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Abstract

This paper examines the fundamental limitations imposed by unstable (Right Half Pla#)e; R
zeros and poles in multivariable feedback systems. We generalize previously known controller-
independent lower bounds on thig,-norm of closed-loop transfer functio8 XV, || W XV (s)|| .,
where X is input or output sensitivity or complementary sensitivity, to include multivariable un-
stable and non-minimum phase weighitsandV'. The bounds are tight for cases with only one
RHP-zero or pole. For plants with i-zeros we obtain bounds on the output performance for
reference tracking and disturbance rejection. For plants witk-poles we obtain new bounds on
the input performance. This quanitifies the minimum input usage needed to stabilize an unstable
plant in the presence of disturbances or noise. For a one degree-of-freedom controller the com-
bined effect of Rip-zeros and poles further deteriorate the output performance, whereas there is
no such additional penalty with a two degrees-of-freedom controller where also the disturbance
and/or reference signal is used by the controller.

Keywords: Linear system theory; Input-output controllability; Unstable systems; Right half
plane zeros and poles; Stabilization; Fundamental limitations; pole vectors; zero vectors.

1 Introduction

It is well known that the presence of unstablafRzeros and poles pose fundamental limitations on
the achievable control performance. This was quantified feoSystems by Bode (1945) more than
50 years ago, and most control engineers have an intuitive feeling of the limitations for scalar systems.
Rosenbrock (1966; 1970) was one of the first to point out that multivariabkezZeros pose similar
limitations.

The main results in this paper are to provide explicit lower bounds orHthenorm of closed-
loop transfer functions. Of course, it is relatively straightforward to compute the minimum value of
the H.-norm for a given case by obtaining the optimal controller using standard software, e.g. in
Matlab. A direct computation of the minimum value of thg,-norm is also possible, e.g. using the
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Hankel-norm as explained in (Francis, 1987). Therefore, we want to stress that our objective is to
derive explicit (analytical) bounds that yield direct insight into the fundamental limitations imposed
by RHP-poles and zeros.

The basis of our results is the important work by Zames (1981), who made use of the interpolation
constraint” S(z) = y!* for a RHpP-zeroz and the maximum modulus theorem to derive bounds on the
‘H~.-norm of the sensitivity functioy' for plants with one RP-zero. Doyle, Francis and Tannenbaum
(1992) generalized this to provide bounds on b§t{sensitivity) andl’ (complementary sensitivity)
for plants with both RiP-zeros and RpP-poles in the 80 case, and Skogestad and Postlethwaite
(1996) and Havre and Skogestad (1998) generalized this further toithe base.

In this paper we extend these results by deriving lower bounds o ghr@orm of other important
closed-loop transfer functions. To do this, we generalize the boundBoxV (s)||, whereX is S
or 7', to include multivariable unstable and non-minimum phase weightnd1”. One important
application of these bounds, is that we carantifythe minimum input usage needed for any controller
to stabilize an unstable plant in the presence of “worst case” disturbance, measurement noise and
reference changes.

As a motivating example, consider a single-input single-output unstable plant witip-gpdte
p. We want to obtain a lower bound on ti&,-norm of the closed-loop transfer functid, S from
measurement noiseto plant inputu. Here K, denotes the feedbak part of the controller. We first
rewrite K,S = G~'T, which is on the forriV XV with W = G~!, X = T andV = I. To achieve
internal stability we must satisfy the interpolation constrdifyt) = 1, and by applying the maximum
modulus principle we obtain the bound (see Theorem 3 for details)

1S (5)lloo = 1G T ()|l = 1G5 ()]

o

whered, is the “stable” version ofy (with its RHP-poles mirrored into the HP). As an example,
consider the plan/(s) = —5, which has an unstable pole= 10. We obtainG,(s) = ;. For
anylinear feedback controlle’, we find that the lower bound

1K25(s) || > 1G5 ()] = 2p =20

[

must be satisfied. Thus, if we require that the plant inputs are bounded|wjjth < 1, then we
cannot allow the magnitude of measurement noise to ex¢egd = 1/20 = 0.05.

An additional important contribution of this paper is to prove that the lower boundticdre
provided that plant has in many oneiRzero and any number ofH®-poles, or one RpP-pole and
any number of RP-zeros. To prove this we derive analytical expressions for controllers that achieve
the lower bound.

The presentation in this paper in brief in places, and for complete details and further examples the
reader is referred to Chapter 5 in the thesis of Havre (1998).

2 Elements from linear system theory

2.1 Zeros and zero directions.

Zeros of a system arise when competing effects, internal to the system, are such that the output is zero
even when the inputs and the states are not identically zero. Here we apply the following definition
of zeros (MacFarlane and Karcanias, 1976).

DEFINITION 1 (ZEROSY). z; € Cis a zero ofG(s) if the rank ofG(z;) is less than the normal rank of
G(s).



The normal rank of7(s) is defined as the rank @f(s) at all s except a finite number of singular-
ities (which are the zeros). We use the following definition of the associated zero directions:

DEFINITION 2 (ZERO DIRECTIONS). If G(s) has a zero fors = z € C then there exist non-zero
vectors, denoted the input zero direction € C™ and the output zero direction, € C', such that
uwu, =1,y"y, = 1and

G(z)u, =0-y, Q)

For a systent7(s) with state-space realizatic{ng’%}, the zeros of the system, the input zero

directionsu, and the state input zero vectatg € C" (n is the number of states) can all be computed
from the generalized eigenvalue problem

A—sI Bl[z;] [0
e -1 &
Similarly one can compute the zeresind the output zero directions from G7.

2.2 Poles and pole directions.

Bode (1945) states th#te poles are the singular points at which the transfer function fails to be
analytic In this work we replace “fails to be analytic” with “is infinite”, which certainly implies that
the transfer function isot analytic When we evaluatehe transfer functiord(s) ats = p, G(p) is
infinite in some directions at the input and the output. This is the basis for the following definition of
input and output pole directions.

DEFINITION 3 (POLE DIRECTIONS). If s = p € Cis adistinct pole of7(s) then there exist an input
directionu, € C™ and an output directiony, € C', such that]u, |2 = 1, ||y,||. = 1, and

G(p)uy, = 00 -y, 3)

For a systend-(s) with minimal state-space realizaticﬁné—‘%} the pole directions, andy, for
adistinctpolep can be computed from

Uy = BHSUpz‘/ ||Bpri||2; Yp = Cpo/ || Cpol|, (4)

wherez,; € C* andzx,, € C" are the eigenvectors corresponding to the two eigenvalue problems

H,

Hy _
T, A= pry; Az o = DTy

For the sake of simplicity we only consider distinct poles in this paper. For computation and definition

of pole directions in the case when the pplis repeated we refer to Havre (1998, Chapter 2).

2.3 All-pass factorizations of RiP zeros and poles

A transfer function matrix3(s) is all-pass ifB (—s) B(s) = I, which implies that all singular values
of B(jw) are equal to one.

IStrictly speaking, the transfer functi@i(s) cannotbe evaluated at = p, sinceG(s) is not analytic ak = p.



A rational transfer function matri&/ (s) with RHP-polesp; € C,., can be factorized either at the
input (subscript) or at the output (subscrip) as follows

M(s) = My B, (M); M(s) = B3} (M) M,(s) (5)

po

M,;, M,, — Stable (subscript) versions ofM with the RHP-poles mirrored across the imaginary
axis.

B,:(M), B,,(M) — Stable all-pass rational transfer function matrices containing tregles (sub-
scriptp) of M as R4P-zeros.

The all-pass filters are

Np 1

By(M(s)) = TLU = 555 ap ;- Bl (M(s) = T1 (7 + F5ha,0) (6)
1 Np

@Mm»sgu—%%%%xst@>[W+MW%%> (7)

B,.,(M) is obtained by factorizing at the output oneiiRpole at a time, starting with

M = B, (M)M,,,

p1o

where
By (M(s)) = I + 2Rele)

P10 5— D1 yl’lypl

andy,, = y,, is the output pole direction af/ for p;. This procedure may be continued to factor
outp, from M, , wherey,, is the output pole direction afZ,,, (which need not coincide with,,,
the pole directiohof A7) and so on. A similar procedure may be used to factorize the poles at the
input of M. Note that the sequence get reversed in the input factorization compared to the output
factorization.
In a similar sequential manner, theiRzeros can be factorized either at the input or at the output

of M

M(S) = Mszzz(M(S))7 M(S) = Bzo(M)Mmo(S) (8)

M, Mo — Minimum phase (subscript) versions ofM with the RHP-zeros mirrored across the
imaginary axis.

B.;(M), B,,(M) — Stable all-pass rational transfer function matrices containing Hrezeros (sub-
scriptz) of M.

We get
L 2Re(z;) ~H -1 N 2Re(z;) ~  ~H
Ba(M(s) = 11 (= 5330 0s05); B (M(s)) = ITU + 525705, (9)
J=Nz J=
N,
B(M(s) = 11~ 25520.3)s B (0M(9) = [ 1+ 2255  (10)
J= J z

2Note that the notation on the all-pass factorizations ePReros and poles used in this paper is reversed compared
to the notation used in (Green and Limebeer, 1995; Skogestad and Postlethwaite, 1996). The reason for this change of
notation is to be consistent with what the literature generally defines as an all-pass filter.

3In fact: §,, = Bplo (M)|,—,,up.- HereB| _  means the rational transfer function mattixs) evaluated at the
complex numbeg = sg. Thus, it provides an alternative £ so ), and it will mainly be used to avoid double parenthesis.
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Alternative all-pass factorizations are in use, e.g. the inner-outer factorizations used in (Morari
and Zafiriou, 1989) which are the same as (9) and (10) except for the multiplication by a constant
unitary matrix. Some reasons for using the factorizations given here are:

1) The factorizations of RP-zeros are analytic and in terms of the zeros and the zero directions,
whereas the inner-outer factorizations in (Morari and Zafiriou, 1989) are given in terms of the
solution to an algebraic Riccati equation.

2) To factorize Rip-poles using the inner-outer factorization one needs to assumé thaxist.

2.4 Closing the loop

In this paper we consider the general two degrees-of-freedom control configuration Figure 1. The
controller can be divided into a negative feedback gartfrom the plant measuremengs, and a
“feed forward” partk; from the references,

u=Kir — Koym = Kir — Ks(y + n) (11)

&

n,
N ¥

Figure 1: Two degrees-of-freedom control configuration Witts) = [K(s) — Ka(s)]

In the figure performance weights are given in dashed boxes. The external inputs include distur-
bances/, references and measurement noigselhe corresponding three matricgg, R and N can
be viewed as weights on the inputs, and the ingutsand7; are assumed to be normalized equal to 1
in magnitude. Normally}V is diagonal andN];; is the inverse of the signal to noise ratio. For most
practical purposes, we can assume thand/V are stable. However, from a technical point of view
it suffices that the unstable modesAnand iR can be stabilized using the plant inputsand plant
outputsy. For the disturbance plant, we assume that all the unstable mode&ghlso appear -
such that they are stabilizable using the plant inputs and outputs.

The closed-loop transfer functian from external inputs to external outputs,

T[] ]

LA ] L ]

[WP(SGKl — DR WpSGy —WpTN ]
F(S) = WTSGKlR WTSGd —WTTN (12)
L W.SIK\R —W,KSG, —WUKQSNJ



where the sensitivityy, the complementary sensitivily and the input sensitivity; are defined by

S £ (I+GKy)™! (13)
T £ I-S = GKy(I+GKy)™! (14)
S; & (I+K,G)™! (15)

We also define the input complementary sensitivity

]— S[ - KQG([—FKQG)il (16)

(1>

T;

By settingKK; = K, in the above equations, the one degree-of-freedom control configuration can be
analyzed.

3 Lower bounds on the#.-norm of closed-loop transfer func-
tions

In this section we derive general lower bounds on#hg-norm of closed-loop transfer functions
when the plantG’ has one or more IRe zeros and/or poles, by using the interpolation constraints and
the maximum modulus principle. The bounds are applicable to closed-loop transfer functions on the
form
W(s)X(s)V(s) a7

where we assume th&t XV is stable andX may besS, T, S; or T;. The idea is to derive lower
bounds on|W XV (s)||,, which are independent of the controll&r. The weightd? andV must be
independent of(. Examples of “weights” considered in this paper @rgandG . The weights may
be unstable, provided the unstable modes can be stabilized by feedback control of tiie, glactt
thatWW X'V is stable. The results are stated in terms of four theorems.

Theorems 1 and 2 provide lower bounds on#hg-norm of closed-loop transfer functions on the
formsW SV andW S;V caused by one or moreHR-zeros inGG. By maximizing over all Rip-zeros,
we find the largest lower bounds ¢ SV (s)||, and ||W SV (s)||,, which takes into account one
RHP-zero and all Rip-poles in the plant.

[

THEOREM 1 (LOWER BOUND ON [[WSV(s)||,,). Consider a plantG with N, > 1 RHP-zerosz;,
output directionsy,, and N, > 0 RHP-polesp; € C,. LetWW andV be rational transfer function
matrices, wherdV is stable. Assume that the closed-loop transfer functiofiV is (internally)
stable. Then the following lower bound g SV (s) ||, applies:

WSV(s)llo = . max — [[Wano(27) s, |l - lyz; VB (Byo(G) V)]

RHP-zerosz; in G %

(18)

s:zj||2
The bound is tight (equality) for the case wh&ras only ondrRHP-zero.

Proof. See Appendix.

THEOREM 2 (LOWER BOUND ON [|[W SV (s)| ). Consider a plant with N, > 1 RHP-zerosz;,
input directionsu., and N,, > 0 RHP-polesp; € C,. LetIW andV be rational transfer function
matrices, wherd’ is stable. Assume that the closed-loop transfer functiofi;V" is (internally)
stable. Then the following lower bound 9 S;V (s)||.. applies:

[

WSIV(s)lloe > max B (WB6(G)) W, s, lly - lluz Vini(2) (19)

RHP-zerosz; in G J

The bound is tight (equality) for the case wh&ras only ondrRHP-zero.
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Theorems 3 and 4 provide lower bounds on#hg-norm of closed-loop transfer functions on the
formsWTV andW T,V caused by one or moreHR-poles inGG. By maximizing over all Rip-poles,
we find the largest lower bounds ¢’V (s)||, and||[WT;V (s)||,, which takes into account one
RHP-pole and all Rip-zeros in the plant.

THEOREM 3 (LOWER BOUNDS ON||WTV (s)|,,). Consider a planti’ with N, > 1 RHP-polesp;,
output directionsy,, and N, > 0 RHP-zerosz; € C,. LetW andV be rational transfer function
matrices, wherd/ is stable. Assume that the closed-loop transfer funciohV is (internally)
stable. Then the following lower bound oW 7'V (s)||, applies:

IWTV(s)lly > . max B (WB:o(G) W,y tplla - 114 Vini (pi) 15 (20)

RHP-poles,p; in G

The bound is tight (equality) for the case wh&rmas only ondrRHP-pole.

THEOREM 4 (LOWER BOUNDS ON||WT;V (s)| ). Consider a plantz with N, > 1 RHP-polesp;,
input directionsu,, and N, > 0 RHP-zerosz; € C,. LetWW andV be rational transfer function
matrices, wherdV is stable. Assume that the closed-loop transfer functiah; V" is (internally)
stable. Then the following lower bound §W 1V (s)|| applies:

IWTV ()l max [ Wi (pi) p, ||y - 1y VB (Bei(G) V), (21)

RHP poles,p; in G

The bound is tight (equality) for the case wh&rmas only ondrRHP-pole.

Remarks on Theorems 1-4:

1) The somewhat messy notation can easily be interpreted. As an example take the last factor
of (18): It says that we should factorize theiRpoles at the output ofr into an all-pass
filter B,,(G) (yields R4P-zeros), multiply on the right by” (this may add Rp-zeros ifV' is
non-minimum phase), then factorize at the input theeRReros of the product into an all-pass
transfer function, take its inverse, multiply on the Ieftg;{yv and finally evaluate the result for
S = Zj.

2) The lower bounds (18)—(21) are independent of the feedback contrglldrthe weightsiV
andV are independent df,.

3) The internal stability assumption on the closed-loop transfer fundfioXil’, where X €
{S, Sy, T, Ty}, implies thatiW X'V is stable and that we have na4R pole/zero cancelations
between the plant: and the feedback controlldt,. Note that RiP pole/zero cancelations
between the weights$i( or V) and X may be allowed.

4) The assumption on stability &7 andV in Theorems 1-4 is in practice not restrictive, since
when the assumption is not fulfilled we can generally rewrite the transfer function and apply
another theorem instead. This is illustrated in the following example.

ExAMPLE 1. We want to derive a lower bound on th&,.-norm of the closed-loop transfer function
K»,SGy (input usage due to disturbances). We can use the rel&fighG, = G~'TG, and apply
Theorem 3 withW = G~ ! andV = G, but we must assume th@&; is stable However, we can use
the relationkK,SGy = TrG~'G4 and apply Theorem 4 with/ = I andV = G~'Gy, and in this case
we can also allow7; to beunstable

4  Applications of lower bounds

The lower bounds off WXV (s)||., in Theorems 1 to 4 can be used to derive a large number of
interesting and useful bounds.



4.1 Output performance

The previously derived bounds in terms of tHeg,-norms ofS and7 given in (Zames, 1981; Skoges-

tad and Postlethwaite, 1996) and in Havre and Skogestad (1998) follow easily, and further general-
izations involving output performance can be derived. Here we assume that the performance weights
Wp andWr are stable and minimum phase.

Weighted sensitivity,WpS. SelectiW = Wp, V = I, and apply the bound (18) div SV to obtain

WpS(s)lloe > _ max [ Wp(z) vz, [l - 1Yz By0 (G- |l (22)

RHP-zeros,z;

Disturbance rejection. SelectiV = Wp, V = G4, and apply the bound (18) div SV to obtain
IWpSGa(s)llo > max — [[Wp(z;) ys lls - |92 Ga By (Byo(G) Ga) . |l (23)

RHP-zerosz;

Reference tracking. SelectV = Wp, V = R, and apply the bound (18) di' SV to obtain
WpSR(s)|lo = max —|[Wp(z) yz, I - lyz; BB (Byo(G) R),_ I, (24)

RHP-zeros z;

Note that we can also look at the combined effect of disturbances and references by séleeting
(G4 R].

Measurement noise rejection.SelectiV = Wp, V. = N (stable), and apply the bound (20) on
WTYV to obtain

IWpTN(s)lloo > max B, (WpB:o(G) Wel,y, Upillo 195, Nowi (p3) 5 (25)

o0 RHP-poles p;

4.2 Input usage

We here derive from Theorems 3 and 4 some bounds in terms of input usage. These new bounds
provide very interesting insights, for example, into the possibility of stabilizing an unstable plant with
inputs of bounded magnitude.

The basis for deriving these bounds is to note that the transfer function from the outputs to the
inputs, K>S, can be rewritten a®&,S = 7;G ! or K,S = G 'T. Whend is unstableG ! has
one or more RpP-zeros, so it is important that the bounds in Theorem 4 can handle the case when
V = G~! has Rip-zeros. We assume that the wei@¥it on the inputu is stable and minimum phase.

Outputs to inputs, K,S. Two useful lower bounds ofpi/{,5(s)||,, can be derived. First, apply the
equalityK,S = T;G 1, selectiV = I, V = G~!, and use the bound (21) 67,V to obtain

1728 (5)llo > max lu G BHG )|

RHP-poles p; S=Pi

||UHG 1

so ls=p;

2 (26)

where the last identity follows from.;(G,.;) = B.;(G ') = B,,(G) andG !B, (G) = G,
Similarly, we obtain from the bound (20) W TV, withW = G~' andV = I

[E2S(5) o > max [IBZ(Gro) G oy, tnillo = 1G5 oy, Uil (27)

RHP-poles,p;

where the last identity follows from3,,(G,.}) = B..(G ') = B,:(G).

mo)
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Disturbances to weighted inputsThis generalizes the bound (26). Apply the equaklfyS =
T;G 1, selectW = W,, V = G 1G4, and use the bound (21) ¢#7;V to obtain

W, K>SG(s)||, >  max
RHP-poles,p;
W (pi) gl - lugt G GaBZH(GLiGa) |yl (28)

where we have used the identify;(G) G = G, .

Noise and references to weighted inputsTo consider noise to weighted inputs replé&gby NV in

(28). To consider references to weighted inputs for the case of one-degree of freedom control replace
G4 by Rin (28). We may look at the combined effect of reference tracking, disturbance rejection and
measurement noise by using the bound (21y16f;V with W = W, andV = G~'[G;, R N].

5 Two degrees-of-freedom control

For a two degrees-of-freedom controller the closed-loop transfer function from refefelcmstputs
z1 = W,(y — r) becomes
Wp(SGK, — I)R (29)

We then have the following lower bound which does not follow from Theorems 1-4:

THEOREM 5. Consider a planti’ with N, > 1 RHP-zerosz; and N, > 0 RHP-polesp; € C,. Let
the performance weight’» be minimum phase and let (for simplicitif) be stable. Assume that
the closed-loop transfer functio,(SGK; — I)R is stable. Then the following lower bound on
|\Wp(SGK, — I)R(s)||,, applies:

IWp(SGK, = R(s)|l, > max  |[Wp(2)ys; [l - 1y Rmi(25) I, (30)

®° " RHp-zerosz; in G
The bound (30) is tight if the plant has only odReP-zero.

The bound in (30) should be compared to the following bound for a one degree-of-freedom controller
(which follows from Theorem 1 assuming tHét- is minimum phase).

. Ny” RB!
WSRO > | max IWp () - Iy RES (BpolG) Bl (3D)
We note from (30) that for the two degrees-of-freedom controller only e Zros pose limitations

on output performance. Thus, unlike the bound for a one degree-of-freedom controller in (31), there
is no additional penalty when we haveiRpoles.

6 Example
Consider the following multivariable plax,
5—z _ 0.1s41
G(s) = [ b 5P ], with z=25 and p=2
0.1s+1 1

The plantG has one multivariable Rr-zeroz = 2.5 and one Rip-polep = 2. The corresponding input and
output zero and pole directions are

1 _[o0371 10385 1
Y000 YT loeas | T ogs|r T o



H(G)Gso(s) where

The R4P-polep can be factorized int6/(s) = B

S=p 5=z _ 0.1s41
Bpo(G) = |:s+p :| and Gso(s) = |: ﬁf’z’ S+p :|
0 1 0.1s+1 1

1. Consider first the bound on output sensitivityFrom (18) withiW = I andV = I, we find

1S() e 2 lly2" Byo (G |,—l2 =

0371 092872 Y| =3.4601
0 1],

To confirm that the bound is tight, we use Theorem 6 in Appendix (With= 7 andV = 1) to find the
feedback controller which minimizelS(s)|,,. With ky = 1072 we get the following balanced minimal
state-space realization of the feedback contrdiler

—10| 188.4 —75.49
Ky(s) =Gt PQ Ys) = | 0 ‘ 306 —122.6 | whichindeed achieves ||S(s)]|,, = 3.4691

203 | —6508 2605

2. Next, we consider input usage in terms of the transfer function from outputs to idpifs, We have
two lower bounds offf K5 (s) but they are identical since the bounds are tight when the plant has only one
RHP-pole. From (26) we get

1K2S() g > Il G BZN Gl oyl = 0 G (0)]l, = 3.077

mi

||oo’

3. Let us finally consider reference tracking in terms of the transfer fun@idrom r to weighted errors,
Wp(y — r). We haveR = I and choose the performance weight
s/2+0.5
S
which requires integral action, a bandwidth of 0.5 [rad/s], and a sensitivity peak less than 2 at high frequencies.
With a one degree-of-freedom controller (whéfe = K5) we get from (22) that

1T ()l = IWPS(8)log = IWP(2) gy - 192 Byo' (G)],_ll, = 0.7 3.4691 = 2.4284

Wp(s) =wp(s)-I, with wp(s) =

With a two degrees-of-freedom controller (wheie is free to choose) the #-pole does not imply a funda-
mental limitation, and we get from (30) that

1T (5)lloo = IWP(SGEKL = D)R(5) |50 = WP (2)yzly - 12 Rmi(2) Il = 0.7- 1 =0.7

loo

In (Havre, 1998) more details are presented including state-space realizatidfisdod K.

7 Conclusion

e We have derived lower bounds on thg,-norm of closed-loop transfer functions for multivari-
able plants. The bounds are independent of the controller and therefore reflects the input-output
controllability of the plant.

e The lower bounds are tight when the plant has only ore-Rero or pole.

e The bounds extend and generalize the results by Zames (1981), Doyle et al. (1992), Skogestad
and Postlethwaite (1996) and the results given in Havre and Skogestad (1998), to also handle
non-minimum phase and unstable weights. This allows us to derive new lower bounds on input
usage due to disturbances, measurement noise and reference changes.

e The new lower bounds on input usage make it possible to quantify the minimum input usage
for stabilization of unstable plants in the presence of disturbances, measurement noise and
reference changes.

e Theorem 5 expresses the benefit of applying a two degrees-of-freedom controller compared to
a one degree-of-freedom controller when the plant is unstable and has-zelo.
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A Proof of Theorem 1

We prove (18) by applying the following six steps:
1) Factor out the Rp-zeros inlW SV': the RHP-poles inGG appears as RP-zeros inS. Factor out
S = S B,,(G) to obtain

WSV (s) = Bao(W) WS B,o(G)V
zo(W) I/Vmo §(BPO(G) V)MZJ Bzz (Bpo(G) V)

(WSV)m

B
B

WSV is stable by assumption. From the assumption on internal stability it followsSthet
stable (if one closed-loop transfer function is stable then internal stability implies that all the
other closed-loop transfer functions are stable). Then it is only the-Zros inS that can
cancel Rip-poles inV andW. Thus, factorizing the zeros i@, of W does not introduce
instability in (W SV),,, since none of these cancel unstable modes ar 1/ . Similarly, we
can factorize the zeros i@, of V. However, when factorizing the zeros $hwe must avoid
factorizing the zeros which cancel polesGn of V. Otherwise (W SV),, becomes unstable.
By factorizing only the zeros in a minimal realization 8f,(G) V we accomplish this. Since
W is stable there are no cancellations against the zer8gime to poles irG. It then follows
that(WSV),, is stable.

2) Introducef(s) = max eH(WSV),, 2, then

211, =1, 2], =1
WSV ()]l = [(WSV($))mlloo = [1f ()]l

3) Apply the maximum modulus theorem f¢s) at the RipP-zerosz; of G

1 ($)llo = 1f(27)]
4) Resubstitute the factorization oHR-zeros inS, i.e. useS = S szol(G)

flz) = max 2y Wino S By (G) (Bpo(G) V)mil s, 22

llz1lly=1, llz2ll,=1

= max x{{Wmo SVB,;,I (BIJO(G) V)|

llz1ll;=1, [|z2[l,=1

X2

S=2j

5) Use the interpolation constraint foHR-zerosz; in G, i.e. US@ZS(zj) =yl

%5

f(z) = ol Irllanx - eI W, SVBH(B,o(G) V)lses, @2
> max T Wino U2y SV BN (Bpo(G) V)| ,_, w2
el =1, w2l =1 1 !
= a3 Waoys VB (By(G) V),
T1|lo=L,[|T2]|p= J
6) Evaluate the lower bound
WSV ()l = 1f(23)] 2 [ Wino(2)yz, 1o - 192 VB (Byo(G) V), I,

Since this bound applies to alHR-zerosz; in G, the bound (18) follows.
We prove the tightness of the lower bound for the case whdras only one Rp-zero by con-
structing controllers that achieve the bound. This may be formulated in the following theorem.
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THEOREM 6 (CONTROLLER WHICH MINIMIZES ||[W SV (s)| ). Consider a plantG with oneRHP-

zero z, output directiony,, and N, > 0 RHP-polesp; € C,. LetWW andV be rational transfer
function matrices, wher&l” is stable. A feedback controller (possible improper) which stabilizes
WSV, is given by

Ks(s) = Gipe(s) P(s) Q7'(s) (32)

where
Q(5) = Wi (8) Wino(2) Vo By (G, Mini(2) My (s) (33)
P(s) = B, (Gw) (I = B(G)Q) (34)

Vo = yyr +kUUs' and Myi(s) = (Byo(G) V(8))mi

where the columns of the matri% € R'*(~1) together withy, forms an orthonormal basis fdR!
and k, is any constant.P(s) is stable since th&®Hp-zero fors = z in I — B,,(G) @ cancels the
RHP-pole fors = z in B,}(G,,), in @ minimal realization of°.

With this controller we have

z

T WSV ()l = [ W (2) vl 1027 VBS! (ByolG) V)l (35)

which completes the proof of Theorem 1.
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