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Abstract

This paper examines the fundamental limitations imposed by unstable (Right Half Plane; RHP)
zeros and poles in multivariable feedback systems. We generalize previously known controller-
independent lower bounds on theH1-norm of closed-loop transfer functionsWXV , kWXV (s)k1,
whereX is input or output sensitivity or complementary sensitivity, to include multivariable un-
stable and non-minimum phase weightsW andV . The bounds are tight for cases with only one
RHP-zero or pole. For plants with RHP-zeros we obtain bounds on the output performance for
reference tracking and disturbance rejection. For plants with RHP-poles we obtain new bounds on
the input performance. This quanitifies the minimum input usage needed to stabilize an unstable
plant in the presence of disturbances or noise. For a one degree-of-freedom controller the com-
bined effect of RHP-zeros and poles further deteriorate the output performance, whereas there is
no such additional penalty with a two degrees-of-freedom controller where also the disturbance
and/or reference signal is used by the controller.

Keywords: Linear system theory; Input-output controllability; Unstable systems; Right half
plane zeros and poles; Stabilization; Fundamental limitations; pole vectors; zero vectors.

1 Introduction

It is well known that the presence of unstable RHP zeros and poles pose fundamental limitations on
the achievable control performance. This was quantified for SISO systems by Bode (1945) more than
50 years ago, and most control engineers have an intuitive feeling of the limitations for scalar systems.
Rosenbrock (1966; 1970) was one of the first to point out that multivariable RHP-zeros pose similar
limitations.

The main results in this paper are to provide explicit lower bounds on theH1-norm of closed-
loop transfer functions. Of course, it is relatively straightforward to compute the minimum value of
theH1-norm for a given case by obtaining the optimal controller using standard software, e.g. in
Matlab. A direct computation of the minimum value of theH1-norm is also possible, e.g. using the
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Hankel-norm as explained in (Francis, 1987). Therefore, we want to stress that our objective is to
derive explicit (analytical) bounds that yield direct insight into the fundamental limitations imposed
by RHP-poles and zeros.

The basis of our results is the important work by Zames (1981), who made use of the interpolation
constraintyHz S(z) = yHz for a RHP-zeroz and the maximum modulus theorem to derive bounds on the
H1-norm of the sensitivity functionS for plants with one RHP-zero. Doyle, Francis and Tannenbaum
(1992) generalized this to provide bounds on bothS (sensitivity) andT (complementary sensitivity)
for plants with both RHP-zeros and RHP-poles in the SISO case, and Skogestad and Postlethwaite
(1996) and Havre and Skogestad (1998) generalized this further to the MIMO case.

In this paper we extend these results by deriving lower bounds on theH1-norm of other important
closed-loop transfer functions. To do this, we generalize the bounds onkWXV (s)k1, whereX is S
or T , to include multivariable unstable and non-minimum phase weightsW andV . One important
application of these bounds, is that we canquantifythe minimum input usage needed for any controller
to stabilize an unstable plant in the presence of “worst case” disturbance, measurement noise and
reference changes.

As a motivating example, consider a single-input single-output unstable plant with a RHP-pole
p. We want to obtain a lower bound on theH1-norm of the closed-loop transfer functionK2S from
measurement noisen to plant inputu. HereK2 denotes the feedbak part of the controller. We first
rewriteK2S = G�1T , which is on the formWXV with W = G�1, X = T andV = I. To achieve
internal stability we must satisfy the interpolation constraintT (p) = 1, and by applying the maximum
modulus principle we obtain the bound (see Theorem 3 for details)

kK2S(s)k1 = kG�1T (s)k1 � jG�1s (p)j

whereGs is the “stable” version ofG (with its RHP-poles mirrored into the LHP). As an example,
consider the plantG(s) = 1

s�10
, which has an unstable polep = 10. We obtainGs(s) = 1

s+10
. For

any linear feedback controllerK, we find that the lower bound

kK2S(s)k1 � jG�1s (p)j = 2p = 20

must be satisfied. Thus, if we require that the plant inputs are bounded withkuk1 � 1, then we
cannot allow the magnitude of measurement noise to exceedknk1 = 1=20 = 0:05.

An additional important contribution of this paper is to prove that the lower bounds aretight
provided that plant has in many one RHP-zero and any number of RHP-poles, or one RHP-pole and
any number of RHP-zeros. To prove this we derive analytical expressions for controllers that achieve
the lower bound.

The presentation in this paper in brief in places, and for complete details and further examples the
reader is referred to Chapter 5 in the thesis of Havre (1998).

2 Elements from linear system theory

2.1 Zeros and zero directions.

Zeros of a system arise when competing effects, internal to the system, are such that the output is zero
even when the inputs and the states are not identically zero. Here we apply the following definition
of zeros (MacFarlane and Karcanias, 1976).

DEFINITION 1 (ZEROS). zi 2 C is a zero ofG(s) if the rank ofG(zi) is less than the normal rank of
G(s).
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The normal rank ofG(s) is defined as the rank ofG(s) at alls except a finite number of singular-
ities (which are the zeros). We use the following definition of the associated zero directions:

DEFINITION 2 (ZERO DIRECTIONS). If G(s) has a zero fors = z 2 C then there exist non-zero
vectors, denoted the input zero directionuz 2 C

m and the output zero directionyz 2 C
l , such that

uHz uz = 1, yHz yz = 1 and

G(z)uz = 0 � yz (1)

For a systemG(s) with state-space realization
�
A B

C D

�
, the zerosz of the system, the input zero

directionsuz and the state input zero vectorsxzi 2 C
n (n is the number of states) can all be computed

from the generalized eigenvalue problem
�
A� sI B

C D

� �
xzi

uz

�
=

�
0

0

�
(2)

Similarly one can compute the zerosz and the output zero directionsyz fromGT .

2.2 Poles and pole directions.

Bode (1945) states thatthe poles are the singular points at which the transfer function fails to be
analytic. In this work we replace “fails to be analytic” with “is infinite”, which certainly implies that
the transfer function isnot analytic. When we evaluate1 the transfer functionG(s) at s = p, G(p) is
infinite in some directions at the input and the output. This is the basis for the following definition of
input and output pole directions.

DEFINITION 3 (POLE DIRECTIONS). If s = p 2 C is a distinct pole ofG(s) then there exist an input
directionup 2 C m and an output directionyp 2 C l , such thatkupk2 = 1, kypk2 = 1, and

G(p)up = 1 � yp (3)

For a systemG(s) with minimal state-space realization
�
A B

C D

�
the pole directionsup andyp for

a distinctpolep can be computed from

up = BHxpi= kB
Hxpik2 ; yp = Cxpo= kCxpok2 (4)

wherexpi 2 C n andxpo 2 C n are the eigenvectors corresponding to the two eigenvalue problems

xHpiA = pxHpi; Axpo = pxpo

For the sake of simplicity we only consider distinct poles in this paper. For computation and definition
of pole directions in the case when the polep is repeated we refer to Havre (1998, Chapter 2).

2.3 All-pass factorizations of RHP zeros and poles

A transfer function matrixB(s) is all-pass ifBT (�s)B(s) = I, which implies that all singular values
of B(j!) are equal to one.

1Strictly speaking, the transfer functionG(s) cannot be evaluated ats = p, sinceG(s) is not analytic ats = p.
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A rational transfer function matrixM(s) with RHP-polespi 2 C + , can be factorized either at the
input (subscripti) or at the output (subscripto) as follows2

M(s) = Msi B
�1
pi (M); M(s) = B�1po (M)Mso(s) (5)

Msi,Mso – Stable (subscripts) versions ofM with the RHP-poles mirrored across the imaginary
axis.

Bpi(M), Bpo(M) – Stable all-pass rational transfer function matrices containing the RHP-poles (sub-
scriptp) of M as RHP-zeros.

The all-pass filters are

Bpi(M(s)) =
NpQ
i=1

(I � 2Re(pi)
s+ �pi

ûpiû
H
pi
); B�1pi (M(s)) =

1Q
i=Np

(I + 2Re(pi)
s� pi

ûpiû
H
pi
) (6)

Bpo(M(s)) =
1Q

i=Np

(I � 2Re(pi)
s+ �pi

ŷpiŷ
H
pi
); B�1po (M(s)) =

NpQ
i=1

(I + 2Re(pi)
s� pi

ŷpiŷ
H
pi
) (7)

Bpo(M) is obtained by factorizing at the output one RHP-pole at a time, starting with

M = B�1p1o(M)Mp1o

where
B�1p1o(M(s)) = I + 2Re(p1)

s� p1
ŷp1 ŷ

H
p1

and ŷp1 = yp1 is the output pole direction ofM for p1. This procedure may be continued to factor
out p2 from Mp1o whereŷp2 is the output pole direction ofMp1o (which need not coincide withyp2,
the pole direction3 of M ) and so on. A similar procedure may be used to factorize the poles at the
input ofM . Note that the sequence get reversed in the input factorization compared to the output
factorization.

In a similar sequential manner, the RHP-zeros can be factorized either at the input or at the output
of M

M(s) = MmiBzi(M(s)); M(s) = Bzo(M)Mmo(s) (8)

Mmi, Mmo – Minimum phase (subscriptm) versions ofM with the RHP-zeros mirrored across the
imaginary axis.

Bzi(M), Bzo(M) – Stable all-pass rational transfer function matrices containing the RHP-zeros (sub-
scriptz) of M .

We get

Bzi(M(s)) =
1Q

j=Nz

(I � 2Re(zj)

s+ �zj
ûzj û

H
zj
); B�1zi (M(s)) =

NzQ
j=1

(I + 2Re(zj)

s� zj
ûzj û

H
zj
) (9)

Bzo(M(s)) =
NzQ
j=1

(I �
2Re(zj)

s+ �zj
ŷzj ŷ

H
zj
); B�1zo (M(s)) =

1Q
j=Nz

(I +
2Re(zj)

s� zj
ŷzj ŷ

H
zj
) (10)

2Note that the notation on the all-pass factorizations of RHP zeros and poles used in this paper is reversed compared
to the notation used in (Green and Limebeer, 1995; Skogestad and Postlethwaite, 1996). The reason for this change of
notation is to be consistent with what the literature generally defines as an all-pass filter.

3In fact: ŷp2 = B�H
p1o

(M)js=p2yp2 . HereBjs=s0 means the rational transfer function matrixB(s) evaluated at the
complex numbers = s0. Thus, it provides an alternative toB(s0), and it will mainly be used to avoid double parenthesis.
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Alternative all-pass factorizations are in use, e.g. the inner-outer factorizations used in (Morari
and Zafiriou, 1989) which are the same as (9) and (10) except for the multiplication by a constant
unitary matrix. Some reasons for using the factorizations given here are:

1) The factorizations of RHP-zeros are analytic and in terms of the zeros and the zero directions,
whereas the inner-outer factorizations in (Morari and Zafiriou, 1989) are given in terms of the
solution to an algebraic Riccati equation.

2) To factorize RHP-poles using the inner-outer factorization one needs to assume thatG�1 exist.

2.4 Closing the loop

In this paper we consider the general two degrees-of-freedom control configuration Figure 1. The
controller can be divided into a negative feedback partK2 from the plant measurementsym and a
“feed forward” partK1 from the referencesr,

u = K1r �K2ym = K1r �K2(y + n) (11)

-~n N -n c

+ +

-~r R -rq
K- -uq G - c+ +?

Gd

?

~d = d

-q

y
WT

-z2

�
ym

-Wu
-z3

6
c

+-- -e WP
-z1

Figure 1: Two degrees-of-freedom control configuration withK(s) = [K1(s) �K2(s)]

In the figure performance weights are given in dashed boxes. The external inputs include distur-
bancesd, referencesr and measurement noisen The corresponding three matricesGd, R andN can
be viewed as weights on the inputs, and the inputs~d, ~r and~n are assumed to be normalized equal to 1
in magnitude. Normally,N is diagonal and[N ]ii is the inverse of the signal to noise ratio. For most
practical purposes, we can assume thatR andN are stable. However, from a technical point of view
it suffices that the unstable modes inN andR can be stabilized using the plant inputsu and plant
outputsy. For the disturbance plantGd we assume that all the unstable modes ofGd also appear inG
such that they are stabilizable using the plant inputs and outputs.

The closed-loop transfer functionF from external inputs to external outputs,

v =

2
4 ~r

~d

~n

3
5 to z =

2
4 z1z2
z3

3
5
T

=

2
4WP (y � r)

WTy

Wuu

3
5

is

F (s) =

2
4WP (SGK1 � I)R WPSGd �WPTN

WTSGK1R WTSGd �WTTN

WuSIK1R �WuK2SGd �WuK2SN

3
5 (12)
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where the sensitivityS, the complementary sensitivityT and the input sensitivitySI are defined by

S , (I +GK2)
�1 (13)

T , I � S = GK2(I +GK2)
�1 (14)

SI , (I +K2G)�1 (15)

We also define the input complementary sensitivity

TI , I � SI = K2G(I +K2G)�1 (16)

By settingK1 = K2 in the above equations, the one degree-of-freedom control configuration can be
analyzed.

3 Lower bounds on theH1-norm of closed-loop transfer func-
tions

In this section we derive general lower bounds on theH1-norm of closed-loop transfer functions
when the plantG has one or more RHP zeros and/or poles, by using the interpolation constraints and
the maximum modulus principle. The bounds are applicable to closed-loop transfer functions on the
form

W (s)X(s)V (s) (17)

where we assume thatWXV is stable andX may beS, T , SI or TI . The idea is to derive lower
bounds onkWXV (s)k1 which are independent of the controllerK. The weightsW andV must be
independent ofK. Examples of “weights” considered in this paper areGd andG�1. The weights may
be unstable, provided the unstable modes can be stabilized by feedback control of the plantG, such
thatWXV is stable. The results are stated in terms of four theorems.

Theorems 1 and 2 provide lower bounds on theH1-norm of closed-loop transfer functions on the
formsWSV andWSIV caused by one or more RHP-zeros inG. By maximizing over all RHP-zeros,
we find the largest lower bounds onkWSV (s)k1 andkWSIV (s)k1 which takes into account one
RHP-zero and all RHP-poles in the plant.

THEOREM 1 (LOWER BOUND ON kWSV (s)k1). Consider a plantG with Nz � 1 RHP-zeroszj,
output directionsyzj andNp � 0 RHP-polespi 2 C + . LetW andV be rational transfer function
matrices, whereW is stable. Assume that the closed-loop transfer functionWSV is (internally)
stable. Then the following lower bound onkWSV (s)k1 applies:

kWSV (s)k1 � max
RHP-zeroszj in G

kWmo(zj) yzjk2 � ky
H
zj
V B�1zi (Bpo(G)V )js=zjk2 (18)

The bound is tight (equality) for the case whenG has only oneRHP-zero.

Proof. See Appendix.

THEOREM 2 (LOWER BOUND ON kWSIV (s)k1). Consider a plantG with Nz � 1 RHP-zeroszj,
input directionsuzj andNp � 0 RHP-polespi 2 C + . LetW andV be rational transfer function
matrices, whereV is stable. Assume that the closed-loop transfer functionWSIV is (internally)
stable. Then the following lower bound onkWSIV (s)k1 applies:

kWSIV (s)k1 � max
RHP-zeros,zj in G

kB�1zo (WBpi(G))W js=zjuzjk2 � ku
H
zj
Vmi(zj)k2 (19)

The bound is tight (equality) for the case whenG has only oneRHP-zero.
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Theorems 3 and 4 provide lower bounds on theH1-norm of closed-loop transfer functions on the
formsWTV andWTIV caused by one or more RHP-poles inG. By maximizing over all RHP-poles,
we find the largest lower bounds onkWTV (s)k1 andkWTIV (s)k1 which takes into account one
RHP-pole and all RHP-zeros in the plant.

THEOREM 3 (LOWER BOUNDS ON kWTV (s)k1). Consider a plantG with Np � 1 RHP-polespi,
output directionsypi andNz � 0 RHP-zeroszj 2 C + . LetW andV be rational transfer function
matrices, whereV is stable. Assume that the closed-loop transfer functionWTV is (internally)
stable. Then the following lower bound onkWTV (s)k1 applies:

kWTV (s)k1 � max
RHP-poles,pi in G

kB�1zo (WBzo(G))W js=piypik2 � ky
H
pi
Vmi(pi)k2 (20)

The bound is tight (equality) for the case whenG has only oneRHP-pole.

THEOREM 4 (LOWER BOUNDS ONkWTIV (s)k1). Consider a plantG withNp � 1 RHP-polespi,
input directionsupi andNz � 0 RHP-zeroszj 2 C + . LetW andV be rational transfer function
matrices, whereW is stable. Assume that the closed-loop transfer functionWTIV is (internally)
stable. Then the following lower bound onkWTIV (s)k1 applies:

kWTIV (s)k1 � max
RHP-poles,pi in G

kWmo(pi) upik2 � ku
H
pi
V B�1zi (Bzi(G)V )js=pik2 (21)

The bound is tight (equality) for the case whenG has only oneRHP-pole.

Remarks on Theorems 1–4:

1) The somewhat messy notation can easily be interpreted. As an example take the last factor
of (18): It says that we should factorize the RHP-poles at the output ofG into an all-pass
filter Bpo(G) (yields RHP-zeros), multiply on the right byV (this may add RHP-zeros ifV is
non-minimum phase), then factorize at the input the RHP-zeros of the product into an all-pass
transfer function, take its inverse, multiply on the left byyHzjV and finally evaluate the result for
s = zj.

2) The lower bounds (18)–(21) are independent of the feedback controllerK2 if the weightsW
andV are independent ofK2.

3) The internal stability assumption on the closed-loop transfer functionWXV , whereX 2

fS; SI ; T; TIg, implies thatWXV is stable and that we have no RHP pole/zero cancelations
between the plantG and the feedback controllerK2. Note that RHP pole/zero cancelations
between the weights (W or V ) andX may be allowed.

4) The assumption on stability ofW andV in Theorems 1–4 is in practice not restrictive, since
when the assumption is not fulfilled we can generally rewrite the transfer function and apply
another theorem instead. This is illustrated in the following example.

EXAMPLE 1. We want to derive a lower bound on theH1-norm of the closed-loop transfer function
K2SGd (input usage due to disturbances). We can use the relationK2SGd = G�1TGd and apply
Theorem 3 withW = G�1 andV = Gd, but we must assume thatGd is stable. However, we can use
the relationK2SGd = TIG

�1Gd and apply Theorem 4 withW = I andV = G�1Gd, and in this case
we can also allowGd to beunstable.

4 Applications of lower bounds

The lower bounds onkWXV (s)k1 in Theorems 1 to 4 can be used to derive a large number of
interesting and useful bounds.
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4.1 Output performance

The previously derived bounds in terms of theH1-norms ofS andT given in (Zames, 1981; Skoges-
tad and Postlethwaite, 1996) and in Havre and Skogestad (1998) follow easily, and further general-
izations involving output performance can be derived. Here we assume that the performance weights
WP andWT are stable and minimum phase.

Weighted sensitivity,WPS. SelectW = WP , V = I, and apply the bound (18) onWSV to obtain

kWPS(s)k1 � max
RHP-zeros,zj

kWP (zj) yzjk2 � ky
H
zj
B�1po (G)js=zjk2 (22)

Disturbance rejection. SelectW = WP , V = Gd, and apply the bound (18) onWSV to obtain

kWPSGd(s)k1 � max
RHP-zeros,zj

kWP (zj) yzjk2 � ky
H
zj
Gd B

�1
zi (Bpo(G)Gd)js=zjk2 (23)

Reference tracking. SelectW = WP , V = R, and apply the bound (18) onWSV to obtain

kWPSR(s)k1 � max
RHP-zeros,zj

kWP (zj) yzjk2 � ky
H
zj
RB�1zi (Bpo(G)R)js=zjk2 (24)

Note that we can also look at the combined effect of disturbances and references by selectingV =

[Gd R ].

Measurement noise rejection.SelectW = WP , V = N (stable), and apply the bound (20) on
WTV to obtain

kWPTN(s)k1 � max
RHP-poles,pi

kB�1zo (WPBzo(G))WP js=piypik2 � ky
H
pi
Nmi(pi)k2 (25)

4.2 Input usage

We here derive from Theorems 3 and 4 some bounds in terms of input usage. These new bounds
provide very interesting insights, for example, into the possibility of stabilizing an unstable plant with
inputs of bounded magnitude.

The basis for deriving these bounds is to note that the transfer function from the outputs to the
inputs,K2S, can be rewritten asK2S = TIG

�1 or K2S = G�1T . WhenG is unstable,G�1 has
one or more RHP-zeros, so it is important that the bounds in Theorem 4 can handle the case when
V = G�1 has RHP-zeros. We assume that the weightWu on the inputu is stable and minimum phase.

Outputs to inputs, K2S. Two useful lower bounds onkK2S(s)k1 can be derived. First, apply the
equalityK2S = TIG

�1, selectW = I, V = G�1, and use the bound (21) onWTIV to obtain

kK2S(s)k1 � max
RHP-poles,pi

kuHpiG
�1B�1zi (G

�1
mi)js=pik2 = kuHpiG

�1
so js=pik2 (26)

where the last identity follows fromBzi(G
�1
mi) = Bzi(G

�1) = Bpo(G) andG�1B�1po (G) = G�1so .
Similarly, we obtain from the bound (20) onWTV , withW = G�1 andV = I

kK2S(s)k1 � max
RHP-poles,pi

kB�1zo (G
�1
mo)G

�1js=pi ypik2 = kG�1si js=pi ypik2 (27)

where the last identity follows fromBzo(G�1mo) = Bzo(G
�1) = Bpi(G).
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Disturbances to weighted inputsThis generalizes the bound (26). Apply the equalityK2S =

TIG
�1, selectW = Wu, V = G�1Gd, and use the bound (21) onWTIV to obtain

kWuK2SGd(s)k1 � max
RHP-poles,pi

kWu(pi) upik2 � ku
H
pi
G�1GdB

�1
zi (G

�1
miGd)js=pik2 (28)

where we have used the identityBzi(G)G�1 = G�1mi.

Noise and references to weighted inputs.To consider noise to weighted inputs replaceGd byN in
(28). To consider references to weighted inputs for the case of one-degree of freedom control replace
Gd byR in (28). We may look at the combined effect of reference tracking, disturbance rejection and
measurement noise by using the bound (21) onWTIV with W = Wu andV = G�1 [Gd R N ].

5 Two degrees-of-freedom control

For a two degrees-of-freedom controller the closed-loop transfer function from references~r to outputs
z1 = Wp(y � r) becomes

WP (SGK1 � I)R (29)

We then have the following lower bound which does not follow from Theorems 1–4:

THEOREM 5. Consider a plantG with Nz � 1 RHP-zeroszj andNp � 0 RHP-polespi 2 C + . Let
the performance weightWP be minimum phase and let (for simplicity)R be stable. Assume that
the closed-loop transfer functionWP (SGK1 � I)R is stable. Then the following lower bound on
kWP (SGK1 � I)R(s)k1 applies:

kWP (SGK1 � I)R(s)k1 � max
RHP-zeroszj in G

kWP (zj)yzjk2 � ky
H
zj
Rmi(zj)k2 (30)

The bound (30) is tight if the plant has only oneRHP-zero.

The bound in (30) should be compared to the following bound for a one degree-of-freedom controller
(which follows from Theorem 1 assuming thatWP is minimum phase).

kWPSR(s)k1 � max
RHP-zeroszj in G

kWP (zj)yzjk2 � ky
H
zj
RB�1zi (Bpo(G)R)js=zjk2 (31)

We note from (30) that for the two degrees-of-freedom controller only the RHP-zeros pose limitations
on output performance. Thus, unlike the bound for a one degree-of-freedom controller in (31), there
is no additional penalty when we have RHP-poles.

6 Example

Consider the following multivariable plantG,

G(s) =

� s�z
s�p �0:1s+1

s�p
s�z

0:1s+1 1

�
; with z = 2:5 and p = 2

The plantG has one multivariable RHP-zeroz = 2:5 and one RHP-polep = 2. The corresponding input and
output zero and pole directions are

uz =

�
1

0

�
; yz =

�
0:371

0:928

�
; up =

�
0:385

0:923

�
; yp =

�
1

0

�
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The RHP-polep can be factorized intoG(s) = B�1po (G)Gso(s) where

Bpo(G) =

� s�p
s+p 0

0 1

�
and Gso(s) =

� s�z
s+p �0:1s+1

s+p
s�z

0:1s+1 1

�

1. Consider first the bound on output sensitivityS. From (18) withW = I andV = I, we find

kS(s)k1 � kyHz B
�1
po (G)js=zk2 =





[ 0:371 0:928 ]

�
9 0

0 1

�




2

= 3:4691

To confirm that the bound is tight, we use Theorem 6 in Appendix (withW = I andV = I) to find the
feedback controller which minimizeskS(s)k1. With k0 = 10�2 we get the following balanced minimal
state-space realization of the feedback controllerK2

K2(s) = G�1smoPQ
�1(s)

s

=

2
4 �10 188:4 �75:49

0 306 �122:6

203 �6508 2605

3
5 which indeed achieves kS(s)k1 = 3:4691

2. Next, we consider input usage in terms of the transfer function from outputs to inputs,K2S. We have
two lower bounds onkK2S(s)k1, but they are identical since the bounds are tight when the plant has only one
RHP-pole. From (26) we get

kK2S(s)k1 � kuHp G
�1B�1zi (G

�1
mi)js=pk2 = kuHp G

�1
so (p)k2 = 3:077

3. Let us finally consider reference tracking in terms of the transfer functionTr from r to weighted errors,
WP (y � r). We haveR = I and choose the performance weight

WP (s) = wP (s) � I; with wP (s) =
s=2 + 0:5

s

which requires integral action, a bandwidth of 0.5 [rad/s], and a sensitivity peak less than 2 at high frequencies.
With a one degree-of-freedom controller (whereK1 = K2) we get from (22) that

kTr(s)k1 = kWPS(s)k1 = kWP (z) yzk2 � ky
H
z B

�1
po (G)js=zk2 = 0:7 � 3:4691 = 2:4284

With a two degrees-of-freedom controller (whereK1 is free to choose) the RHP-pole does not imply a funda-
mental limitation, and we get from (30) that

kTr(s)k1 = kWP (SGK1 � I)R(s)k1 = kWP (z)yzk2 � ky
H
z Rmi(z)k2 = 0:7 � 1 = 0:7

In (Havre, 1998) more details are presented including state-space realizations forK1 andK2.

7 Conclusion

� We have derived lower bounds on theH1-norm of closed-loop transfer functions for multivari-
able plants. The bounds are independent of the controller and therefore reflects the input-output
controllability of the plant.

� The lower bounds are tight when the plant has only one RHP-zero or pole.
� The bounds extend and generalize the results by Zames (1981), Doyle et al. (1992), Skogestad

and Postlethwaite (1996) and the results given in Havre and Skogestad (1998), to also handle
non-minimum phase and unstable weights. This allows us to derive new lower bounds on input
usage due to disturbances, measurement noise and reference changes.

� The new lower bounds on input usage make it possible to quantify the minimum input usage
for stabilization of unstable plants in the presence of disturbances, measurement noise and
reference changes.

� Theorem 5 expresses the benefit of applying a two degrees-of-freedom controller compared to
a one degree-of-freedom controller when the plant is unstable and has a RHP-zero.
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A Proof of Theorem 1

We prove (18) by applying the following six steps:

1) Factor out the RHP-zeros inWSV : the RHP-poles inG appears as RHP-zeros inS. Factor out
S = eS Bpo(G) to obtain

WSV (s) = Bzo(W )Wmo
eS Bpo(G)V

= Bzo(W ) Wmo
eS (Bpo(G)V )mi| {z }
(WSV )m

Bzi(Bpo(G)V )

WSV is stable by assumption. From the assumption on internal stability it follows thatS is
stable (if one closed-loop transfer function is stable then internal stability implies that all the
other closed-loop transfer functions are stable). Then it is only the RHP-zeros inS that can
cancel RHP-poles inV andW . Thus, factorizing the zeros inC + of W does not introduce
instability in (WSV )m, since none of these cancel unstable modes inS or V . Similarly, we
can factorize the zeros inC + of V . However, when factorizing the zeros inS we must avoid
factorizing the zeros which cancel poles inC + of V . Otherwise,(WSV )m becomes unstable.
By factorizing only the zeros in a minimal realization ofBpo(G)V we accomplish this. Since
W is stable there are no cancellations against the zeros inS due to poles inG. It then follows
that(WSV )m is stable.

2) Introducef(s) = max
kx1k2=1; kx2k2=1

xH1 (WSV )m x2, then

kWSV (s)k1 = k(WSV (s))mk1 � kf(s)k1

3) Apply the maximum modulus theorem tof(s) at the RHP-zeroszj of G

kf(s)k1 � jf(zj)j

4) Resubstitute the factorization of RHP-zeros inS, i.e. useeS = S B�1po (G)

f(zj) = max
kx1k2=1; kx2k2=1

xH1 Wmo S B
�1
po (G) (Bpo(G)V )mijs=zjx2

= max
kx1k2=1; kx2k2=1

xH1 Wmo S V B�1zi (Bpo(G)V )js=zjx2

5) Use the interpolation constraint for RHP-zeroszj in G, i.e. useyHzjS(zj) = yHzj

f(zj) = max
kx1k2=1; kx2k2=1

xH1 Wmo S V B
�1
zi (Bpo(G)V )js=zjx2

� max
kx1k2=1; kx2k2=1

xH1 Wmo yzjy
H
zj
S V B�1zi (Bpo(G)V )js=zjx2

= max
kx1k2=1; kx2k2=1

xH1 Wmo yzjy
H
zj
V B�1zi (Bpo(G)V )js=zjx2

6) Evaluate the lower bound

kWSV (s)k1 � jf(zj)j � kWmo(zj)yzjk2 � ky
H
zj
V B�1zi (Bpo(G)V )js=zjk2

Since this bound applies to all RHP-zeroszj in G, the bound (18) follows.
We prove the tightness of the lower bound for the case whenG has only one RHP-zero by con-

structing controllers that achieve the bound. This may be formulated in the following theorem.
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THEOREM 6 (CONTROLLER WHICH MINIMIZES kWSV (s)k1). Consider a plantG with oneRHP-
zeroz, output directionyz, andNp � 0 RHP-polespi 2 C + . Let W and V be rational transfer
function matrices, whereW is stable. A feedback controller (possible improper) which stabilizes
WSV , is given by

K2(s) = G�1smo(s)P (s)Q�1(s) (32)

where

Q(s) = W�1
mo (s)Wmo(z)V0 B

�1
po (G)js=zMmi(z)M

�1
mi (s) (33)

P (s) = B�1zo (Gso) (I � Bpo(G)Q) (34)

V0 = yzy
H
z + k20U0U

H
0 and Mmi(s) = (Bpo(G)V (s))mi

where the columns of the matrixU0 2 Rl�(l�1) together withyz forms an orthonormal basis forRl

and k0 is any constant.P (s) is stable since theRHP-zero fors = z in I � Bpo(G)Q cancels the
RHP-pole fors = z in B�1zo (Gso), in a minimal realization ofP .

With this controller we have

lim
k0!0

kWSV (s)k1 = kWmo(z) yzk2 � ky
H
z V B

�1
zi (Bpo(G)V )js=zk2 (35)

which completes the proof of Theorem 1.
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