point and for the four

candidate controlled variables and 1 steady-
state degree of freedom still remain, which give
16 possible sets.



Table 2. Average costs (wJ) and loss (L) when using nominal optimal setpoints

Rank c1 c2 cs ci,s c2,s c3,s wJ L[%)]
Optimal — — — — — — 1231.23 0.0
1 Ty M, T4 0.9900 2772 0.8186 1322.35 7.4
2 Ty M, L/F  0.9900 2772 0.8207  1324.20 7.6
3 Ty M, D/L 0.9900 2772 0.6379 1324.17 7.6
4 Ty M, D/V 0.9900 2772 0.3893 1325.87 7.8
5 Tp M, V/F  0.9900 2772 1.3446  1331.10 8.2
6 Ty M, L 0.9900 2772 793 1336.88 8.8
7 Ty M, V/L  0.9900 2772 1.6585  1329.79 9.9
8 Ty M, B/D 0.9900 2772 0.9098 1330.97 11.0
— Ty M, B/F 0.9900 2772 0.4764 infeas infeas
— T M, B/L 0.9900 2772 0.5804 infeas infeas
zp M, B/V  0.9900 2772 0.3544  infeas infeas
— Ty M, D 0.9900 2772 506 infeas infeas
— Ty M, D/F 0.9900 2772 0.5236 infeas infeas
— Ty M, F 0.9900 2772 966 infeas infeas
— Ty M, F/Fo  0.9900 2772 2.0990 infeas infeas
— Ty M, |4 0.9900 2772 1298 infeas infeas
— Ty F T4 0.9900 966 0.8186 infeas infeas
- Ty T Tq 0.9900 0.4334 0.8186 infeas infeas
— Ty F/Fy T4 0.9900 2.0990 0.8186 infeas infeas
- V/B F/Fy zq 2.8219 2.0990 0.8186  infeas  infeas
— Tp F/Fy V/B  0.9900 2.0990 2.8219 infeas infeas
— Zp F/Fy L/D 0.9900 2.0990 15678 infeas infeas
— Tp M,/F L/D 0.9900 2.8710 1.5678 infeas infeas

Table 1. Candidate controlled variables cs
ranked by steady-state gain (|G(0)])

Rank c3 |G(0)] - 10%
1 Tq 13.1
2 L/F 8.9
3 D/L 7.7
4 D/V 5.8
5 V/L 4.5
6 B/L 4.1
7 V/F 4.0
8 B/D 3.3
9 L 3.0
10 B/F 2.6
11 D 2.6
12 F/Fy 2.5
13 D/F 2.5
14 F 1.9
15 B/V 0
15 1% 0
15 Ty 0
15 B 0

4.3 Loss evaluation with nominal optimal setpoints

For the remaining 16 alternative sets we evaluate
the economic losses imposed by using constant
setpoints instead of re-optimization. The average
loss L (as defined above) when using the nominal
optimal setpoint for each alternative controlled
variables is shown in Table 2. The reason why the
losses are much larger than the in Larsson et al.
(1999) is because we have included simple back-
off from the active constraints.

We rank the alternatives based on average loss.
Control of x4 is best, closely followed by L/F (figure
6), D/V and D/L, gives the smallest average loss,
see also Larsson et al. (1999). Control of F' or
D, which follows Luybens rule (“fix a flow in

Fig. 6. Control structure with ¢ = L/F as the uncon-
strained controlled variable

every recycle loop”) (Luyben et al., 1997), and
also control of D/F and F/Fy, give infeasibility.
In addition we have evaluated (under the line)
some alternatives from the literature that do not
control reactor holdup. None of these yield feasible
operation for all disturbances.

4.4 Loss evaluation with robust optimal setpoints

Use of nominal optimal setpoints may exclude
controlled variables that are workable. In the
worst case we may not find any feasible sets of
controlled variables at all. We therefore consider
computing the robust optimal setpoints, see equa-
tion (5), with equal weight on all eleven operating
points (i = 0,10). We rank the different sets of
controlled variables based on their cost in opti-
mum (average loss), see Table 3. Interestingly,
there are only minor changes and improvements
compared to Table 2 among the best alterna-
tives. However, there are large improvements with



Table 3. Average costs (wJ) and loss (L) when using robust optimal setpoints

Rank c1 c2 cs ci,s c2,s c3,s wJ L[%)]
Optimal ~ — — — — — — 1231.23 0.0
1 T M, rq  0.9900 2772  0.8243 1322.35 7.4
2 Ty My L/F 0.9900 2772 0.8061  1324.20 7.6
3 Ty M, D/L 09900 2772  0.6863 1324.17 7.6
4 Ty M, D/V  0.9900 2772  0.4159 1325.87 7.7
5 Ty My V/L 0.9900 2772 1.8455  1329.79 8.0
6 Ty M, B/D  0.9900 2772  0.7741 1330.97 8.1
7 Ty My V/F  0.9900 2772 1.3084 1331.10 8.1
8 Ty M, B/L  0.9900 2772  0.6441 1332.65 8.2
9 Ty My F/Fo  0.9900 2772 2.3856  1333.47 8.3
10 Ty M, B/F 09900 2772  0.4219 1334.96 8.4
11 Ty My D/F  0.9900 2772 0.5849  1336.65 8.6
12 Ty M, L 0.9900 2772 716 1336.88 8.6
13 Ty My F 0.9900 2772 1250 1347.75 9.5
14 Ty M, D 0.9900 2772 881  1350.97 9.7
20 Ty My B/V  0.9900 2772 0.2703  1735.32 40.9
— Ty M, |4 — — — infeas infeas
15 r, F/Fp V/B 0.9900 2.4963 3.4371 1581.08  28.4
16 Ty F/Fy Tq 0.9900 2.4963 0.8522 1585.98 28.8
17 r, M;/F L/D 0.9900 2.0231 1.2803 1586.64  28.9
18 Ty Ty Tq 0.9900 0.4852 0.8522 1588.36 29.0
19 r, F/Fp L/D 0.9900 3.2497 0.5973 1652.97  34.3
21 Ty F Tq 0.9900 1955 0.7135  1794.04 45.7
22 V/B F/Fy Ty  3.9475 2.6167 0.8366 1815.83  47.5
control of F and D which follow Luybens rule. back-off and then give somewhat larger losses.
These are now feasible and give acceptable losses. Alternatives with variable reactor holdup also re-
Also alternatives which do not control the reactor quire back-off and give very large losses.

holdup, are feasible, but give very large losses (28-
48%). Anyway, the conclusion has not changed.
The loss is smaller and control is simpler, if we 6. REFERENCES
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