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Abstract

The classification of ternary vapor-liquid equilibrium (VLE) diagrams is a key to simple azeotropic dis-
tillation analysis. We find that all ternary mixtures so far reported occurring in nature can be qualitatively
represented by a combination of only four elementary cells. This greatly reduces the number of VLE
diagram structures that need to be analyzed in order to reveal the qualitative characteristics of any ternary
azeotropic mixture.

Introduction

Ternary vapor-liquid equilibrium (VLE) diagrams provide a graphical tool to predict qualitatively the fea-
sible separations for multicomponent azeotropic mixtures before detailed simulation or experimental study
of their distillation. The various graphical representations of the VLE (residue curve and distillation line
maps, isotherm map, equilibrium vector field) are closely related and are equally capable of characteriz-
ing the mixture. In this paper, we consider residue curves (Schreinemakers 1901, Ostwald 1902, Zharov
1967, Serafimov 1968a, Doherty and Perkins 1978), and the topological classification of ternary mix-
tures into 26 diagrams by Serafimov (1970). Our considerations apply equally well to distillation lines
(Zharov 1968, Stichlmair 1988). We refer to the review of Widagdo and Seider (1996) and to the literature
mentioned for a detailed description of these tools and their application to distillation column profiles. Our
contribution is to propose a set of elementary topological cells which are constituents of all feasible ternary
VLE diagrams. We show that the until now reported ternary mixtures include only four of these elementary
cells.
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1 Classification of ternary VLE diagrams

The number of feasible VLE diagram structures is limited by topological and thermodynamical constraints.
A complete classification of these feasible structures for ternary mixtures was given by Serafimov (1970)
and Serafimov et al. (1971, 1973), and is more recently presented by Serafimov (1996). Serafimov’s clas-
sification results in the 26 classes of ternary VLE diagrams presented in Figure 1. The classification is

Figure 1: Serafimov’s (1970b) topological classification of ternary mixtures. Structural characteristics of
residue curves (or distillation lines) are shown by dashed lines with the singular points indicated by � stable
(unstable) node, Æ unstable (stable) node, and O saddle, and the region boundaries given by bold lines.

based on the simplifying and common assumption that there exists no more than one binary azeotrope for
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each binary pair and no more than one ternary azeotrope. Biazeotropy does exist in real mixtures, but it is
relatively rare, so this is not a very restrictive assumption. The classification of Serafimov considers topo-
logical structures and thus does not distinguish between antipodal diagrams (switching of minimum- and
maximum-boiling azeotropes) since they have the same topology. Transition from one antipode to the other
can be made by simply changing the sign of the nodes and inverting the direction of the arrows of increasing
boiling temperature.

Actually, Gurikov (1958) was the first to derive the rule of azeotropy and propose a thermodynamic topolog-
ical classification of ternary mixtures. However, his classification was incomplete, and Serafimov (1968b)
revealed four additional feasible structures and established the 26 topological classes presented in Figure
1. Later, Serafimov’s classification of ternary mixtures was refined by distinguishing between antipodes
inside each structure class, based on the reasoning that ”minimum- and maximum-boiling azeotropes have
dissimilar physical nature and dissimilar behavior during distillation” (Zharov and Serafimov 1975). This
refined classification includes a total of 49 types of ternary VLE diagrams. An even more detailed clas-
sification is proposed by Matsuyama and Nishimura (1977) who also rank the components in the order of
their boiling temperatures (”light”, ”intermediate” and ”heavy”). This classification includes 113 diagram
classes of which 87 are presented graphically by Doherty and Caldarola (1985). Nevertheless, among these
113 classes there are only the 26 topologically distinct structures of Serafimov. Actually, the classification
of Matsuyama and Nishimura adds some ambiguity as some of their classes with a ternary saddle azeotrope
have two or three possible topological structures. For example, their classification code 112-S can be ei-
ther of Serafimov’s class 3.1-3a or 3.1-3b depending on whether there exists a saddle - saddle separatrix or
not. This is also pointed out by Foucher et al. (1991) who recommend an extension of the Matsuyama and
Nishimura’s classification code name in these cases.

In this paper, we use Serafimov’s (1970) classification of the topological classes and Zharov and Serafimov’s
(1975) refinement of the antipodal structure types (referred to as the ZS-type). The relationships between
the classifications of Gurikov (1958), Serafimov (1970), Zharov and Serafimov (1975) and Matsuyama and
Nishimura (1977) are presented in Table 2. The table is useful when relating publications where the different
classifications are used.

2 Elementary cells

There is a great diversity of VLE diagrams for ternary mixtures caused by the variety in physical properties
of the components and their molecular interaction. As mentioned, if we assume no biazeotropy and consider
only topological differences there are 26 distinct types as presented in Figure 1. Furthermore, there is a
far greater diversity in possible shapes (geometry) of the simple phase transformation trajectories such as
residue curves and distillation lines. It is possible to reduce this complexity to a combination of a few
topological building blocks (“elementary cells”) and some basic internal structures (shapes of the simple
phase transformation trajectories). We use residue curves to represent the simple phase transformation
trajectories in this paper.

We find that among Serafimov’s 26 topological classes there are eight elementary topological cells (denoted
I, II, III, IV, II’, III’, IV’ and V) that constitute all the ternary diagrams, where a cell is defined as one residue
curve region taken with its boundaries (that is, a subspace of the composition space constrained by residue
curve boundaries, if any, and the composition simplex). From these eight elementary cells we may construct
all the 26 diagrams as shown in Figure 2. Each cell has one unstable and one stable node and some set of
saddle points. There are four “primary” diagrams where the composition triangle consists of a single cell
(one residue curve region; Serafimov’s class 0.0-1, 1.0-1a, 1.0-1b and 2.0-1), and these elementary cells
(denoted I, II, III, IV) are also the only so far reported for naturally occurring mixtures. Cells II’, III’ and
IV’ are modifications of the primary cells II, III and IV, respectively (with internal nodes), for which there
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are no reported physical mixtures. Cell V only occurs as an element in Serafimov’s class 3.1-1b, and also
for this class there is so far no physical mixture reported.

The four primary diagrams and the corresponding elementary cells I, II, III, IV are shown in Figure 3. Each
elementary cell is characterized by a certain set and order of the singular points (nodes and saddles) along
the contour of its border (that is, by its topology). Accordingly we can name them as given in Figure 3.

There is an important difference between an elementary cell of the “primary” diagrams (one residue curve

Figure 2: Elementary cells (I, II, III, IV, II’, III’, IV’ and V) within Serafimov’s 26 topological classes.
Physical occurrence (%) of azeotropic mixtures reported in the literature according to Reshetov’s statistics
(based on data from 1965 to 1988).
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Figure 3: Generalization of the four elementary topological cells I, II, III, IV from the diagrams with one
residue curve region. Each cell is characterized by the set and order of the nodes (N ) and saddles (S) along
the contour of its border. The singular points are also indicated by � stable (unstable) node, Æ unstable
(stable) node, O saddle. The dashed lines indicate the qualitative paths of the residue curves.

region) and an elementary cell incorporated into more complex diagrams. If an elementary cell is a primary
diagram, the saddle point is a pure component point. The borders of the cell are the edges of the composition
triangle (linear). The (stable and unstable) nodes are pure component points or points of binary azeotropes.
If an elementary cell is a constituent of a complex diagram, at least one of its saddles is a binary or a ternary
azeotrope, and, therefore, at least one of the borders of the cell is a residue curve boundary (curved) showed
by the solid thick lines in Figure 2. One of the nodes can be a point of a ternary azeotrope. In general, the
composition space is broken into several residue curve regions (cells) if there are more than one unstable
node or more than one stable node.

Despite these differences, a single elementary cell and an elementary cell incorporated into a complex
diagram are topological equivalent. Note, however, that inside similar topological cells there may be various
shapes of the residue curves (simple phase transformation trajectories).
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3 Occurrence in nature

Even though all the classified diagrams in Figure 2 are topologically and thermodynamically feasible, their
occurrence in nature is limited by the probability of certain combinations of molecular interactions. In
this section we present data on the occurrence of the different classes among the mixtures reported in the
literature. This permits us to exclude rare or improbable diagram classes from consideration.

Serafimov (1968b) analyzed the occurrence of different types of VLE diagrams among 418 reported (ex-
perimental) data on ternary azeotropic mixtures. Reshetov (1998) made a similar study for 1609 ternary
mixtures (in which 1365 are azeotropic) based on thermodynamic data that were published during the pe-
riod from 1965 to 1988. To the best of our knowledge we have not found any other publications that address
this issue. The occurrence of the various classes as reported by Serafimov and Reshetov are given in Table
1. (Reshetov’s statistics are also presented in Figure 2). Note that Reshetov (1998) found that the three
mixtures reported for class 3.1-1a in the statistics by Serafimov (1968b) actually was of another structure
class. From Reshetov’s data we see that only 16 of Serafimov’s 26 classes are reported to occur in nature.
If we also differentiate between minimum- and maximum-boiling azeotropes (ZS-type), then we find that
27 of the 48 classes are reported. The distribution reported in these studies does not necessarily reflect the
real occurrence in nature. The azeotropic data selection is small and occasional. Moreover, the distribution
can be distorted compared to the unknown natural distribution since the published mixture data are results
of deliberate searches for entrainers for specific industrial separation problems. Nevertheless, these data are
interesting and can be used for some deductions:

� Serafimov’s class 3.1-2 with three minimum-boiling binary azeotropes and one minimum-boiling
ternary azeotrope has the largest number of reported mixtures. About 26 % of the 1365 ternary
azeotropic mixtures in the study by Reshetov are of this class.

� Elementary cells I and II cover more than 90 % of all the reported ternary azeotropic mixtures. The
three most common structures are Serafimov’s classes 1.0-1a (21.6 %), 2.0-2b (21.0 %) and 3.1-2
(26.0 %). Among these three classes only cells I and II occur.

� Ternary azeotropes are common in nature. About 38% of the reported ternary mixtures have a ternary
azeotrope. These are Serafimov’s classes 1.1-2, 2.1-2b, 2.1-3a, 2.1-3b, 3.1-2 and 3.1-4.

For each of the reported classes, one may find a great number of (similar) mixtures in nature. However, for
those classes with no reported mixtures, and with a structure that requires a set of molecular interactions
that are unlikely, we expect that few if any real mixtures will be found. The experimental data for ternary
azeotropic mixtures used for the above statistics is rather limited. However, the experimental data for binary
azeotropic pairs is considerably more extensive. For example, Gmehling et al. (1994) have compiled data
for 18 800 binary systems (involving about 1 700 components). From this we can estimate the behavior of
a large number of ternary mixtures combinations from a VLE model, but to our knowledge no systematic
effort has yet been done.

It is well-known that binary maximum-boiling azeotropes are less abundant than minimum-boiling azeotropes.
According to Lecat (1949) the ratio of minimum-boiling versus maximum-boiling azeotropes that occurs
in nature is about 9 to 1. The statistics of Reshetov confirm this heuristic rule. Thus, the more maximum-
boiling binary azeotropes that are included in the ternary mixture, the less is the probability of its occur-
rence. This is clearly demonstrated in Table 1. In particular, no ternary mixture with three binary maximum-
boiling azeotropes has been found among Reshetov’s selection of 1365 mixtures. Ternary maximum-boiling
azeotropes are also very rare. As a result, even for the topological structures where the existence is beyond
question, the occurrence of antipodes with maximum-boiling azeotropes is much less than that of antipodes
with minimum-boiling azeotropes.
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Pöllmann and Blass (1994) propose to reduce the number of ternary VLE diagrams by considering only
”physically meaningful” structures. Their list includes 19 of Serafimov’s 26 classes, excluding 1.1-1a,
1.1-1b, 2.1-1, 2.1-2a, 3.1-1a, 3.1-1c, and 3.1-3b. However, it is impossible in principle to state that some
classes of ternary mixtures cannot exist in nature or are “physically meaningless”, because all the structures
in Figure 2 are thermodynamically and topologically feasible. We can only discuss the probability of the
existence of some types of the VLE diagram structures.
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Table 1: Occurrence of ternary VLE diagram structures found in published mixture data

Occurrence Occurrence
Serafimov’s class Serafimov ZS-type Set of azeotropes a Reshetov

(until 1968) (1965-1988)
0.0-1 - 1 zeotropic 244
1.0-1a 13 3a min 283

7a max 12
1.0-1b 2 3b min 4

7b max 1
1.0-2 20 4 min 95

8 max 21
1.1-1a None 2a min + min Az3 None

6a max + max Az3 None
1.1-1b None 2b min + min Az3 None

6b max + max Az3 None
1.1-2 7 5 min + S3 8

9 max + S3 8
2.0-1 1 15 min + max 9
2.0-2a None 17 min + max 2

18 max + min 3
2.0-2b 77 11a min + min 280

21a max + max 6
2.0-2c 2 11b min + min 10

21b max + max 2
2.1-1 None 13 min + max + min Az3 None

14 min + max + max Az3 None
2.1-2a None 16a min + max + min Az3 None

16b min + max + max Az3 None
2.1-2b 3 10 min + min + min Az3 55

20 max + max + max Az3 None
2.1-3a 14 19 min + max + S3 37
2.1-3b 5 12 min + min + S3 2

22 max + max + S3 1
3.0-1a None 29 min + min + max None

33 max + max + min None
3.0-1b None 28 min + min + max 9

34 max + max + min 3
3.0-2 85 24 min + min + min 114

37 max + max + max None
3.1-1a 3 27b min + min + max + min Az3 None

32b max + max + min + max Az3 None
3.1-1b None 26 min + min + max + min Az3 None

31 max + max + min + max Az3 None
3.1-1c None 27a min + min + max + max Az3 None

32a max + max + min + min Az3 None
3.1-2 171 23 min + min + min + min Az3 355

36 max + max + max + max Az3 None
3.1-3a None 25a min + min + min + S3 None

38a max + max + max + S3 None
3.1-3b None 25b min + min + min + S3 None

38b max + max + max + S3 None
3.1-4 15 30 min + min + max + S3 41

35 max + max + min + S3 4
a min - minimum boiling binary azeotrope; max - maximum boiling binary azeotrope;

Az3 - ternary node azeotrope; S3 - ternary saddle azeotrope.
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4 Use of elementary cells

The concept of elementary topological cells is a simplification which primarily is made to reduce the num-
ber of structures of ternary VLE diagrams. It is useful for preliminary analysis of azeotropic distillation
(presynthesis). Based on the knowledge of the distillation behavior of azeotropic mixtures of the primary
diagrams elementary cells in Figure 3, or combinations of these, we also have information about what be-
havior to expect from other more complex mixtures. It is important to recognize that each real mixture has
its own specific thermodynamic characteristics and should therefore be analyzed in detail in a later step of
the separation synthesis.

The concept of elementary cells is even more important when using the classification of Matsuyama and
Nishimura with its less surveyable 113 classes.

The elementary cell concept may be extended to mixtures with more than three components, but grahical
visualization is then more difficult. Of course, for a multicomponent mixture one can analyze each ternary
subsystem. For example, each of the four triangles of a four-component tethrahedon is one of the 26 ternary
classes and (for the real mixtures reported so far) four elementary ternary cells.

4.1 The album

One goal underlying the classification of ternary mixtures is to have a complete album of possible VLE
diagram structures with their corresponding scheme of separation by distillation. But this is not established
knowledge. Prediction of feasible distillation product compositions for even some of the simplest diagram
structures is still under development. Furthermore, methods or separation schemes to separate all classes of
(ternary) azeotropic mixtures are not established. One reason is that there are many possible structures with
deformation of the simple phase transformation paths due to regions with different volatility order within
the composition space, making this an almost impossible task. Instead, we propose to consider selected
VLE diagrams and specific mixtures of these diagrams in detail:

1. Zeotropic mixture, ideal and nonideal with univolatility line(s)
(Serafimov’s class 0.0-1: cell I);

2. Mixture with one separatrix (one binary azeotrope)
(Serafimov’s class 1.0-2: combination of two cell I’s);

3. Mixture without separatrix, but with one binary azeotrope
(Serafimov’s class 1.0-1a: cell II and 1.0-1b: cell III);

4. Mixture without separatrix, but with two binary azeotropes nodes
(Serafimov’s class 2.0-1: cell IV).

An illustration of a ternary mixture with one binary saddle azeotrope (Class 1.0-2) consisting of two ele-
mentary cell I’s is given in Figure 4. The left cell has “C-shaped” residue curves, and the right cell has
“S-shaped” residue curves (inflection) caused by the univolatility line �23. Although both cells are of type I,
this difference in shape may have a large effect on the actual separation process. For details on the internal
structure (“shape”) of ternary VLE diagrams, the reader is referred to Hilmen (2000) and Reshetov et al.
(1999).
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Figure 4: Ternary azeotropic mixture with one binary saddle azeotrope (Class 1.0-2 consisting of two Cell
I’s). Residue curves; unidistribution (solid) and univolatility (dash-dotted) lines are given.

4.2 Multiple steady states

As an example of the use of elementary cells we may consider the possibility for multiple steady states in
(homogeneous) azeotropic distillation. Such multiplicities may lead to problems in column operation and
control, as well as problems in column design and simulation. When two or more multiple steady states
exists for the same inputs it is possible that, for some disturbance, the column profile jumps from the desir-
able (in terms of product specifications) to an undesirable steady state. However, such catastrophic jumps
may be avoided by proper control of the column, and the separation schemes for such mixtures may well
be feasible and economical. The possibility of multiple steady states at infinite efficiency of the distillation
(infinite reflux, infinite theoretical equilibrium trays, and D=F from 0 to 1) was first noted by Balashov et
al. (1970). They considered a mixture of Serafimov’s class 1.0-1b (primary diagram of elementary cell III
with U-shaped residue curves) with a binary maximum-boiling azeotrope (ZS-type 7b), and found that for
these mixtures it is feasible to have multiple products for the same value of the parameter D=F . Later, Pet-
lyuk and Avet’yan (1971) analyzed this issue in more detail and included bifurcation analysis. This analysis
is also included in the textbook by Petlyuk and Serafimov (1983), where Petlyuk writes “the existence of
more than one saddle along a distillation line for sharp (infinite reflux, infinite column) separation going
from an unstable node to a stable node leads to multiplicity of the separation products for the same feed
composition and the same value of parameter D=F”. The geometrical considerations given by Petlyuk and
coworkers are also found in Serafimov et al. (1971). This is a sufficient, but not a necessary condition for
multiplicity of the mixture. Bekiaris et al. (1993) give a similar condition, roughly that the existence of two
or more neighboring saddles may lead to output multiplicity. Bekiaris et al. (1993) also identify other struc-
tural characteristics that may induce multiple steady states, such as highly curved distillation boundaries
(“pseudosaddles”), as for the mixture of acetone-chloroform-methanol.

The elementary cells that may lead to output multiplicity are III, III’, IV and IV’. From this we can predict
the possibility of multiple steady states (sufficient condition) for any given mixture that is caused by these
structural characteristics. From Figure 2 we see that 14 of the 26 diagrams include these elementary cells
(1.0-1b, 1.1-1a, 1.1-1b, 2.0-1, 2.0-2a, 2.0-2c, 2.1-1, 2.1-2a, 2.1-2b, 3.0-1b, 3.1-1a, 3.1-1b, 3.1-1c, 3.1-3a).
From the statistics by Reshetov we find that about 7 % of the reported VLE diagram structures include these
cells. Serafimov’s class 2.1-2b, which includes cell IV, is relatively common (4 %), and this class may give
multiplicities for feeds in the region with U-shaped residue curves.

The significance of multiplicities for column operation have been studied by Morari and coworkers (Laroche
et al. 1992a, Laroche et al. 1992b, Bekiaris et al. 1993, Bekiaris and Morari 1996, Güttinger and Morari
1996, Güttinger and Morari 1997). Mixtures with one binary minimum-boiling azeotrope of Serafimov’s
class 1.0-1b (primary diagram of cell III with U-shaped residue curves) has been the focus, in particular the
mixture of acetone - heptane - benzene. However, from the occurrence statistics we see that Serafimov’s
class 1.0-1b is not very common.

10



Bekiaris and Morari (1996) found multiple steady states for the mixture ethanol - ethyl propanoate - toluene
(Serafimov’s class 2.0-2a, ZS-type 18, which includes cells I and III) for a specific feed region. The specific
feed region corresponds exactly to elementary cell III.

5 Pseudo-component subsystem

An idea related to the concept of elementary cells is the concept of pseudo-components. This approach is
known to many engineers working with azeotropic distillation. Vogelpohl (1999) proposes to analyze real
azeotropic mixtures as subsystems approximated by zeotropic mixtures where each azeotrope is represented
by a pseudo-component. A residue curve region with k singular points (pure component and azeotropes)
is thus represented as a k-component zeotropic mixture by assuming constant relative volatilities between
the real components and the pseudo-components (azeotropes). Ideal distillation lines are calculated for
each subsystem. However, this strong simplification has major pitfalls. The ideal distillation lines (or
residue curves) diverge from the real (exact) ones as azeotropic mixtures necessarily have univolatility lines
that deform the simple phase transformation trajectories and cause S-, 
-, and even more complex shapes
(internal structures) of the distillation lines (residue curves). For example, a ternary azeotropic mixture
of Serafimov’s class 1.0-2 (Figure 4) may be considered to be a quaternary system with the binary saddle
azeotrope as an intermediate boiling pseudo-component. From this, for both of the cells I in the diagram, C-
shaped ideal distillation lines are calculated. However, this is not true for the real mixture. Furthermore, the
approach results in straight line distillation boundaries which in general are curved (Schreinemakers 1902).

We argue that when only the qualitative shape of the curves are needed, one can sketch the residue curve
map (by hand) rather than calculate the exact, but incorrect, ideal subsystems map based on the constant
relative volatility assumption. For example, we know that for mixtures of Serafimov’s class 1.0-2 (Figure
4) with one binary azeotrope saddle and a separatrix that splits the composition space into two cells I, one
of these cells must have a univolatility line extending from the azeotrope and to one of the binary edges
resulting in an inflection point of the residue curves (S-shape).

Vogelpohl (1999) emphasizes that his main point is not to approximate the distillation lines of real mixtures
by the distillation lines of ideal systems, but to show that the distillation behavior of real (zeotropic and
azeotropic) mixtures is not fundamentally different from the distillation behavior of ideal systems, and that,
therefore, the large body of knowledge developed from the theory of multicomponent distillation may be
applied to better understand the distillation of real multicomponent mixtures. This is in line with the idea
behind elementary cells presented in this paper.

6 Conclusion

The concept of elementary topological cells of ternary VLE diagrams is a key to a simple and surveyable
azeotropic distillation analysis. Any real ternary mixture can be qualitatively represented by a combination
of only four elementary cells. This greatly reduces the number of VLE diagram structures that need to be
analyzed in order to reveal the qualitative characteristics of any ternary azeotropic mixture.
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Table 2: Relationship between different classifications of ternary VLE diagrams

Gurikov (1958) Serafimov (1970) ZS-type a Matsuyama & Nishimura (1977)
Zeotropic 1 0.0-1 1 000
One binary 4a 1.0-1a 3a 100
azeotrope 7a 030

4b 1.0-1b 3b 001
7b 003

3 1.0-2 4 020
8 400

One binary 2a 1.1-1a 2a 200-m
and one 6a 040-M
ternary 2b 1.1-1b 2b 002-m
azeotrope 6b 004-M

5 1.1-2 5 010-S
9 300-S

Two binary 9 2.0-1 15 031, 103, 130
azeotropes 8a 2.0-2a 17 023, 320

18 401, 410
8c 2.0-2b 11a 102, 120, 021

21a 043, 430, 403
8b 2.0-2c 11b 201, 210, 012

21b 034, 304, 340
Two binary 7 2.1-1 13 032-m, 230-m, 203-m
and one 14 041-M, 140-M, 104-M
ternary - 2.1-2a 16a 420-m, 402-m
azeotrope 16b 024-m, 420-M

6 2.1-2b 10 022-m, 220-m, 202-m
20 044-M, 440-M, 404-M

10a 2.1-3a 19 013-S, 310-S, 301-S
10b 2.1-3b 12 011-S, 110-S, 101-S

22 033-S, 330-S, 303-S
Three binary 14a 3.0-1a 29 411
azeotropes 33 323

14b 3.0-1b 28 123, 321, 132, 213, 312, 231
34 413, 314, 431, 341, 134, 143

13 3.0-2 24 212, 122, 221
37 434, 344, 443

Three binary - 3.1-1a 27b 421-m, 412-m
and one 32b 423-M, 324-M
ternary 12 3.1-1b 26 232-m, 223-m, 322-m
azeotrope 31 414-M, 441-M, 144-M

- 3.1-1c 27a 142-M, 241-M, 124-M, 214-M, 421-M, 412-M
32a 423-m, 324-m, 432-m, 342-m, 234-m, 243-m

11 3.1-2 23 222-m
36 444-M

15 3.1-3a 25a 121-S, 112-S, 211-S
38a 343-S, 334-S, 433-S

- 3.1-3b 25b 121-S, 112-S
38b 343-S, 334-S, 433-S

16 3.1-4 30 131-S, 113-S, 311-S
35 133-S, 313-S, 331-S

a ZS-type refers to the refined classification of the 49 antipodal structures by Zharov and Serafimov (1975), p. 96-98
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