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This paper provides a case study on the selection of controlled variables for the imple-
mentation of real time optimization results in a crude unit heat exchanger network. Two
different control strategies with 22 different control structures are evaluated. The idea is
to select the controlled variables that give the best plant economic (smallest loss) when
there are disturbances (self-optimizing control). The disturbances are correlated and a
simple principal component analysis is used to generate a more realistic set of disturbance
variations for evaluation of the different control structures. This analysis shows a large
variation of loss for different control structures and that a control structure evaluation is
necessary to collect the benefits from a RTO system.

1. Introduction

A real time optimization system (RTO) can be described as a sequence of three separate
functions, White (1997). (1) Data reconciliation and parameter estimation to establish the
current operation point. (2) Optimization to find the optimal operation. (3) Implemen-
tation of the optimal result as controller setpoints. Estimated parameters and reconciled
process variables are the basis for operations optimization. The optimal operation is
computed by maximization of some objective subject to the process model and operating
constraints. The objective can be a direct measure of the profit or some function of the
variables that when maximized drives the process towards the optimal operation. Finally
the computed optimal operation is implemented in the process as setpoints in the control
system. The selection of these controlled variables is the main focus of this paper. In the
RTO ”loop” there is a loss related to uncertainty in the process measurements, estimated
parameters, model errors, Forbes and Marlin (1996); Zhang and Forbes (2000).

Optimal values for operation are computed at regular intervals and implemented as
setpoints in the control system. In the period from one optimization run to the next
the disturbances will change and the current operation is no longer optimal. In addition
uncertainties in the controlled variable measurements causes a operation that deviates
from the true optimal operation. This disturbance variation and control error is the
source of the disturbance and control loss, Skogestad et al. (1998). These losses depends
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highly on the control variables selected for implementation of the optimization result. The
objective is to select the control variables such that this loss is minimized.

If some process constraint is active for all expected variations in the disturbances, this
variable should be selected as a controlled variable. This is active constraint control,
Maarleveld and Rijnsdorp (1970). The variable is then held at its optimal value for all
disturbance variations.

If the controlled system has infeasible solutions (constraint violations), with the selected
control structure, for normal disturbance variation a back-off from constraints must be
computed. The back-off is computed such that the controlled system has feasible solutions
for all expected disturbances, Hennin et al. (1994)

To simplify the analysis, several assumptions have been made. The controlled vari-
ables selection is solely based on steady state considerations and no evaluation of possible
dynamic control problems are made. There are no process model error and estimated
parameters and process variables (reconciled values) have no uncertainty. By this as-
sumption the computed optimal values, based on reconciled measurements and model
parameters, describes the true process optimum.

2. The optimization problem

A typical process optimization problem has a linear economic objective function, non-
linear process model and some operational constraints. The optimization problem can be
formulated as

max
x

J = pT x

st. g(x, d0, β) = 0

xmin ≤ x ≤ xmax

(1)

where the process variables are included in x. The objective, J , is typically product
price times product flow minus feed price times feed flow and energy price times energy
flow. The process model is included as a equality constraint, g(x, d0, β) = 0, where d0 are
the nominal disturbance values β are the model parameters. Inequality constraints are
typically bounds on single process variables e.g. high temperature limits or a low flow
limit. In this problem there are n variables (in x), m process equations (g(x, β)) and
md disturbances. The solution, x∗(d0), to 1 is referred to as the nominal optimum. The
solution to the optimization problem in 1, x∗, is implemented as setpoints to nf variables
using a controller C, where nf is the available number of degrees of freedom. The controller
may be included in the system as a set of linear constraints Cx = r0 where each row in C
has one nonzero element, equal to one, corresponding to the selected controlled variable.
The controller setpoints equals the nominal optimum, r0 = Cx∗. The controlled system
has the solution xc(d, r0) and objective Jc(d, r0) = pT xc(d, r0). A requirement on the
controller is that the controlled variables are independent such that the the controlled

system has rank equal to the number of variables, i.e. (rank
[

∂g(x,d0,β)
∂x

T |x∗,d0,β CT
]T

= n)
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3. The loss function

The disturbance loss function, Skogestad et al. (1998), is defined as the difference of
the optimal objective of some disturbance d, J∗(d) and the objective achieved by using a
control structure C, with nominal optimal values as setpoints. The loss function can be
written as

Ld(d) = J∗(d)− Jc(d, r0) (2)

where J∗(d) is the objective of the optimal operation with a known disturbance d and
Jc(d, r0) the objective of the controlled system using the nominal optimum as setpoints.
The disturbance loss function describes the loss of not re-optimizing, and implement new
setpoints when the disturbance d has changed and is different from d0. In addition to
the loss of a disturbance change there is a loss due to implementation error or control
error. The controlled variables varies around the optimal setpoint due to disturbances,
measurement inaccuracy and noise. The control error loss function is defined as

Lc(4re) = J∗(d0)− Jc(d0, r0 +4re) (3)

where 4re is the control error. This definition of loss gives one loss function for each
disturbance. A overall scalar measure, for all disturbances and control errors, can be
calculated as the sum of the integrals of the disturbance and control error losses from
dmin...dmax and4re min...4re max respectively. With this simplification the loss is calculated
along each of the disturbance and control error axis. Other measures, such as the sum of
all corner points or the resulting loss of a Monte Carlo simulation could also be used.

4. Disturbance analysis

In the above analysis the aim is to find a controller which minimizes the loss in presence
of disturbances. A key issue is to find a good representation of the disturbance variation.
The normal range of the disturbance variation should preferably be computed from process
measurements. If measured data is unavailable disturbance variations may be estimated
based on experience from similar processes and design information.

When a RTO updates the optimal setpoints at regular intervals, a average of the dis-
turbance variation for each interval gives a measure of the expected disturbance change
from one optimization run to the next.

In a real process we often have that the disturbances are correlated. Evaluating the loss
of one disturbance at a time will fail to evaluate the loss with the most likely combinations
of disturbances. By assuming a linear relation and using simple principal component
analysis (PCA), Jackson (1991), the measured disturbances may be transformed into a
reduced set of uncorrelated disturbances or principal components. The variation range of
the principal components is computed as the average variation within each RTO execution
interval. The number of principal components used is selected such that the principal
components describes the majority (i.e. 90% or 95%) of the variance in the measured
data. This representation of the disturbance data provides a more realistic basis for
selection of the minimum loss control structure.
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5. Case study

In the crude unit the crude (DCR) is preheated in a heat exchanger network where
heat is recovered from the hot products and circulating refluxes. As shown in figure 1 the
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Figure 1. Simplified crude unit overview

cold feed is separated into seven parallel streams (A-G). This feed split provides only 5
degrees of freedom, which is used for optimization, since total feed flow and total bottom
circulating reflux (BSR) duty is kept constant. Changes in product yields and BSR duty
are the main disturbances to the heat exchanger network. The optimization objective is
to save energy by recovering as much heat as possible. The heater is the main energy
input in the process and heater outlet temperature is held constant. The minimum energy
is then achieved by maximizing the heater inlet temperature. A detailed description of
the process, steady state model, data reconciliation and optimization is presented in Lid
et al. (2001). For simplicity the operating constraints are ignored in the control structure
selection.

5.1. Disturbances
There are 23 disturbance variables. These are the flows and temperatures of streams

flowing into the heat exchanger network. The data used in this analysis are 35 days of 12
minutes averages sampled from normal process operation . The RTO execution interval
is one hour. The disturbance measurements where reduced to for principal components
using PCA as described in section 4. The standard deviation of the selected principal com-
ponents averaged for all optimization intervals was computed and used as the disturbance
variation range.

5.2. Control structure evaluation
There are a large number of possible controllers for implementation of the optimization

result. The only controller requirement is that all 5 degrees of freedom in the process
must be specified or that the controlled system rank requirement is satisfied. In this case
study two control strategies are evaluated.

Strategy 1: the optimal result is implemented as setpoints to the flow controllers in
each pass (open loop implementation).

Strategy 2: the optimal result is implemented as setpoints to pass outlet temperature
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controllers (closed loop implementation) where the temperature controllers manipulates
the corresponding pass flow.

The rank requirement for the controller with the open or closed loop implementation
strategy may be stated by two simple rules. First, the flow or temperature in pass D and
G can not be specified simultaneously since one has to be used to control the total BSR
duty. Second, only five of the remaining six flows or temperatures in the seven passes can
be specified simultaneously since the total feed flow is to be kept constant. This makes
effectively one flow as a dependent variable.

In the open loop implementation strategy there exists 11 different control structures
which satisfies the rank requirement. In Table 1 all possible flow control combinations
are numbered 1-11 and in Table 2 all possible temperature control combinations are
numbered 12-22. For each control structure the disturbance loss, control loss and total
loss are computed. The control variable selections in table 1 and 2, are sorted by total
loss. The results shows that the best open loop implementation strategy is to select the
flow controllers of pass A,B,C,D and E as controlled variables. The setpoints of these
controllers is set equal to the current nominal optimum. Pass G is used for total BSR
duty control and pass F is used for total flow control. In table 2 the loss functions
for different temperature control combinations are listed. The total loss for the best
controller is reduced by 57% when the outlet temperature of pass A,B,C,D and E is used
as as controlled variables. The selection of pass A,B,C,D and E as controlled variables

Table 1
Strategy 1: Flow control
No. CV Ld L4re

L
1 ABCDE 0.013 0.009 0.021
4 ACDEF 0.015 0.018 0.034
7 ABCEG 0.040 0.010 0.050
2 ABCDF 0.021 0.031 0.052
6 ABCEF 0.021 0.032 0.053
3 ABDEF 0.023 0.031 0.054
10 ACEFG 0.053 0.020 0.073
5 BCDEF 0.038 0.047 0.084
8 ABCFG 0.068 0.034 0.102
9 ABEFG 0.080 0.034 0.114
11 BCEFG 0.123 0.050 0.173

Table 2
Strategy 2: Temperature control
No. CV Ld L4re

L
12 ABCDE 0.002 0.007 0.009
15 ACDEF 0.002 0.015 0.017
13 ABCDF 0.005 0.024 0.029
14 ABDEF 0.004 0.025 0.029
17 ABCEF 0.007 0.023 0.030
16 BCDEF 0.006 0.038 0.043
18 ABCEG 0.101 0.054 0.156
21 ACEFG 0.123 0.072 0.195
19 ABCFG 0.183 0.101 0.284
20 ABEFG 0.183 0.105 0.288
22 BCEFG 0.245 0.145 0.390

gives the minimum loss both for the open and closed loop implementation strategy. From
table 1 and 2 it is clear that controllers including flow or temperature in pass G and
F as controlled variables gives generally a large loss. The difference in loss for the flow
control structures may be explained by the fraction of crude flow trough each pass. At
the nominal optimum the fractions in pass A-G is [6 15 12 16 10 33 8]% respectively. Pass
F has the largest flow and should be used to control the total flow since this will give the
smallest relative error in presence of feed flow disturbances. A similar argument applies
to the selection of pass E or G to control BSR total duty. The heat transferred from BSR
is 4.2MW to pass G and 2.2MW to pass E. The pass receiving the largest duty should
be selected to control the total duty in the BSR since this will give the smallest relative
change in presence of disturbances. The loss computed using principal components is
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in general smaller than the loss computed using the disturbances independently. This is
explained with the fact that the mass and energy balance in the process is always ”zero”.
If the cold feed flow increases the hot product flows will also increase, if the product
yields changes and we have a reduction a hot product flow the product temperature will
in general increase. These dependencies in the disturbances seems to cancel some of effect
on the total loss.

6. Conclusion

A method for selection of controlled variables for implementation of real-time optimiza-
tion results based on self-optimizing control and the loss function, Skogestad et al. (1998),is
described. The analysis is solely based on steady state considerations and no evaluation
of the resulting control problem is made. The selection is based on how the controlled
process will act in presence of disturbances compared to optimal operation. Some control
structures are proposed and evaluated in presence of disturbances and control errors. The
minimum loss control structure is achieved by selecting the outlet temperature of pass
A,B,C,D and E as controlled variables. The worst case loss, using temperature control,
is 0.39◦C which is more than 10% of the total RTO potential. This shows that a proper
selection of controlled variables is vital for achievement of maximum RTO benefits in
presence of disturbances.

References

Forbes, J. F., Marlin, T. E., 1996. Design cost: A systematic approach to technology
selection for model-based real-time optimization systems. Computers & Chemical En-
gineering 20 (6/7), 717–734.

Hennin, S. d., Perkins, J. D., Barton, G. W., 1994. Structural decisions in on-line opti-
mization. Proceedings of PSE’94 , 297–302.

Jackson, J. E., 1991. A user’s guide to principal components. Wiley series in probability
and mathematical statistics. Applied probability and statistics. John Wiley & Sons,
Inc., New York.

Lid, T., Strand, S., Skogestad, S., January 2001. On-line optimization of a crude unit
heat exchanger network. In: Chemical Process Control - 6.

Maarleveld, A., Rijnsdorp, J. E., 1970. Constraint control on distillation columns. Auto-
matica 6, 51–58.

Skogestad, S., Halvorsen, I. J., Morud, J. C., 1998. Self-optimizing control: The basic
idea and taylor series analysis. Presented at AIChE Annual Meeting, Miami Beach,16-
20 Nov;paper 229c .

White, D. C., June 1997. Online optimization:what, where and estimating ROI. Hydro-
carbon Processing , 43–51.

Zhang, Y., Forbes, J. F., 2000. Extended design cost: a performance criterion for real-time
optimization systems. Computers & Chemical Engineering 24, 1829–1841.


