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Abstract

This paper consider how to best implement the optimal operation policy in
the presence of uncertainty (disturbances and implementation errors) by select-
ing the right set of controlled variables c to be kept at constant setpoints ¢s. More
specific, we focus on how to select controlled variables that are linear combina-
tions of the available measurements with good self-optimizing properties. A new
method is proposed, that from a linear point of view give controlled variables with
perfect self-optimizing control. This is achieved by calculating the change in opti-
mal value for the measurements, Ay,,; = FAd and to select controlled variables
that are linear combinations of the measurements, Acypr = HAyy = HFAA,
such that HF = 0. It is shown that the number of measurements needed is
greater or equal to the number of inputs and disturbances. This secure, from a
linear point of view, perfect self-optimizing properties for disturbances if we ne-
glect measurement error. If we have that the number of measurement is greater
than the sum of inputs and disturbances we have some freedom in choosing a
subset of the measurements. Based on this, a strategy for selecting the necessary
measurements, to reduce the effect of the implementation error, is proposed. To
illustrate the method several examples are included.

1 Introduction

Although not widely acknowledged, controlling the right variables is a key element in
overcoming uncertainty in operation. Control systems often consist of several layers
in a hierarchical structure, each operating on a different time scale. Typically, layers
include scheduling (weeks), site-wide optimization (day), local optimization (hours),
supervisory/predictive control (minutes) and regulatory control (seconds). The layers
are interconnected through the controlled variables c; see Figure 1.
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This paper focus on the interaction between the local optimization layer and the
feedback control layer, by finding candidate controlled variables with good self-optimizing
properties. Self-optimizing control follows the idea of Morari et al. (1980) where one
want to find controlled variables that, under the influence of disturbances and imple-
mentation errors, operates near optimal when kept at constant setpoints. The term
disturbance include both process disturbances and modeling errors.

Optimal operation for a given disturbance (d) can be found by solving the following
problem.

muin J(z,u,d) (1)

s.t
f(z,u,d)=0 (2)
g(z,u,d) <0 (3)

reX,ueld,deD

where f is the process model, ¢ is the inequality constraints, u is the independent
variables (inputs), d is the disturbances in which we cannot affect and x the states.
The solution of (1) give the optimal input u,p:(d) and states zo(d), so the the optimal
measurements y,,:(d) can be calculated with respect to d. Uncertainty can be classifies
as either signal uncertainty (measurement noise and disturbances) and model un-
certainty (parametric and structural model uncertainty). Morari et al. (1980) use a
slightly different classification, in which he classifies disturbances as either dominant or
insignificant based on the economic impact (change in J,,:) and propose to neglect the
disturbances with small economic effect. This is partially true, in the sense that the
disturbance affect both the economics and the feasibility region of the system. While
a disturbance may have little effect on the economics, it may greatly influence the fea-
sibility region for a control structure making it necessary to include it in the analysis.
There are two classes of problems that can result by solving (1)
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e (Constrained: The optimal solution lies at active constraints for all expected
disturbances.

e Unconstrained (the focus of this paper): One or more of the optimization degrees
of freedom are unconstrained for all or some expected disturbances.

For constrained problems, we usually select the active constraints as controlled vari-
ables (Maarleveld & Rijnsdorp 1970), and implementation is easy. The second class,
which is the focus of this paper, we consider the selection of the controlled variables for
the remaining n degrees of freedom. From a mathematical point of view, the optimal
controller is the one with full information, that based on all available measurements,
estimate the disturbances and then calculates the optimal change in the input. In
practice, a optimizing controller will not be used due to the complexity of modeling,
so a decentralized structure is common in practice. We will show here, that by only
controlling the right variable, we are able to operate with an acceptable loss, by keeping
the controlled variable at constant setpoints.

Self-optimizing control (Skogestad 2000a)is when an acceptable loss can be achieved
using constant setpoints for the controlled variables (without the need to re-optimize
when disturbances occur).

The term self-optimizing control was introduced by Skogestad (2000a) and the cen-
tral issue when searching for the self-optimizing control structure is to decide how to
best implement the optimal policy in the presence of uncertainty. This is done by
selecting the right set of controlled variables ¢ to be kept at constant setpoints c;.
The goal is to minimize the loss, L = J(c; + n,d) — Jopi(d), with a constant setpoint
strategy, where the loss is the difference between the value of the objective using a con-
stant setpoint policy and the value of the true optimal objective. From a steady-state
perspective with no uncertainty, the only requirement to the selected control structure
is that the selected controlled variables form a independent set, it does not matter
what variables we select to control. The presence of disturbances make the selection
of controlled variable an important task. An illustration is given in Figure 2 where the
loss for open loop and two closed loop structures is given with respect to disturbance.
Keeping the variables at the nominal optimum, we see that the open-loop structure
has the highest loss. Of the two closed loop structures we see that controlling variable
¢1 at the nominal value follow the optimal path and give (almost) no loss For a review
of self-optimizing control see Skogestad (2000b).

Finding the optimal self-optimizing control structure may be formulated by the
following minimax problem.

LB, (o) W
S.t.
f(w,u,d)=0 (5)
g(z,u,d) <0 (6)
¢ = h(y) (7)



c(z,u,d) =cs+n (8)
reX,ueld,deD

where n is the implementation error. So how do we select h? Due to the binary
variables, the optimization problem grows combinatorially and is generally non-convex.
From this it is obvious that there is a need for simpler methods to select controlled
variables with good self-optimizing properties. Mahajanam et al. (2001) propose a
“short-cut” method for evaluating the self-optimizing properties of controlled variables,
while Skogestad et al. (1998) propose a method based on a Taylor series approximation
of the loss function. Morud (1995) showed that, for a simple Continuous Stirred Tank
Reactor (CSTR) example, where one wants to maximize the product composition, by
selecting the right linear combinations of the available measurements, the resulting
controlled variable had perfect self-optimizing properties from a linear point of view.
The analysis did not consider implementation error and the linear combination was
found by searching in all possible of the measurements. While this method may apply
on small systems, for larger system the method becomes computationally expensive.
The objective of this paper is to provide you with a much simpler method.

2 Proposed method for selecting controlled vari-
ables as linear combinations of measurements

The overall objective is to find a set of controlled variables ¢ which yields self-optimizing
control, that is, we want to obtain near-optimal operation when c is kept at constant
setpoints ¢, in spite of disturbances d and implementation errors n. Actually, as shown
in this section, if we neglect the implementation error in controlling ¢ (e.g caused by
poor control or measurement error), then it is possible from a linear point of view to
find a linear combination of the available measurements with zero loss (“perfect self-
optimizing control”).

Generally, the measured variables y are a function of the independent variables (degrees
of freedom) v and disturbances d (as well as the internal states x)

Y= fy(uad) (9)

In most cases the set y also includes the independent variables w. The controlled
variables ¢ are to be selected as combinations of the measured variables,

¢= h(y) (10)

where the generally non-linear function A is free to choose, except that we assume
controlled variables are independent and that the number of controlled variables (c’s)
equals the number of degrees of freedom (u’s).We will here consider the case where the
function A(y) is linear. We then have that

Ac= HAy (11)

where the matrix H is free to choose. We assume that the operation is nominally
optimal, that is, we have ¢; = copt(d*) where d* is the nominal disturbance. We assume
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that there is no implementation error (n = 0), which implies that we will have ¢ = ¢
(constant) for all disturbances d.

This constant setpoint policy will be optimal (with zero loss) provided the optimal
value of ¢(d) remains constant, that is, is ¢y (d) is independent of d. This simple
insight may be used to find the optimal linear combination (i.e. find the optimal
choice for the matrix H).

We consider small changes (disturbances), then the change in the optimal value of the
measurements is then given by

Ayopt = Yopt,d — Yopt,dx = F(d - d*) =FAd (12)

where F' = % may be obtained numerically by solving the optimization problem (1)
for small changes in the disturbance variables d, and from this obtain uyy(d) as well

as Yopt(d). From (11) the corresponding change in the optimal value of ¢ is
ACopt = HAyopt (13)

We will now require that
Acopt =0 (]_4)

and from this requirement we get that
Acopr = HFAd =0 (15)
This need to be satisfied for any Ad so we must have that
HF =0 (16)

For this to be true, we have that Hshould be in the left null space of F (H € N (FT)).
Assume that we have n unconstrained degrees of freedom (the length of vectors u and ¢
are n), we use m independent measurements (see below) when forming ¢, and we have
k independent disturbances. We than have that F'is a m x k matrix and H isan xm
matrix. The fundamental theorem of linear algebra (Strang 1988) give that A/ (F7),
the left null space of F has dimension m-r, where r is the rank of F' (r = Rank(F)).
Since the disturbances are assumed to be independent, we have that Rank(F) =r =k
and since H € N (F") we have that dim(H) = m — k. We need as many controlled
variables as inputs which give that dim(H) = n(so that the number of basis vectors
for the left null space is n).

m—-n=ksm=n+k (17)
so that
dhy = Hd + # u. (18)

e.g. the minimum number of measurements needed is equal to the number of inputs
plus the number of disturbances.

Theorem 2.1 . Self-optimizing control by combination of measurements
Assume we have n unconstrained independent variables u, k independent disturbances
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d, and m measurements y, of which n + k are independent. The measurements are
combined linearly into n controlled variables

Ac= HAy (19)

If H is selected such that HF=0 where F' = d%’t , then keeping c constant at its nominal

optimal value gives zero loss when there are disturbances d, The matriz H is generally
not unique.

Summarized, the main idea is to select the selection matrix H such that
Acopt = HAyopt = HFAy = 0 (20)

by requiring that H € N'(FT) using m = n + k measurements. Below we will address
the question of how to select which measurement to use.

3 Comparison with previous results

Skogestad & Postlethwaite (1996) derived the following four requirements for a good
candidate controlled variables:

1. Its optimal value ¢,y (d) is insensitive to disturbances.
2. It should be easy to measure and control accurately.

3. The variable c should be sensitive to changes in inputs.
4. The selected variables should be independent.

Skogestad (2000a) presents two approaches for selecting controlled variables for self-
optimizing control based on a Taylor series approximation of the loss function.:

1. Approach 1. Minimum singular value rule. Select variables that maximize the
minimum singular value of the appropriately scaled steady-state gain matrix G
from inputs (u) to the selected controlled variables (c).

2. Approach 2. Exact “brute-force” linear method.

A short description of both methods are included here for reference.

3.1 Approach 1: Minimum Singular Value Approach
Skogestad & Postlethwaite (1996) derived a very useful second-order expansion of the

loss function around the nominal optimum for a given disturbance d:

L0t d) = 5 0= g (@) o = (@) = 5 (€0 s = 213 (21)

where
2= J %, (22)
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For a given disturbance d, the corresponding deviation in the controlled variable is:
ec = € — Copt(d) = G(u — Ugp(d)) (23)

which gives u — upp(d) = G7'(c — copi(d)) assuming that G is invertible. The loss
function then becomes:

L(u,d) = %[GI(C = Copt(d))" Tuu (G (€ = cope(d)))] (24)

If we assume that each controlled variable has been scaled properly |lc — copi(d)|]2 =1
and that each “base case” variable u is scaled such that a unit change in the input
has the same effect on the cost function J, then the resulting worst case loss may be
evaluated by the singular value:

a1

1 2 1 —( 71/2/—1\2
= — = — —_— 2
L ||‘I33|3}§(1 9 ||Z||2 9 (U(Juu G ) 9 Q(G)2 ( 5)

max
llecll2<1

where a = 7(Jy,)? and ¢(G) is the minimum singular value of the steady state gain
matrix G from ¢ to u. From equation (25) we see that in order to minimize the loss
we should maximize o(G).

3.2 Approach 2: Exact local method

This section summaries the most important results of (Skogestad et al. 1998) for what
we here call the “exact local” method. They showed that change in the input when
using a constant setpoint policy is:

ew =1t —ug(d) = (J T, — G'Gy)(d —d*) + G™'n (26)

where * indicates the nominal optimal point, J3, = (%)* and n is the implementation
error. Upon substitution of equation (26) into equation (21) we get:

1
L= I8 (27)

where

2= J (T J5 — GT'Ga)(d — d*) + G7'n (28)

By proper scaling and assuming that || ( Z ) lla <1, see Figure 4, the worst-case loss

1s:

L= (29)
2
where
M = [My M,] (30)
My = Iy} (1 o — G Ga)Wa (31)
M, = J2G—'w, (32)

where W, and W,, are positive diagonal matrices representing the expected magnitudes
of the disturbances and implementation errors respectively. This method require that,

for each candidate set we calculate the singular value of the matrix M.
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Figure 3: Worst case disturbance, in 2-dimensional space.

Figure 4: Worst case disturbance, in 2-dimensional space.

3.3 Best combinations of measurements

Skogestad et al. (1998) propose a method, based on approach 2 in Section (3.2), to
find the best linear combination of measurements, Ac = Hyy,, + H,u = Hy where
H = [H, H,] and y = [y, u], in that the matrices H, and H, are free to choose. G
and G, in the equations (27) to (32) are:

G =H,+ H,GY, (33)
Gy = H,GY (34)
W, = Hdiag[Wpy, Wp,] (35)

where Ay = GYAu + GYAd. The method require that one solves the optimization
problem:

. R ST
i, L= i, 51 )

While exact, the optimization may in practice be very difficult due to the non-convexity
of the problem. The “exact method” optimization tries simultaneously to minimize the
effect of the disturbances (31) and the implementation error (32), by selecting the right
variable combination.

3.4 Comparison with the exact local method
The linearized models in the nominal point are.
Ay = GYAu+ GYAd (37)

where G, = (0f,/0u)*T and GY = (8f,/dd)*" (in general we assume that it is possible

to measure u). If we assume that the nominal point is optimal we have for the optimal
input

Yopt(d) — Yopt(d”) = G (uope(d) — ugy,) + Ga(d — d7) (38)

Skogestad et al. (1998) derived a first-order accurate approximation of the optimal
input

Uopt(d) — Uopt(d") = — T3, T3, (d — d7) (39)

and a first order accurate expression for the optimal output change is:

Ayop = Yopt(d) = Yopt(d”) = [~GYI3 T, + GY] (d — d) (40)
8



and since we would like to have Ac = HAy it follows that
Acop = HAYop = H [=GyJ " Ji, + G| (d = d°) = [=GJ.1" Ji, + Ga| (d — d) (41)

where we have introduced G = HG,, G4 = HGY. We now go back to (30) and
consider the case with no implementation error (n = 0). Then from (31) the loss is
zero if My = 0, which is equal to requiring

(uu i =G 'Ga) =0 (42)

or

GI VT, —Gy=0 (43)

and by substituting this into (41) we have re derived that the required Acyy,: =
HAyy = 0 in (14) results in zero loss when there is no implementation error (n = 0).
Note also from this derivation that F = —GY.J,,! J4, + GY, but it is probably easier to
obtain Fdirectly from the non-linear model.

4 A simple two-step method considering disturbances
and implementation error.

The method outlined in Section 2 did not consider implementation error. The only
requirement is that the number of measurements are larger or equal to the number
of disturbances and inputs. From (30) we know that the loss is L = &(M)?/2 where
M = [M, M,]. We have derived a simple procedure for finding a set of candidate vari-
ables ¢ (¢ = Hy) such that My = 0, but M,, may still be large. However, as indicated
earlier the matrix H that yield M; = 0 is not unique, so we have some freedom in
selecting H such that M,, remains small. It is possible to solve the problem exactly by
numerically seeking the matrix H that minimize (M) (Skogestad et al. 2002).
Moreover, we here suggest a much simpler approach, which is to select from all the
available measurements, a subset of n+k measurements, which are independent in the
sense that they give independent information of the ninputs (u) and k disturbances (d).
In addition, we scale the measurements relative to their measurement noise and the
inputs and disturbances relative to their range and expected disturbance respectively.
More precisely we have that Ay = [G¥ GY][Au' Ad']" = G and we look for mea-
surements that maximize ¢(G) different from zero. From (32) we see that we would
like measurements that maximize (G, in order to minimize the implementation error.
In addition we also want the disturbances to be observable from the measurements, so
we should also like that GY is non-singular. In addition, we need F' to be non-singular
based on the observation that in order for Ac = HF Ad to be zero H must be in the
null space of F.

Assume that u and d are independent, such that GY and G has full rank equal to n and
k respectively. Then G' = [GY GY] has full rank (n+ k), which implies that GY A+ GY is
non-singular for all A (since Gy is non-singular). Since Auyy(d) = AAd = —J,} JaAd,
we have that F' is non-singular as wanted. By finding measurement combinations such
that G is non-singular we have shown that F is non-singular. We summarize the

preceding in the following procedure:
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Details of procedure
Assume that m > n + k.

1. Nominal Optimum. Solve the optimization problem in (1) for the nominal
disturbance d*. This give the solution (z*, y*) = (Zpe(d*), Yopt(d*)).

2. Linearization. Linearize the process model (e.g by a central difference method)
in the nominal optimal point. This give GYand GY.

3. Scaling Scale each measurement y;, each input u; and each disturbance dj by a
scaling factor:
: . d
y{ _ Yi UI- — U d/ k (44)

i s Yy y U =
Yi,scl uj,scl dk:,scl

The scaling factors for the measurement are the corresponding implementation
error (yisa = |ns|), for each input its allowed range (u;sq = Ujmas) and for
the disturbance the expected disturbances. This give the scaling matrices W,, =
diag(Yisa), Wy = diag(uj sq) and Wy = diag(d sa)

4. Selection of measurements. If m > n+ k we select measurements as follows:

(a) Combined process model. Calculate the scaled process model Ay’ =
G A +GY Ad' = W, TGYW, Au' + WL GEW4Ad' and make a new process
matrix Ay = Gi = [G¥ GY][Av' Ad']T

(b) Selection of first measurement. For the first measurement calculate the
row norm ||G;||z for all rows i and sort the measurements by decreasing
row norm. Select the first measurement which have the highest row norm
and add the corresponding process matrix in a selection process matrix
Gs = maz;||G||2

(c) Selection of the additional measurements. Until m = n + k add all
remaining measurements to the already selected measurements one-by-one
(G jiri = [Gs; Gi]T for all i and calculate the minimum singular value for
all the combinations. Select the new measurement which has the highest
minimum singular value and add to the selection process matrix.

5. Null space of F.
(a) Calculate AYopt = Ym,opt(d) — Ym,opt(d*) = FAd directly from the nonlinear
model or by (40).
(b) Calculate the null space N'(F'), such that the resulting basis for the null
space is orthogonal.

6. Selection of controlled variables

(a) Select H such that H € N'(FT) and such that the rows of H form a orthog-
onal basis. This ensure that Acyyr = HAyep: =0

This selection guarantees that F' is never singular. This requirement is conservative,
since u and d are not independent, and we really need that F' is non-singular in that

space.
10



5 Examples

This section contain three examples to illustrate the proposed method. Case A is
a simple “toy example”, case B is a CSTR with a chemical reaction, while case C
analyze a divided wall (Petlyuk) distillation column. In the following examples we
use the notation ¢z for the controlled variables that are linear combinations of the
available measurements as described above.

5.1 Case A: Toy Example

The simple toy example is from (Skogestad et al. 1998)!. Let J = (u — d)? where
nominally d* = 0 We always have J,,; = 0 corresponding to uy,(d) = d. Assume we
have the available measurements:

y1 = 0.1(u — d) Yo = 20u ys = 10u — 5d Ys = U (45)

We further assume that the system is scaled such that |d| < 1 and |n;| < 1. We have
the following model y = Gu’ + GYd' where;

0.1 —0.1
20 0
Yyl __ yr __
=1 Gy =| _; (46)
1 0

The exact worst case loss are? Ly = 100, L, = 1.1025, L3 = 0.36 and L, = 4. For
the best combination of the measurements with J,, = 2 and J;, = —2. We have

that the nominal optimum for d* = 0 is yj = y5 = y3 = 0. The Hessian matrix is:
*

H* = [ qu” ud ] = l 2 =2 ] and we need m = n + k = 1+ 1 = 2 measurements,

resulting in using measurement y, and y3. We have that F' = [20 5]and A/ ([20 5]1) =
[—0.2425 0.9701]. We then select cr.c = Hylys y3)' = [—0.2425 0.9701] [y, y3]*. Table 1
give the worst case loss for different controlled variables. From Table 1 we see that we

Table 1: Loss for the different controlled variables

Rank | ¢ L
1 Crc 0.0425
3 yo | 1.0025
4 Ya 2
5 yi | 100

get the lowest loss with c,c = H[y y3]7 and it reduce the loss by a factor of 6 compared
to the second best controlled variable. If we neglected the implementation error, the

L The loss is calculated by (29)
2As showed in (Skogestad et al. 1998) we have for measurement 3 that u = (c3 + 5d)/10 and with
€3 = ¢35 +n3 we get Lz = J3 = (u—d)? = (0.1nz + 0.5d — d)2.
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loss for ¢ =p.is zero. Skogestad et al. (2002) show that by using (36) and optimize the
optimal controlled variable (also including the input) give a loss of L = 0.0405, which
is a slight improvement compared to the combined variable found here. While simple,
this example show that choosing the right variable to control is of great importance to
overcome uncertainty in operation.

5.2 Case B: CSTR with chemical reaction

To further illustrate the method, we examine a continuous stirred reactor (CSTR)
(Economou et al. 1986).

The process consists of an ideal continuous stirred tank reactor, see Figure 5, where
the reversible exothermic reaction

A=B (47)

with the reaction rate expression on the form:
—E —Ey
r=kCs—kCp ki =CieR ky=Che®t (48)

where £k, = Cle_R% and ky = Cge%. The process model for the system is:
Mass balances

dCy 1 M
—— = —(Cu;, —Cp)—1r T7T=— 49
dt 7_( Aji A) F ( )
dCg 1
— =—(Cp; —Cpg) +r 50
Energy balance
dl’ 1 AH
— =—(T,-T)+ e (51)
dat 7 pCp
Reaction: A= B
Table 2: Data for the CSTR case
Parameter Value Units AB
F 1 holdup min~1 '
Ch 5000 st Cai T,
C2 106 8_1 CB,i
Cp 1000  cal kg7'K~!
E 104 cal mole™! 4
E, 15000 cal mole™!
R 1.987 cal mole™! K1
T; input —
Ca,i 1 mole L™! A%
Ch,i 0 mole L™'L Cao To
—AH,, 5000  cal mole™! Cao
p 1 kg L1
T 1 min Figure 5: Figure of the CSTR-case
The operating objective is to maximize the mole fraction of the product zgp =
_Ca__ g0
Ca+Cp? .

J(u,z,d) = xp (52)
12



Table 3: Maximum loss for different controlled variables with and without measurement
error for the CSTR-case

NC,A,Cg = O,IIT,Ti =0 NC,,Cg = 0.01,nT,Ti =0.2

c Rank Loss Rank Loss
cro 1 0.0031 1 0.0049
T; 2 0.022 2 0.023
T 3 0.024 3 0.025
Cya infeas - infeas —
Cp infeas - infeas —

where the input is u = T}, = [C4 Cp T)7, the disturbances are d = [Ca; Cp; F|*
and the available measurements are y = [Cy Cp T T;]. We assume that size of the
disturbances are Cy; € C3+£0.3, Cp; € C5+0.3 and F' € F*+0.3 where * denotes the
nominal disturbance. In this example we assume that the worst case loss correspond to
the combined worst case disturbance and implementation error in each direction The
nominal optimum is:

o 0.491
z=|Cy | =10509 |; T, =4359 (53)
T* 438.4

In this case we have that n + k£ = m so we have to use all the available measurements.
Five controlled variables are compared where [c; ¢y 3 ¢4 crc]” = [Ca Cp T T; Hy|
where c¢pc = Hy where H = [0.59 — 0.81 0.01 — 0.02] are the combined controlled
variable. We have assumed that the measurement error for the different measurements
are ng, ¢, = 0.0lmole/L and ny 1, = 0.2K for the concentrations and the temperatures
respectively. As seen from Table 3 controlling Cp¢ give the lowest loss, while controlling
the concentrations give infeasible operation. All the feasible controlled variables have
small losses, so there is small earnings in this case for selecting crc, based on the fact
that we need more measurements.

5.3 Case C: The divided wall (“Petlyuk”) distillation column

The thermally integrated divided wall (“Petlyuk”) arrangement has several advantages
compared to the traditionally arrangements. Smith & Triantafyllou (1992) report
typical savings in the order of 30% in both energy and capital costs compared to
traditional arrangements with two columns in series.

The Petlyuk column shown in Figure 6 has at steady state five degrees of freedom,
which may be selected as the following inputs v = [V L S R; R,]* (boilup, reflux,
mid product side-stream flow, liquid split and vapor split). There may be up to 4
product constraints: the top purity (zp 1), the bottom purity (zp,c), the side-stream
purity (zs ) and the ratio of the light and heavy component in the side-stream product
(zs,a/xsc). Wolff & Skogestad (1996) have reported discontinuities in the range of
feasible operation if all these constraints are optimally active. This is related to the
fact that the column sections 4 and 5 are tightly coupled. In this paper we assume that
we control one composition in the side-stream namely zg . The disturbance vector is

13
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Figure 6: The Petlyuk DiStIHation COlumn Figure 7: Plot Of the contour for the
implemented in a single column shell. nominal disturbances.

d = [za ¢] which correspond to the composition of component A in the feed and the
liquid fraction of the feed respectively. The cost function is the reboiler vapor flow

J(z,u,d) =V (54)

and computations show that the optimally active constraints are the product composi-
tions for the top, bottom and side-stream. Closing these leaves us with two remaining
degrees of freedom. Halvorsen & Skogestad (1999) proposes that controlling the DTy,
a measure of the temperature profile symmetry across the dividing wall, has good self-
optimizing properties. D7Tg is defined as DTs = > T1; — Ty; — . To; — Ts,; , where Tj;
is the temperature of tray ¢ in section j. The temperature on each tray is calculated
assuming that the contribution of each component with its equilibrium temperature
is proportional to its fraction. Based on the observation that the objective function
(54) has one “strong” and one “weak” direction, see Figure 7, it should be enough to
adjust one input to follow the “weak” direction. So, based on this, Storkaas (1999)
choose to fix one input (R,) and search for all combinations of four temperatures,
¢ = xTj i £ Tjoio £ Tjs s + Tjaiu based on the “exact local” method described in Sec-
tion 3.2. The top four candidates, in addition to the DT, for the disturbance vector
d=1[F 24 2B Qi TD Aset T5.Bset TB,C,set Foset]’ Were as given in Table 4.

To test the method proposed in this paper, the data in appendix A.1 was used, the
number of trays in each of the 6 sections, is 8. The nominal optimization gave the
optimal inputs as given in Table 5. For the simulations here, the disturbance vector
is assumed to be d = [z4 ¢q] = [240 £ 0.1 go £ 0.1] and the implementation error for
the combined temperature measurement and for 12, is assumed to be [n| = [T" Rj] =

[0.4 0.05], it is assumed that the closed composition loops have zero set-point error.
Following the method outlined in Section 4 we have that m=n+k=2+2=4 so we need

3Note that this disturbance vector also include set-point error in the composition loops, in addition
to a disturbance in component B in the feed
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Table 4: The best self-optimizing controlled vari- Table 5: Optimal nominal

ables as reported by Storkaas (1999) values for the inputs.
Name ¢ Co Variable Value

Cs1 Ry, Tos—Tya+Tss—Ts1 Riope  0.4509

c2 Ry Tig—Taz+T51—Ts Ry opt  0.4918

3 Ry Tis—Tus—Ts3—Ts4 Loy 1.6820

Cs4 Rv T2’4 - T2’8 - T4’4 — T5’3 Vopt 1.4978

CsDTs Rv T1’4 + T2’4 — T4’4 — T5’4 Sopt 0.3227

4 measurements. Only temperature measurements on each tray are considered in this
analysis and the selection of the measurements give the following selected temperature
measurements: T = [Ty To1 Tyo Ts7]7. The optimal linear combination is:

—0.322  —0.700
0.120  0.340

NEY=| o575 0618 (55)
0.74  —0.120

So we have that cpc1 = —0.322Ty 6 + 0.120T% 1 — 0.575T4.» + 0.740T5 7 and crc,2 = —0.700T1 6 +
0.340T% 1 +0.6187T4.,—0.120T5,7 . Since the structure proposed here have two unconstrained
degrees of freedom, while the one used by Storkaas (1999) fix R,, we also make the
assumption to fix one input (R,) and based on this calculate the optimal linear com-
bination of m = n + k = 3 measurements® L;cs = —0.523T} ¢ + 0.207T>1 + 0.825T4» . To
compare the different structures the loss was calculated using the non-linear model
assuming that the combined disturbance and implementation error is norm bounded.
The worst case loss (L) and the average loss (L) for the different control structures
are listed in Table 6, where we also have included the loss without implementation

error.> The rank of the different structures are based on the worst case loss.

Table 6: Loss for the different controlled variables in the Petlyuk Column case
Implementation error ~ No implementation error
1 co  Rank Ly, L Rank Ly, L
crc  CLc2 1 0.0047 0.0028 1 0.0005  0.0003

R, Cs3 2 0.0142 0.0086 4 0.0127  0.0066
R, Cs4 3 0.0143 0.0084 3 0.0055  0.0029
R, cics 4 0.0149 0.0068 2 0.0038  0.0011
R, Cs2 5 0.0173 0.0101 ) 0.0158  0.0096
R, Cs1 6 0.0313 0.0140 6 0.0195  0.0087
R, cpry 7 0.0674 0.0405 7 0.1131  0.0700

We see that all control structures have good self-optimizing properties, the DT has
the highest loss. The performance for the control structure that fix one input depends

4Note that when calculating F we fix R, at the nominal optimal point

5Note that in both cases, with and without implementation error, we have assumed norm bounded
disturbances and implementation error, so in the case of no implementation error the disturbance
vector is larger than when we include implementation error, thereby the larger loss for the no imple-
mentation case.
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of course on the implementation error in R,. The loss for the control structure crc,
and crc, 1is negligible, the main contribution is due to the implementation error, and
show true self-optimizing properties. The DTyg structure have the highest loss of the
structures tested. To try to control a single measurement in the column give infeasible
solutions. By trial and error,we searched for single measurements that was feasible.
The only feasible temperature measurements is controlling the temperature near the
feed (which in large is determined by the feed temperature). Controlling this gave a
worst case loss of Ly, , = 0.26. If we compare the structures that fix R,, we see from
the table that the structure R, and crc3, have a higher worst case loss than some
of the structures proposed by Storkaas (1999), which is based on the “exact method”
described above. If we look at the average loss in Table 6 we see that controlling R,
and cpc 3 have lower average loss than the structures proposed by Storkaas (1999) and
is ranked second. Keep in mind that Storkaas (1999) optimized directly on the loss.

6 Concluding remarks

Selecting the right variable to control is of great importance to overcome uncertainty
in operation. A new method for selecting controlled variables as linear combinations of
the available measurements has been proposed in addition to a method for selecting the
necessary measurements. The idea is to find a linear combination of the measurements
such that Acor = HAy, = 0 by using as many measurements as there are uncon-
strained inputs and disturbances. From a linear point of view, the proposed method
guaranty perfect self-optimizing properties if we neglect implementation error. Several
examples, both SISO and MIMO, has shown that the proposed method give controlled
variables with good self-optimizing properties. The selection of controlled variables
has been solely based on steady state models, so in order to complete the analysis, the
dynamic robustness and performance properties must be analyzed.
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A Appendix

A.1 Data for the Petlyuk example

Table A.1 lists the nominal data used for the Petlyuk example:
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Parameter/Variable Value
Relative volality [aa ap ac] [4 2 1]
Feed composition [z4 zp z¢] [1/31/3 1/3]

Feed Liquid fraction ¢ 0.477
Ys = [Tp,a Ts,B Tp,c] [0.97 0.97 0.97]
Feed flow F 1
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