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This paper examines the fundamental limitations imposed by unstable (right half plane; RHP) zeros and poles in
multivariable feedback systems. We generalize previously known controller-independent lower bounds on the H1-
norm of closed-loop transfer functions WXV , where X is input or output sensitivity or complementary sensitivity.
The weights W and V may be unstable and non-minimum phase and may depend on the plant G. The bounds are
tight for cases with only one RHP-zero or pole. For plants with RHP-zeros we obtain bounds on the output performance
for reference tracking and disturbance rejection. For plants with RHP-poles we obtain new bounds on the input perform-
ance. This quaniti® es the minimum input usage needed to stabilize an unstable plant in the presence of disturbances or
noise. For a one degree-of-freedom controller the combined eŒect of RHP-zeros and poles further deteriorate the output
performance, whereas there is no such additional penalty with a two degrees-of-freedom controller where also the
disturbance and/or reference signal is used by the controller.

1. Introduction

It is well known that the presence of unstable RHP
zeros and poles pose fundamental limitations on the

achievable control performance. This was quanti® ed

for SISO systems by Bode (1945) more than 50 years

ago, and most control engineers have an intuitive feeling

of the limitations for scalar systems. Rosenbrock (1966,

1970) was one of the ® rst to point out that multivariable

RHP-zeros pose similar limitations. More recent work

includes Zames (1981), Boyd and Desoer (1985), Motari

and Za® riou (1989) and Chen (1995).
The main results in this paper are to provide explicit

lower bounds on the H1-norm of closed-loop transfer

functions. Of course, it is relatively straightforward to

compute the minimum value of the H1-norm for a

given case by obtaining the optimal controller using

standard software, e.g. in Matlab. A direct computation

of the minimum value of the H1-norm is also possible,

e.g. using the Hankel-norm as explained in Francis

(1987). Therefore, we want to stress that our objective
is to derive explicit (analytical) bounds that yield direct

insight into the fundamental limitations imposed by

RHP-zeros and poles.

The basis of our results is the important work by

Zames (1981), who made use of the interpolation con-

straint yH
z S…z† ˆ yH

z for a RHP-zero z and the maximum

modulus theorem to derive bounds on the H1-norm of

the sensitivity function S for plants with one RHP-zero.

Doyle et al. (1992) generalized this to provide bounds on

both S (sensitivity) and T (complementary sensitivity)
for plants with both RHP-zeros and RHP-poles in the

SISO case, and Skogestad and Postlethwaite (1996) and

Havre and Skogestad (1998) generalized this further to

the MIMO case.

In this paper we extend these results by deriving
lower bounds on the H1-norm of other important

closed-loop transfer functions. To do this, we generalize

the bounds on kWXV…s†k1, where X may be S or T , to

include multivariable unstable and non-minimum phase

weights W and V . One important application of these

bounds, is that we can quantify the minimum input

usage needed for any controller to stabilize an unstable
plant in the presence of `worst case’ disturbance, meas-

urement noise and reference changes.

As a motivating example, consider a single-input

single-output unstable plant with a RHP-pole p. We
want to obtain a lower bound on the H1-norm of the

closed-loop transfer function K2S from measurement

noise n to plant input u. Here K2 denotes the feedback

part of the controller. We ® rst rewrite K2S ˆ G 1T ,

which is on the form WXV with W ˆ G 1, X ˆ T and
V ˆ I . To achieve internal stability we must satisfy the

interpolation constraint T… p† ˆ 1, and by applying the

maximum modulus principle we obtain the bound (see

(26) or (27) for details)

kK2S…s†k1 ˆ kG 1T…s†k1 ¶ jG 1
s … p†j

where Gs is the s̀table’ version of G (with its RHP-poles
mirrored into the LHP). As an example, consider the

plant G…s† ˆ 1=…s 10†, which has an unstable pole

p ˆ 10. We obtain Gs…s† ˆ 1=…s ‡ 10†. For any linear

feedback controller K , we ® nd that the lower bound

kK2S…s†k1 ¶ jG 1
s … p†j ˆ 2p ˆ 20

must be satis® ed. Thus, if we require that the plant

inputs are bounded with kuk1 µ 1, then we cannot
allow the magnitude of measurement noise to exceed

knk1 ˆ 1=20 ˆ 0:05.

An additional important contribution of this paper

is to prove that the lower bounds are tight provided that
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plant has one RHP-zero and any number of RHP-poles,

or one RHP-pole and any number of RHP-zeros. To

prove this we derive analytical expressions for control-

lers that achieve the lower bound.

The presentation in this paper is brief in places, and
for complete details and further examples the reader is

referred to Chapter 5 in the thesis of Havre (1998).

2. Elements from linear system theory

2.1. Zeros and zero directions

Zeros of a system arise when competing eŒects,

internal to the system, are such that the output is zero

even when the inputs and the states are not identically

zero. Here we apply the following de® nition of zeros

(MacFarlane and Karcanias, 1976).

De® nition 1 (zeros): zi 2 is a zero of G…s† if the

rank of G…zi† is less than the normal rank of G…s†.

The normal rank of G…s† is de® ned as the rank of
G…s† at all s except a ® nite number of singularities

(which are the zeros). We use the following de® nition

of the associated zero directions.

De® nition 2 (zero directions): If G…s† has a zero for

s ˆ z 2 then there exist non-zero vectors, denoted
the input zero direction uz 2 m and the output zero

direction yz 2 l , such that uH
z uz ˆ 1, yH

z yz ˆ 1 and

G…z†uz ˆ 0 ¢ yz …1†

For a system G…s† with state-space realization

A B

C D

2

4

3

5

the zeros z of the system, the input zero directions uz and

the state input zero vectors xzi 2 n (n is the number of

states) can all be computed from the generalized eigen-

value problem

A sI B

C D

µ ¶
xzi

uz

µ ¶
ˆ

0

0

µ ¶
…2†

Similarly one can compute the zeros z and the output

zero directions yz from GT.

2.2. Poles and pole directions

Bode (1945) states that the poles are the singular

points at which the transfer function fails to be analytic .
In this work we replace f̀ails to be analytic’ with ìs

in® nite’ , which certainly implies that the transfer func-

tion is not analytic . When we evaluate{ the transfer

function G…s† at s ˆ p. G… p† is in® nite in some directions

at the input and the output. This is the basis for the

following de® nition of input and output pole directions.

De® nition 3 (pole directions): If s ˆ p 2 is a dis-

tinct pole of G…s† then there exist an input direction
up 2 m and an output direction yp 2 l, such that

kupk2 ˆ 1, kypk2 ˆ 1, and

G… p†up ˆ 1 ¢ yp …3†

For a system G…s† with minimal state-space realiza-

tion

A B

C D

2

4

3

5

the pole directions up and yp for a distinct pole p can be

computed from

up ˆ BHxpi=kBHxpik2; yp ˆ Cxpo=kCxpok2 …4†

where xpi 2 n and xpo 2 n are the eigenvectors corre-
sponding to the two eigenvalue problems

xH
pi A ˆ pxH

pi ; Axpo ˆ pxpo

For the sake of simplicity we only consider distinct poles

in this paper. For computation and de® nition of pole
directions in the case when the pole p is repeated we

refer to Havre (1998, Chapter 2).

2.3. All-pass factorizations of RHP zeros and poles

A transfer function matrix B…s† is all-pass if

BT… s†B…s† ˆ I , which implies that all singular values

of B… j!† are equal to one.

A rational transfer function matrix M…s† with RHP-
poles pi 2 ‡, can be factorized either at the input (sub-

script i) or at the output (subscript o) as{

M…s† ˆ MsiB 1
pi …M†; M…s† ˆ B 1

po …M†Mso…s† …5†

where Msi, Mso are stable (subscript s) versions of M

with the RHP-poles mirrored across the imaginary axis,

and Bpi…M†, Bpo…M† are stable all-pass rational transfer

function matrices containing the RHP-poles (subscript

p) of M as RHP-zeros.
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{ Strictly speaking, the transfer function G…s† can not be
evaluated at s ˆ p, since G…s† is not analytic at s ˆ p.

{ Note that the notation on the all-pass factorizations of
RHP zeros and poles used in this paper is reversed compared
to the notation used in Green and Limebeer (1995) and
Skogestad and Postlethwaite (1996). The reason for this
change of notation is to be consistent with what the
literature generally de® nes as an all-pass ® lter.



The all-pass ® lters are

Bpi…M…s†† ˆ
YNp

iˆ1

I
2 Re… pi†

s ‡ ·ppi

ûupi
ûuH

pi

³ ´

B 1
pi …M…s†† ˆ

Y1

iˆNp

I
2 Re… pi†

s pi

ûupi
ûuH

pi

³ ´

9
>>>>>=

>>>>>;

…6†

Bpo…M…s†† ˆ
Y1

iˆNp

I
2 Re… pi†

s ‡ ·ppi

ŷypi
ŷyH

pi

³ ´

B 1
po …M…s†† ˆ

YNp

iˆ1

I
2 Re… pi†

s pi

ŷypi
ŷyH

pi

³ ´

9
>>>>>=

>>>>>;

…7†

Bpo…M† is obtained by factorizing at the output one

RHP-pole at a time, starting with

M ˆ B 1
p1o…M†Mp1o

where

B 1
p1o…M…s†† ˆ I ‡ 2 Re… p1†

s p1

ŷyp1
ŷyH

p1

and ŷyp1
ˆ yp1

is the output pole direction of M for p1.
This procedure may be continued to factor out p2 from

Mp1o where ŷyp2
is the output pole direction of Mp1o

(which need not coincide with yp2
, the pole direction{

of M) and so on. A similar procedure may be used to

factorize the poles at the input of M . Note that the
sequence get reversed in the input factorization com-

pared to the output factorization.

In a similar sequential manner, the RHP-zeros can

be factorized either at the input or at the output of M

M…s† ˆ MmiBzi…M…s††; M…s† ˆ Bzo…M†Mmo…s†
…8†

where Mmi, Mmo are minimum phase (subscript m) ver-

sions of M with the RHP-zeros mirrored across the

imaginary axis, and Bzi…M†, Bzo…M† are stable all-pass

rational transfer function matrices containing the RHP-
zeros (subscript z) of M.

We get

Bzi…M…s†† ˆ
Y1

jˆNz

I
2 Re…zj†
s ‡ ·zzj

ûuzj
ûuH

zj

³ ´

B 1
zi …M…s†† ˆ

YNz

jˆ1

I
2 Re…zj†
s zj

ûuzj
ûuH

zj

³ ´

9
>>>>>=

>>>>>;

…9†

Bzo…M…s†† ˆ
YNz

jˆ1

I
2 Re…zj†
s ‡ ·zzj

ŷyzj
ŷyH

zj

³ ´

B 1
zo …M…s†† ˆ

Y1

jˆNz

I
2 Re…zj†
s zj

ŷyzj
ŷyH

zj

³ ´

9
>>>>>=

>>>>>;

…10†

SISO systems. The factorizations are considerably

simpler for SISO systems where directions are not an
issue (e.g., yz ˆ 1 and up ˆ 1), and where we do not

need to distinguish between factorizations at the input

and at the output (i.e., we may drop the subscripts i and

o). For example, the factorization of unstable poles for a

SISO system is

M…s† ˆ Ms…s† ¢ B 1
p …M†; Bp…M† ˆ

YNp

iˆ1

s pi

s ‡ ·ppi

2.4. Closing the loop

In this paper we consider the general two degrees-of-

freedom control con® guration (® gure 1). The controller
can be divided into a negative feedback part K2 from the

plant measurements ym and a f̀eed forward’ part K1

from the references r

u ˆ K1r K2ym ˆ K1r K2…y ‡ n† …11†

In ® gure 1 performance weights are given in dashed

boxes. The external inputs include disturbances d , refer-

ences r and measurement noise n. The corresponding

three matrices Gd , R and N can be viewed as weights
on the inputs, and the inputs ~dd , ~rr and ~nn are assumed to

be normalized equal to 1 in magnitude. Normally, N is

diagonal and ‰N Šii is the inverse of the signal to noise

ratio. For most practical purposes, we can assume that

R and N are stable. However, from a technical point of

view it su� ces that the unstable modes in N and R can
be stabilized using the plant inputs u and plant outputs

y. For the disturbance plant Gd we assume that all the
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{ In fact: ŷyp2
ˆ B H

p1o …M†jsˆp2
yp2

. Here Bjsˆs0
means the

rational transfer function matrix B…s† evaluated at the
complex number s ˆ s0. Thus, it provides an alternative to
B…s0†, and it will mainly be used to avoid double parentheses.

Figure 1. Two degrees-of-freedom control con® guration
with K…s† ˆ ‰K1…s† K2…s†Š:



unstable modes of Gd also appear in G such that they are

stabilizable using the plant inputs and outputs.

The closed-loop transfer function F from external

inputs to external outputs

v ˆ
~rr

~dd

~nn

2

64

3

75 to z ˆ
z1

z2

z3

2

64

3

75

T

ˆ
WP…y r†

WTy

Wuu

2

64

3

75

is

F…s† ˆ
WP…SGK1 I†R WPSGd WPTN

WTSGK1R WTSGd WTTN

WuSIK1R WuK2SGd WuK2SN

0

B@

1

CA

…12†

where the sensitivity S, the complementary sensitivity T

and the input sensitivity SI are de® ned by

S 7 …I ‡ GK2† 1 …13†

T 7 I S ˆ GK2…I ‡ GK2† 1 …14†

SI 7 …I ‡ K2G† 1 …15†

We also de® ne the input complementary sensitivity

TI 7 I SI ˆ K2G…I ‡ K2G† 1 …16†

By setting K1 ˆ K2 in the above equations, the one

degree-of-freedom control con® guration can be ana-

lysed.

3. Lower bounds on the -norm of closed-loop

transfer functions

In this section we derive general lower bounds on the

H1-norm of closed-loop transfer functions when the

plant G has one or more RHP zeros and/or poles, by
using the interpolation constraints and the maximum

modulus principle. The bounds are applicable to

closed-loop transfer functions on the form

W…s†X…s†V…s† …17†

where we assume that WXV is stable and X may be S,

T , SI or TI . The idea is to derive lower bounds on

kWXV…s†k1 which are independent of the controller

K . The weights W and V must be independent of K .
Examples of `weights’ considered in this paper are Gd

and G 1. The weights may be unstable, provided the

unstable modes can be stabilized by feedback control

of the plant G, such that WXV is stable. The results

are stated in terms of four theorems.

Theorems 1 and 2 provide lower bounds on the H1-
norm of closed-loop transfer functions on the forms

WSV and WSIV caused by one or more RHP-zeros in

G. By maximizing over all RHP-zeros, we ® nd the lar-

gest lower bounds on kWSV…s†k1 and kWSIV…s†k1

which takes into account one RHP-zero and all RHP-

poles in the plant.

Theorem 1 (lower bound on kWSV…s†k1): Consider a

plant G with Nz ¶ 1 RHP-zeros zj with output direc-

tions yzj
and Np ¶ 0 RHP-poles pi 2 ‡. Let W and V

be rational transfer function matrices, where W is

stable. Assume that the closed-loop transfer function

WSV is …internally† stable. Then the following lower

bound on kWSV …s†k1 applies

kWSV…s†k1 ¶ max
RHP-zeros; zj in G

kWmo…zj†yzj
k2

¢ kyH
zj

VB 1
zi …Bpo…G†V†jsˆzj

k2 …18†

The bound is tight …equality† for the case when G has only

one RHP-zero.

Proof: See Appendix. &

Theorem 2 (lower bound on kWSIV…s†k1): Consider

a plant G with Nz ¶ 1 RHP-zeros zj with input direc-

tions uzj
and Np ¶ 0 RHP-poles pi 2 ‡. Let W and V

be rational transfer function matrices, where V is stable.

Assume that the closed-loop transfer function WSIV is

…internally† stable. Then the following lower bound on

kWSIV…s†k1 applies

kWSIV…s†k1 ¶ max
RHP-zeros; zj in G

kB 1
zo …WBpi…G††W jsˆzj

uzj
k2

¢ kuH
zj

Vmi…zj†k2 …19†

The bound is tight …equality† for the case when G has only

one RHP-zero.

Theorems 3 and 4 provide lower bounds on the H1-

norm of closed-loop transfer functions on the forms

WTV and WTIV caused by one or more RHP-poles

in G. By maximizing over all RHP-poles, we ® nd

the largest lower bounds on kWTV…s†k1 and
kWTIV…s†k1 which takes into account one RHP-pole

and all RHP-zeros in the plant.

Theorem 3 (lower bounds on kWTV…s†k1): Consider

a plant G with Np ¶ 1 RHP-poles pi with output direc-
tions ypi

and Nz ¶ 0 RHP-zeros zj 2 ‡. Let W and V

be rational transfer function matrices, where V is stable.

Assume that the closed-loop transfer function WTV is

…internally† stable. Then the following lower bound on

kWTV…s†k1 applies

kWTV…s†k1 ¶ max
RHP-poles; pi in G

kB 1
zo …WBzo…G††W jsˆpi

ypi
k2

¢ kyH
pi

Vmi… pi†k2 …20†
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The bound is tight …equality† for the case when G has only

one RHP-pole.

Theorem 4 (lower bounds on kWTIV…s†k1): Consider

a plant G with Np ¶ 1 RHP-poles pi with input direc-

tions upi
and Nz ¶ 0 RHP-zeros zj 2 ‡. Let W and V

be rational transfer function matrices, where W is

stable. Assume that the closed-loop transfer function

WTIV is …internally† stable. Then the following lower

bound on kWTIV…s†k1 applies

kWTIV…s†k1 ¶ max
RHP-poles; pi in G

kWmo… pi†upi
k2

¢ kuH
pi

VB 1
zi …Bzi…G†V†jsˆpi

k2 …21†

The bound is tight …equality† for the case when G has only

one RHP-pole.

Remarks on Theorems 1± 4:

(1) The somewhat messy notation can easily be

interpreted. As an example take the last factor

of (18): It says that we should factorize the RHP-

poles at the output of G into an all-pass ® lter
Bpo…G† (yields RHP-zeros), multiply on the

right by V (this may add RHP-zeros if V is

non-minimum phase), then factorize at the

input the RHP-zeros of the product into an all-

pass transfer function, take its inverse, multiply

on the left by yH
zj

V and ® nally evaluate the result
for s ˆ zj.

(2) The lower bounds (18)± (21) are independent of
the feedback controller K2 if the weights W and

V are independent of K2.

(3) The internal stability assumption on the closed-
loop transfer function WXV , where X 2
fS; SI ; T ; TIg, implies that WXV is stable and

that we have no RHP pole/zero cancelations

between the plant G and the feedback controller

K2. Note that RHP pole/zero cancelations
between the weights (W or V ) and X may be

allowed.

(4) The assumption on stability of W and V in

Theorems 1± 4 is in practice not restrictive,

since when the assumption is not ful® lled we

can generally rewrite the transfer function and

apply another theorem instead. This is illustrated

in the following example.

Example 1: We want to derive a lower bound on

the H1-norm of the closed-loop transfer function
K2SGd (input usage due to disturbances). We can use

the relation K2SGd ˆ G 1TGd and apply Theorem 3

with W ˆ G 1 and V ˆ Gd , but we must assume that

Gd is stable . However, we can use the relation

K2SGd ˆ TIG
1Gd and apply Theorem 4 with W ˆ I

and V ˆ G 1Gd , and in this case we can also allow Gd

to be unstable .

4. Applications of lower bounds

The lower bounds on kWXV…s†k1 in Theorems 1± 4

can be used to derive a large number of interesting and

useful bounds.

4.1. Output performance

The previously derived bounds in terms of the H1-

norms of S and T given in Zames (1981), Skogestad and

Postlethwaite (1996) and in Havre and Skogestad (1998)
follow easily, and further generalizations involving out-

put performance can be derived. Here we assume that

the performance weights WP and WT are stable and

minimum phase.

4.1.1. Weighted sensitivity, WPS: Select W ˆ WP,
V ˆ I, and apply the bound (18) on WSV to obtain

kWPS…s†k1 ¶ max
RHP-zeros; zj

kWP…zj†yzj
k2

¢ kyH
zj

B 1
po …G†jsˆzj

k2 …22†

4.1.2. Disturbance rejection: Select W ˆ WP, V ˆ Gd ,

and apply the bound (18) on WSV to obtain

kWPSGd…s†k1 ¶ max
RHP-zeros; zj

kWP…zj†yzj
k2

¢ kyH
zj

GdB 1
zi …Bpo…G†Gd†jsˆzj

k2 …23†

4.1.3. Reference tracking: Select W ˆ WP, V ˆ R, and

apply the bound (18) on WSV to obtain

kWPSR…s†k1 ¶ max
RHP-zeros; zj

kWP…zj†yzj
k2

¢ kyH
zj

RB 1
zi …Bpo…G†R†jsˆzj

k2 …24†

Note that we can also look at the combined eŒect of

disturbances and references by selecting ‰Gd RŠ.

4.1.4. Measurement noise rejection: Select W ˆ WP,
V ˆ N (stable), and apply the bound (20) on WTV to

obtain

kWPTN…s†k1 ¶ max
RHP-poles; pi

kB 1
zo …WPBzo…G††WPjsˆpi

ypi
k2

¢ kyH
pi

Nmi…pi†k2 …25†

4.2. Input usage

We here derive from Theorems 3 and 4 some bounds

in terms of input usage. These new bounds provide very

interesting insights, for example, into the possibility of
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stabilizing an unstable plant with inputs of bounded

magnitude.

The basis for deriving these bounds is to note that

the transfer function from the outputs to the inputs,

K2S, can be rewritten as K2S ˆ TIG
1 or K2S ˆ

G 1T . When G is unstable, G 1 has one or more

RHP-zeros, so it is important that the bounds in

Theorem 4 can handle the case when V ˆ G 1 has

RHP-zeros. We assume that the weight Wu on the

input u is stable and minimum phase.

4.2.1. Outputs to inputs, K2S: Two useful lower

bounds on kK2S…s†k1 can be derived. First, apply the

equality K2S ˆ TIG
1, select W ˆ I , V ˆ G 1, and

use the bound (21) on WTIV to obtain

kK2S…s†k1 ¶ max
RHP-poles; pi

kuH
pi

G 1B 1
zi …G 1

mi †jsˆpi
k2

ˆ kuH
pi

G 1
so jsˆpi

k2 …26†

where the last identity follows from Bzi…G 1
mi † ˆ

Bzi…G 1† ˆ Bpo…G† and G 1B 1
po …G† ˆ G 1

so .

Similarly, we obtain from the bound (20) on WTV,

with W ˆ G 1 and V ˆ I

kK2S…s†k1 ¶ max
RHP-poles; pi

kB 1
zo …G 1

mo†G 1jsˆpi
ypi

k2

ˆ kG 1
si jsˆpi

ypi
k2 …27†

where the last identity follows from Bzo…G 1
mo† ˆ

Bzo…G 1† ˆ Bpi…G†.

4.2.2. Disturbances to weighted inputs: This generalizes

the bound (26). Apply the equality K2S ˆ TIG
1,

select W ˆ Wu, V ˆ G 1Gd , and use the bound (21)

on WTIV to obtain

kWuK2SGd…s†k1 ¶ max
RHP-poles; pi

kWu… pi†upi
k2

¢ kuH
pi

G 1GdB 1
zi …G 1

mi Gd†jsˆpi
k2 …28†

where we have used the identity Bzi…G†G 1 ˆ G 1
mi .

4.2.3. Noise and references to weighted inputs: To con-

sider noise to weighted inputs replace Gd by N in (28).

To consider references to weighted inputs for the case

of one-degree of freedom control replace Gd by R in
(28). We may look at the combined eŒect of reference

tracking, disturbance rejection and measurement noise

by using the bound (21) on WTIV with W ˆ Wu and

V ˆ G 1‰Gd R NŠ.

5. Two degrees-of-freedom control

For a two degrees-of-freedom controller the closed-

loop transfer function from references ~rr to outputs

z1 ˆ Wp…y r† becomes

WP…SGK1 I †R …29†

We then have the following lower bound which does not

follow from Theorems 1± 4.

Theorem 5: Consider a plant G with Nz ¶ 1 RHP-

zeros zj and Np ¶ 0 RHP-poles pi 2 ‡. Let the

performance weight WP be minimum phase and let …for

simplicity† R be stable. Assume that the closed-loop

transfer function WP…SGK1 I†R is stable. Then
the following lower bound on kWP…SGK1 I†R…s†k1
applies

kWP…SGK1 I†R…s†k1 ¶ max
RHP-zeros zj in G

kWP…zj†yzj
k2

¢ kyH
zj

Rmi…zj†k2 …30†

The bound …30† is tight if the plant has only one RHP-

zero.

The bound in (30) should be compared to the follow-
ing bound for a one degree-of-freedom controller (which

follows from Theorem 1 assuming that WP is minimum

phase)

kWPSR…s†k1 ¶ max
RHP-zeros zj in G

kWP…zj†yzj
k2

¢ kyH
zj

RB 1
zi …Bpo…G†R†jsˆzj

k2 …31†

We note from (30) that for the two degrees-of-freedom
controller only the RHP-zeros pose limitations on out-

put performance. Thus, unlike the bound for a one

degree-of-freedom controller in (31), there is no addi-

tional penalty when we have RHP-poles.

6. Example

Consider the following multivariable plant G,

G…s† ˆ

s z

s p

0:1s ‡ 1

s p

s z

0:1s ‡ 1
1

2

664

3

775

with z ˆ 2:5 and p ˆ 2

The plant G has one multivariable RHP-zero z ˆ 2:5
and one RHP-pole p ˆ 2. The corresponding input

and output zero and pole directions are

uz ˆ
1

0

" #

; yz ˆ
0:371

0:928

" #

up ˆ
0:385

0:923

" #

; yp ˆ
1

0

" #

The RHP-pole p can be factorized into G…s† ˆ
B 1

po …G†Gso…s† where
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Bpo…G† ˆ
s p

s ‡ p
0

0 1

2

4

3

5

and

Gso…s† ˆ

s z

s ‡ p

0:1s ‡ 1

s ‡ p
s z

0:1s ‡ 1
1

2

664

3

775

(1) Consider ® rst the bound on output sensitivity S.

From (18) with W ˆ I and V ˆ I , we ® nd

kS…s†k1 ¶ kyH
z B 1

po …G†jsˆzk2

ˆ ‰0:371 0:928Š
9 0

0 1

" #®®®®®

®®®®®
2

ˆ 3:4691

To con® rm that the bound is tight, we use

Theorem 6 in Appendix (with W ˆ I and

V ˆ I ) to ® nd the feedback controller which

minimizes kS…s†k1. With k0 ˆ 10 2 we get the
following balanced minimal state-space realiza-

tion of the feedback controller K2

K2…s† ˆ G 1
smoPQ 1…s†ˆs

10 188:4 75:49

0 306 122:6

203 6508 2605

2

6664

3

7775

which indeed achieves kS…s†k1 ˆ 3:4691

(2) Next, we consider input usage in terms of the
transfer function from outputs to inputs, K2S.

We have two lower bounds on kK2S…s†k1, but

they are identical since the bounds are tight when

the plant has only one RHP-pole. From (26) we

get

kK2S…s†k1 ¶ kuH
p G 1B 1

zi …G 1
mi †jsˆpk2

ˆ kuH
p G 1

so … p†k2 ˆ 3:077

(3) Let us ® nally consider reference tracking in terms

of the transfer function Tr from r to weighted
errors, WP…y r†. We have R ˆ I and choose

the performance weight

WP…s† ˆ wP…s† ¢ I ; with wP…s† ˆ s=2 ‡ 0:5

s

which requires integral action, a bandwidth of

0.5 (rad/s), and a sensitivity peak less than 2 at

high frequencies. With a one degree-of-freedom

controller (where K1 ˆ K2) we get from (22) that

kTr…s†k1 ˆ kWPS…s†k1

ˆ kWP…z†yzk2 ¢ kyH
z B 1

po …G†jsˆzk2

ˆ 0:7 ¢ 3:4691 ˆ 2:4284

With a two degrees-of-freedom controller (where

K1 is free to choose) the RHP-pole does not

imply a fundamental limitation, and we get

from (30) that

kTr…s†k1 ˆ kWP…SGK1 I†R…s†k1

ˆ kWP…z†yzk2 ¢ kyH
z Rmi…z†k2 ˆ 0:7 ¢ 1 ˆ 0:7

In Havre (1998) more details are presented

including state-space realizations for K1

and K2.

7. Conclusion

. We have derived lower bounds on the H1-norm

of closed-loop transfer functions for multivariable

plants. The bounds are independent of the con-

troller and therefore re¯ ects the input± output con-

trollability of the plant.

. The lower bounds are tight when the plant has

only one RHP-zero or pole.

. The bounds extend and generalize the results by

Zames (1981), Doyle et al. (1992), Skogestad and

Postlethwaite (1996) and the results given in Havre

and Skogestad (1998), to also handle non-mini-

mum phase and unstable weights. This allows us

to derive new lower bounds on input usage due to

disturbances, measurement noise and reference

changes.

. The new lower bounds on input usage make it

possible to quantify the minimum input usage

for stabilization of unstable plants in the presence
of disturbances, measurement noise and reference

changes.

. Theorem 5 expresses the bene® t of applying a two

degrees-of-freedom controller compared to a one

degree-of-freedom controller when the plant is
unstable and has a RHP-zero.

Appendix. Proof of Theorem 1

We prove (18) by applying the following six steps:

(1) Factor out the RHP-zeros in WSV : the RHP-

poles in G appears as RHP-zeros in S. Factor

out S ˆ eSSBpo…G† to obtain
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WSV …s† ˆ Bzo…W†Wmo
eSSBpo…G†V

ˆ Bzo…W† Wmo
eSS…Bpo…G†V†mi|‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚}

…WSV†m

Bzi…Bpo…G†V†

…34†

WSV is stable by assumption. From the assump-

tion on internal stability it follows that S is

stable (if one closed-loop transfer function is
stable then internal stability implies that all the

other closed-loop transfer functions are stable).

Then it is only the RHP-zeros in S that can can-

cel RHP-poles in V and W . Thus, factorizing the

zeros in ‡ of W does not introduce instability
in …WSV†m, since none of these cancel unstable

modes in S or V . Similarly, we can factorize the

zeros in ‡ of V . However, when factorizing the

zeros in S we must avoid factorizing the zeros

which cancel poles in ‡ of V . Otherwise,

…WSV†m becomes unstable. By factorizing only
the zeros in a minimal realization of Bpo…G†V we

accomplish this. Since W is stable there are no

cancellations against the zeros in S due to poles

in G. It then follows that …WSV †m is stable.

(2) Introduce

f …s† ˆ max
x1k k2ˆ1; x2k k2ˆ1

xH
1 …WSV†mx2

then

kWSV …s†k1 ˆ k…WSV…s††mk1 ¶ kf …s†k1

(3) Apply the maximum modulus theorem to f …s† at

the RHP-zeros zj of G

k f …s†k1 ¶ j f …zj†j

(4) Resubstitute the factorization of RHP-zeros in
S, i.e. use eSS ˆ SB 1

po …G†

f …zj† ˆ max
x1k k2ˆ1; x2k k2ˆ1

xH
1 WmoSB 1

po …G†…Bpo…G†V†mijsˆzj
x2

ˆ max
x1k k2ˆ1; x2k k2ˆ1

xH
1 WmoSVB 1

zi …Bpo…G†V†jsˆzj
x2

(5) Use the interpolation constraint for RHP-zeros

zj in G, i.e. use yH
zj

S…zj† ˆ yH
zj

f …zj† ˆ max
x1k k2ˆ1; x2k k2ˆ1

xH
1 WmoSVB 1

zi …Bpo…G†V†jsˆzj
x2

¶ max
x1k k2ˆ1; x2k k2ˆ1

xH
1 Wmoyzj

yH
zj

SVB 1
zi …Bpo…G†V†jsˆzj

x2

ˆ max
x1k k2ˆ1; x2k k2ˆ1

xH
1 Wmoyzj

yH
zj

VB 1
zi …Bpo…G†V†jsˆzj

x2

(6) Evaluate the lower bound

kWSV…s†k1 ¶ j f …zj†j

¶ kWmo…zj†yzj
k2

¢ kyH
zj

VB 1
zi …Bpo…G†V†jsˆzj

k2

Since this bound applies to all RHP-zeros zj in
G, the bound (18) follows.

We prove the tightness of the lower bound for the
case when G has only one RHP-zero by constructing

controllers that achieve the bound. This may be formu-

lated in the following theorem.

Theorem 6 (controller which minimizes kWSV…s†k1):

Consider a plant G with one RHP-zero z, output direc-
tion yz, and Np ¶ 0 RHP-poles pi 2 ‡. Let W and V

be rational transfer function matrices, where W is

stable. A feedback controller …possible improper† that

stabilizes WSV is given by

K2…s† ˆ G 1
smo…s†P…s†Q 1…s† …32†

where

Q…s† ˆ W 1
mo …s†Wmo…z†V0B 1

po …G†jsˆzMmi…z†M 1
mi …s† …33†

P…s† ˆ B 1
zo …Gso† I Bpo…G†Q

¢
…34†

V0 ˆ yzy
H
z ‡ k2

0U0U
H
0 and Mmi…s† ˆ …Bpo…G†V…s††mi

where the columns of the matrix U0 2 l£…l 1† together

with yz forms an orthonormal basis for l and k0 is any
constant. P…s† is stable since the RHP-zero for s ˆ z in

I Bpo…G†Q cancels the RHP-pole for s ˆ z in B 1
zo …Gso†,

in a minimal realization of P.

With this controller we have

lim
k0!0

kWSV …s†k1 ˆ kWmo…z†yzk2

¢ kyH
z VB 1

zi …Bpo…G†V†jsˆzk2 …35†

which completes the proof of Theorem 1. &
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