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Abstract: Buffer tanks are often designed and implemented for control purposes, yet control
theory is rarely used when sizing and designing buffer tanks and their control system. Instead,
rules of thumb such as using “10 min residence time” are used. The objective of this paper
is to provide a systematic approach. We consider mainly the case where the objective of the
buffer tank is to dampen (“average out”) the fast (i.e. high frequency) disturbances, e.g. in
flow and concentration, which cannot be handled by the feedback control system.
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Introduction

The objective of this paper is to provide a systematic
approach to the design of buffer tanks based on control
theory. The background for this approach is that buffer
tanks often are implemented for control purposes. Even
so, control theory is rarely used when sizing and designing
the tanks. Instead, rules of thumb are used.

Text books on chemical process design seems to agree
that a half-full residence time of 5-10 minutes is appro-
priate for reflux drums and that this also applies for other
buffer tanks. For tanks between distillation columns a
half-full residence time of 10-20 minutes is recommended.
((Lieberman, 1983), (Sandler and Luckiewicz, 1987),
(Ulrich, 1984), (Walas, 1987) and (Wells, 1986)). Sigales
(1975) is more specific concerning what follows after the
drum. None of these references give any justifications
for their choice. (Watkins, 1967) gives a reflux drum
volume dependent on instrumentation and labor factors
(both related to operational use of the buffer tank), reflux
and product rates, and a factor dependent on how well
external units are operated. The method gives half full
hold-up times from 1.5 to 32 min.

Design of vessels to dampen flow variations is presented
by Harriott (1964) using a specification of outlet flow rate
change given a certain step in inlet flow. This method has
similarities with the one presented for flow variations in
the present paper.

Another related class of process equipment is neutral-
ization tanks. The main problems for this process are
large and varying process gain and delays in the con-
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trol loop. Design is described in (Shinskey, 1973) and
(McMillan, 1984). Another design method and a critical
review is found in (Walsh, 1993).

Zheng and Mahajanam (1998) find the necessary buffer
tank volume by optimization and use it as a controllability
measure.

A stated above, due to limitations in the control system,
there is a limitation in frequencies above which the control
system is not effective. The process itself must dampen
the disturbances in this area. If it initially does not,
addition of one or more buffer tanks is necessary. In this
paper we present design methods for buffer tanks based on
this fundamental understanding.

Transfer functions for buffer tanks

Consider the effect of a disturbance,d, on the control
variabley. The linearized model in terms of deviation
variables may be written as

y (s) = Gd (s) d (s) (2)

To illustrate the effect of the buffer tank, we express the
dynamic model of the tank with the transfer functionh (s).
The disturbances passes through the buffer tank (e.g. see
Figure 1), so that the process with a buffer tank may be
expressed by

Gd (s) = Gd0 (s)h (s) (3)

whereGd0 (s) is the disturbance transfer function of the
original plant, andGd (s) is the modified disturbance
transfer function. A typical buffer tank transfer function
is

h (s) = 1= (�s + 1) (4)

Note thath (0) = 1 so that the buffer tank has no steady
state effect.
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Figure 1. Example of how a buffer tank dampens distur-
bances.

We consider a buffer tank with liquid volumeV
�
m3

�
, in-

let flow-rateqin
�
m3=s

�
, outlet flow-rateq. Further we let

cin andc denote the inlet and outlet quality (concentration
or temperature), respectively. A component or simplified
energy balance for a perfectly mixed tank yields

d (V c) =dt = qincin � qc (5)

In addition we have the total mass balance (assuming
constant density):

dV=dt = qin � q (6)

Quality disturbance

For quality disturbances the objective of the buffer tank is
to smoothen the quality response,c (s) = h (s) cin (s), so
that the variations inc are smaller than incin. Combining
(5) and (6) yieldsV dc

dt = qin (cin � c) and for a single
buffer tank linearization yields

c (s) =
1

V �

q� s+ 1

�
cin (s) +

c�in � c�

V �
qin (s)

�
(7)

where� denotes the nominal (steady state) values. Note
that the dynamics ofV (level control) have no effect on the
linearized response ofc. Furthermore for the case with a
single feed streamc�in = c and the dynamics ofqin have
no effect on the response ofc. In any case we find that the
transfer function for quality is

h (s) = 1= (�hs+ 1) (8)

where�h = V �=q� [s] is called the residence time (steady
state). We can see that the buffer tank works as a first
order filter. Similarly forn buffer tanks in series we have

h (s) = 1=
��h
n
s+ 1

�n
(9)

where�h is the total residence time.

Flow rate disturbance

For flow rate disturbances the objective of the buffer tank
is to smoothen the flow response,q (s) = h (s) qin (s).
Note that we need to use a “slow” level controller, as tight
level control yieldsq � qin. Let k (s) denote the transfer
function for the level controller including measurement
and actuator dynamics and the possible dynamics of an
inner flow control loop. Thenq (s) = k (s) (V (s)� Vs),
whereVs is the set-point for the volume. Combining this
with the total mass balance (6) yields

q =
k (s)

s+ k (s)
qin (s)�

sk (s)

s+ k (s)
Vs (10)

The buffer tank transfer function is thus given by

h (s) =
k (s)

s+ k (s)
=

1
s

k(s) + 1
(11)

In this case we have more freedom in selectingh (s) since
we can select the controllerk(s). With a proportional
controllerk (s) = K, we get thath (s) is a first order
filter with � = 1=K. For a givenh (s) the controller is

k (s) = sh (s) = (1� h (s)) (12)

Controllability analysis

We here provide a review of some controllability results
which are subsequently used for buffer tank design. We
consider SISO (single input-single output) systems. Con-
sider a linear process in terms of deviation variables

y (s) = G (s)u (s) +Gd (s) d (s) (13)

Herey denotes the output,u the manipulated input and
d the disturbance (including disturbances entering at the
input which are frequently referred to as “load changes”).
We assume throughout this paper that the model has
been scaled such that expected disturbances makes the
magnitude of the elements ofd lie within �1 for all
frequencies and the requirement for the scaled output
vector,y, is that the magnitude of each element iny shall
lie between�1 and1 for all frequencies, andu is scaled so
that the manipulated input range corresponds to a variation
of �1 in u.

Feedback control yieldsu (s) = K (s) (ys (s)� y (s)),
and from this we eliminateu to get

y (s) =
G (s)K (s)

1 +G (s)K (s)
ys (s) +

Gd (s)

1 +G (s)K (s)
d (s)

= T (s) r (s) + S (s)Gd (s) d (s) (14)

ys is the set-point, andS (s) andT (s) are the sensitiv-
ity function and the complementary sensitivity function,
respectively. We ignore set-point changes and get the
following expression for the effect of disturbances

y (s) = S (s)Gd (s) d (s) (15)

Two different requirements must be fulfilled to get accept-
able control performance. The first relates to the speed of
response to reject disturbances. From (15) we see that to
keepjyj < 1 whenjdj = 1, we must require

jS (j!)Gd (j!)j � 1; 8! (16)

We define!B as the frequency wherejS (j!)j = 1. At
higher frequencies we cannot rely on feedback control for
disturbance rejection, so that

jGd (j!)j � 1; ! � !B (17)



For acceptable performance and robustness we have the
following maximum value of the bandwidth (Skogestad,
1999), (Skogestad and Postlethwaite, 1996):

!B = 1=�e� (18)

where�e� is the effective delay. With PI or PID control
we have (Skogestad, 1999):

�e� = � + �z +
�j
2

+
X
i>j

�i;
j = 2 for PI
j = 3 for PID

(19)

where� is the delay,�z = 1=z, wherez is a right half
plane zero, and�i is lag numberi ordered by size so
that �1 is the largest time constant. For more realistic PI
controllers (18) may be modified. Ziegler-Nichols tuning
gives !B = 1= (1:31�e�), while a more robust tuning
(Skogestad, 1999) gives

!B = 1= (2�e�) (20)

Note that (17) is only a necessary requirement, as (16)
needs to be satisfied for! < !B . In particular, (16) may
impose additional requirements ifGd is of high order; this
is discussed later.

In words (17) tells us that at sufficiently high frequencies
the process must be “self-regulating”. If (17) is not satis-
fied then we need to modify the process. One commonly
used approach is to add buffer tanks as illustrated in Figure
1, such that the “new” disturbance response becomes as in
equation (3).

The second limitation relates to input constraints for dis-
turbances, but will not be covered by this article.

Additional requirements due to high orderGd

As mentioned, (17) is only a necessary requirement as (16)
needs to be satisfied also for! < !B . To investigate this
further we make the following approximation of the sen-
sitivity function,S (j!), with the loop transfer function,
L (j!) (= G (j!)K (j!)):

S (j!) = 1= (1 + L (j!)) � 1=L (j!) (21)

Inserting this approximation into (16), we obtain

jGd (j!)j � jL (j!)j ; 8! (22)

Now it may be difficult to have sufficiently high roll-
off (slope) in the loop transfer functionL (s) to get
jL (j!)j � jGd (j!)j at frequencies below the bandwidth
(even though we satisfy it at the bandwidth). The problem
is that a high roll-off inL (s) yields a large phase lag, and
we get instability problems. For reasonable robustness
and performance we must have that the slope forjLj is
about -1 near the bandwidth!B . In this case it is diffi-
cult to make general formulas for the buffer tank design.
Graphical or optimization based solutions are probably
simplest. One particular case is studied later.

We can get a steeper slope around the bandwidth, however,
with multiple control loops. E.g. with a series ofn buffer
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Figure 2. Frequency responces for n tanks in series with
total residence time�h, h (s) = 1=

�
�h
n s+ 1

�n
.

tanks and control in each tank, the total slope ofjLj is�n
(even though it is -1 for each individual tank).

Quality variations

When the main source of disturbances are variations in the
inflow quality (temperature or concentration) they may be
smoothened by a mixing tank. With perfect mixing and
a residence time of�h (h denotes hold-up), the outflow
quality is roughly speaking the sliding mean of the input
quality within a time window of length�h. The transfer
function for one buffer tank is given by (8). We may also
consider using a series of buffer tanks. Forn equal tanks
in series with a total residence time of�h, and total volume
V , the transfer function is given by (9).

In Figure 2 we show the amplitude plot ofh (s) for
n = 1; 2; 3; 4 equal tanks in series with a given total
residence time�h. Physically, on the x-axis is shown the
normalized frequency,!� , of the sinusoidal varying input
concentration,

cin(t) = cin;0(t)sin(!t)

into the first tank, and on the y-axis is shown the nor-
malized output concentration from tankn, c0=cin;0, where
cin;0 andc0 denote the magnitude of the sinusoidal varia-
tions. Note that both axis are logarithmic.

At low frequencies,! � 1=� , we havec0=cin;0 � 1,
which means that slow sinusoidal variations are unaffected
when they pass through the tanks. However, fast variations
(with high frequencies) are dampened by the tanks which
tend to “average out” the variations. At sufficiently high
frequencies,! � 1=� , we find thatc0=cin;0 (log-scale) as
a function of frequency (log-scale) approaches a straight
line. This follows because the high-frequency asymptote



is jh(j!)j = ��n � !�n (in words, “the slope is�n”
at high frequencies forn tanks in series). Thus, at high
frequencies the use of many tanks is “better”, in terms
of providing more dampening for a given total volume.
On the other hand, the frequency where the asymptote
crosses magnitude 1 (its “break” or “corner” frequency)
is ! = 1=� = n=�h, which is at a lower frequency when
n is smaller, so at lower frequencies fewer tanks is better.
This is also seen from the more exact plot in Figure 2.

The plot may be used to obtain the total required volume
of the buffer tanks if we at a given frequency specify the
factorf by which we want to reduce the disturbance. The
required “gain” of the buffer transfer function is then1=f
and we can read off!�h and with a given value of! obtain
the total residence time�h. Typically, the given frequency
is the achievable closed-loop bandwidth of the feedback
control system,! = 1=�e� , andf is the value ofGd0 at
this frequency.

We see that one tank is “best” if we want to reduce the
effect of the disturbance at a given frequency by a factor
f = 3 = 1=0:33 or less; two tanks is “best” if the factor
is between 3 and about7 = 1=0:144, and three tanks is
“best” if the factor is between about 7 and15 = 1=0:064.
The word “best” has been put in quotes because we here
only consider the total combined volume of the tanks. In
practice, there are several other factors that favor using as
few tanks as possible; this includes the scaling law for cost
(typically, cost scales withV 0:7), the cost of additional
equipment like pipes, pumps, sensors, control systems,
etc. as well as other controllability considerations (slope
condition onL). Therefore, one would probably consider
using only one tank also when we want to reduce the effect
of the disturbance by a factorf = 100, even though in this
case the volume of one tank is about 5 times larger than the
total volume of two tanks, and more than 7 times larger
than the total volume of three tanks (this is seen from
Figure 2 by reading off the value of!�h that corresponds
to magnitude10�2).

To satisfy the necessary condition (17) we need to select
h (s) such that

jh (j!B)j jGd0 (j!B)j � 1 (23)

We introduce the factor by which the effect of the distur-
bance must be reduced

f = jGd0 (j!B)j (24)

We must at least requirejh (j!B)j = 1=f . As mentioned
this may be solved graphically using Figure 2, but alter-
natively we can find the analytical solution from (9) and
(18):

�h > �e� n
p
f2=n � 1 (25)

For one tank andf � 1 we have the appropriate formula
�h > f�e� . For n � 2 the use of (25) assumes that
the total slope ofjLj around!B can be�n. This can

be achieved with local quality control in each tank, e.g.
for a neutralization plant, it must be possible to measure
the concentration and automatically add a reactant in each
tank.

To find the optimal number of tanks one must then take
into account equipment, piping, control systems (each
tanks may require a level controller), etc. as mentioned
above. Normally the optimal number of tanks will not be
large, so that the cost calculations has to be made for a
limited number of cases.

Example 1.Consider mixing of two process streams,A
andB as illustrated in Figure 3. The concentration and
flow rate of streamA are denotedcA and qA, and for
streamB they are calledcB and qB (cA and cB may
also be temperatures). The two streams are mixed in a
mixing tank of1m3, and the concentration of the outlet
flow is denotedc0. This concentrationc0 is controlled by
manipulating the flow rate ofB. First we check if this
controller, together with the mixing tank, is sufficient for
suppressing disturbances in the concentration of stream
A. Combination of component balance and total material
balance gives the following model:

dc0
dt

=
1

V
[(cA � c) qA + (cB � c) qB ] (26)

This model is linearized and scaled (as described in the
controllability section). We require a variation inc less
than 1=10 of the variation incA, and the flow range of
qB is twice the flow range ofqB . The scaled deviation
variables are marked with a0 and we get the following
model after Laplace transformation

c0 (s) =
1

1 + s
[10c0A (s) + 10q0A (s)� 20q0B (s)] (27)

where we have assumed constantcB . We study concen-
tration disturbances, leading toGd0 (s) = 10= (1 + s)
and furtherG0 (s) = �20= (1 + s). Mainly due to the
measurement, the control loop has an effective delay of
1s:With a robust controller tuning, (20) gives a bandwidth
of 0:5rad=s.

jG0 (j!)j andjGd0 (j!)j are shown in Figure 4 (dashed
lines). We see thatjG0j > jGd0 j for all frequencies, so
that input constraints pose no problems in this case. In
the figure the bandwidth frequency,!B , is also marked.
We see thatjGd0 j > 1 even for frequencies above the
bandwidth, so the control system is not sufficient to fulfil
the requirements on the outlet concentration. To solve
this problem, we may either improve the control system,
increase the volume of the mixing tank from1m3 or install
an extra buffer tank. In this case we assume that the latter
alternative is the best, and introduce a new tank after the
mixing tank (dashed in Figure 3). We see from Figure 4
that the gain must be reduced with 10 at the bandwidth
(f = 10), and obtain a required residence time of the
buffer tank of 20s from (25) (n = 1). The modified
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Figure 3. Extra buffer tank for a mixing process. Con-
centration is controlled by manipulating flow rate of
stream B.
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Figure 4. With an extra buffer tank,jGdj is brought below
1 for all frequencies above the bandwidth.

disturbance transfer function gain,jGdj, is shown with a
solid line in Figure 4. The slope is -1 or smaller below
the bandwidth, so that we need not consider the problem
discussed in a subsection under Controllability.jL (j!)j
is plotted (dash-dotted) to illustrate this (jGdj < jLj).
jSGdj is below 1 for all frequencies (dashed). Figure
5 shows the response of a unit step in concentration of
streamAwith (solid) and without (dashed) the extra buffer
tank. We see that it is kept below0:1 with the extra buffer
tank present.
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Figure 5. With an extra buffer tank the outlet concentration
is kept within 0.1 from set-point despite a unit step in
disturbance. This is not the case without the extra
buffer tank.

If the slope ofjGdj is steeper than the slope ofjLj, �h is
too optimistic. We will however analyze one case. We
assumejGd0 j has slope�1 so that jGdj has slope�2
above the frequency1=�h, where�h is the buffer tank
residence time. Further we assume thatjLj has slope
�1 near the bandwidth and that it increases to�2 due
to an integrator in the controller below! = 1=�I , where
�I is the integral time. A robust choice of�I is 8�e�
(Skogestad, 1999). Using geometry it is easy to show that
in this case�h = 8f�e� . Compared to (25) for one tank
we see that the residence time for this case is increased by
a factor of8.

Example 2.Consider the process from example 1, mod-
ified so that the measurement delay is0:1s, the volume
of the first tank is5m3 and the variation requirements
for the outlet concentration is 0.01. The concentration
in the first tank is controlled with a robust PI controller
(Skogestad, 1999). In this case the slope ofjGd (j!)j is
�2 around the bandwidth, and (25) leads to a residence
time of 0:39s, which is insufficient. In Figure 6 a resi-
dence time of�h = 8f�e� = 3:2s is applied. The method
uses asymptotes, and we see thatjGd (j!)j is just touch-
ing the asymptote ofjL (j!)j. jL (j!)j itself is a distance
abovejGdj so the result here is slightly conservative. By
optimization one find a minimum residence time of2:4s
required to fulfil (22) for this controller tuning.

Flow variations

By exploiting the volume of the buffer tank, flow vari-
ations in the outflow may be dampened using a slow
level control. The outflow will then be dependent on
the chosen controller. Denote the tank volumeV

�
m3

�
and the inlet and outlet flow-ratesqin andq respectively.
The transfer function for the buffer tank is then given
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Figure 6. With a residence time of�h = 8f�e� in the sec-
ond tank,jL (j!)j > jGd (j!)j for all frequencies,
and disturbances are rejected.

Table 1. Procedure for buffer tank design ap-
plied to first and second order filtering

Step 1st order 2nd order
1. Desiredh (s) 1= (�1s+ 1) 1= (�2s+ 1)2

2. k (s) from (12) 1=�1
1

2�2

1
�2

2
s+1

3.V (0) =qin (0) from (28)�1 2�2
4.Vtot �1�qmax 2�2�qmax

by (11). Compared to the quality disturbance case, we
have more freedom in selectingh, since we can select the
controllerk(s). But the level will vary, so the size of the
tank must be chosen so that the level remains between its
limits. The volume variation is given byV (s) =qin (s) =
1= (s+ k (s)), and combination with (12) yields:

V (s) =qin (s) = (1� h (s)) =s (28)

which is used to find the required tank volume. The tank
size design consists of the following steps:

(1) Selecth (s) such that if has the desired shape, that is
such that (17) is satisfied.

(2) Find the corresponding controller from (12) (is it
realizable?)

(3) Find the largest effect ofqin onV from (28) (usually
at steady state,s = 0).

(4) Obtain the required total volume from the expected
range ofqin (denoted�qin).

In table 1 we have applied the method for first and second
order filtering.

First-order filtering

With h (s) = 1
�1s+1 the required controller is a P-

controller with gainKc = 1=�1. From (28),V (s) =
�1

�1s+1qin (s). The maximum value of this transfer func-

tion occurs at low frequencies (s = 0), and the required
volume of the tank isVtot = �1�qmax. Adding a slow
integral action to the controller will not affect these results
considerably. Such an integral action will reset the volume
to its nominal value. This is not always desired, however.
If e.g. qin is at its maximum, we may want the volume to
stay at a large value to anticipate a possible large reduction
in qin.

Second-order filtering

With h (s) = 1
(�2s+1)2

we get from (12) that the required
controller is a lag

k (s) =
1

2�2

1
�2
2 s+ 1

(29)

and from (28) the response of the volume deviation is

V (s) = 2�2
(�2=2) s+ 1

(�2s+ 1)
2 qin (s) (30)

This has its largest value equal to2�2 at low frequencies
(s = 0), and the required volume is2�2�qmax.
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