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1. Matlab Software for Control

e Simulation

— Ode suite
— Simulink

e Analysis and Design

— Control System Toolbox

— Robust Control Toolbox

— n-Analysis and Synthesis Toolbox
— Optimization Toolbox

— Model Predictive Control Toolbox

e Other relevant tools

— System ldentification Toolbox
— Signal Processing Toolbox

— LMI Control Toolbox

— Polynomial Toolbox

— QFT Toolbox

See Matwork’s homepage (www.mathworks.com) for additional information

CAPE.NET 2000, London / 22-23th June 20002 NTNU



M. S. Govatsmark, T. Larsson and S. Skogestad Controllability Analysis and Matlab Software

. Control System Toolbox
For modeling, analysis, and design of control systems.
— Several LTI model types supported
— Can include time delay
— Model order reduction
— Model dynamics (poles, zeros)
— Frequency response (bode, sigma)
— LQG design, pole placement
— Linear simulation (step, Isim)
« Robust Control Toolbox
For the analysis and design of robust multi-variable control
systems. Use the matrix functions in Control toolbox.
— Robust model reduction
— H, andH, design
— LQG and LQG loop transfer recovery
— p-synthesis
o 1 TOOlIbOX
For performing robust control design:
— Model reduction
— H, and H, design
— p-synthesis
— Sysic

Robust and: toolbox looks like competing products.
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2. What is Controllability ?

The ability to achieve acceptable control performance for a
system.

Controllability is independent of the controller and is only a prop-
erty of the plant (or process) alone.

d y

—P —»

— PLANT ———

More exactly:

To keep the the outputs ) within specified bounds or displace-
ments from their references (r), in spite of unknown, but known
bounded variations, such as disturbancesi and plant changes,
using the available inputs ;) and available measurementsy,,
andd,,).

Controllable system:

There exists a controller (connecting the plant measurements and
plant inputs) that yields acceptable performance for all the expected
plant variations.
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Why do Controllability Analysis?

To find out what a control performance can be expected of a
system.

Try to answer the following three question:

1. How well can the plant be controlled?
e How easy the plant actually is to control
2. What control structure should be used?

e What variable to measure / control
e Which variable to manipulate
e How are the variables best paired together

3. How might the process be changed to improve the control?

e Relax output specifications

e Replace or move actuators

e Extra measurements

e Add extra equipment to damp disturbances
e Change plant dynamics and time delay
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How to do Controllability Analysis

. “Simulation approach”

e Performance is assessed by exhaustive simulations, which
require a specific controller design and specific values of
disturbances and set-point changes.

e Not know if a fundamental property to the plant

. “Rigorous approach”

e Mathematically formulation of the control objective, dis-
turbances, model uncertainty and then synthesis controllers
to see if the objectives are met (eM..-, H>- or even
better:-controller).

e Difficult and time consuming

. “Simple tools approach”

e Use controllability tools based on scaled model&0fw)
andG,(jw) to get a rough idea of how easy the is to control
(PRESENTED HERE)

e Only a linear tool
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A Procedure for Controllability Analysis

Basis: Minimal realization of a linear, time-invariant, scaled model
1. Check functional controllability ( rank(G(s) = n,)
e Ability to control the outputs independently
2. Compute the poles and zeros and associated directions

e Large RHP-poles far from the origin is bad.
e Bad with small, pinned RHP-zeros close to the origin.

3. Compute the frequency response folz;(jw)
¢ Get a lower bandwidth limit,) for control

4. Compute steady-state and frequency response 6f(jw) and the RGA-
matrix

e RGA-elements close to the crossover frequency is critical.
e Large RGA-elements may expect sensitivity to uncertainty.

5. Compute the singular values ofG(jw) with associated directions

e Impossible with independent control of outputs wiagl(jw)) < 1
6. Compute the magnitude to elements irG7 Gy

e Input saturation if the elements are bigger than 1

7. Compatible requirements with respect to RHP-poles, RHP-zeros and
disturbances?

e E.g. require thaly.g4(z)| < 1 for each disturbance and RHP-zeros.
8. Compute condition number
e Small condition number indicate no problem with uncertainty

9. Compute PRGA and CLDG if interested in decentralized control
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3. Example
“simple tools” - controllability analysis

(www.chembio.ntnu.no/users/skoge/book/matialsola/cola.html)

D
X4
T
|:
Zf
: Ve
f Loe
Xp
No. | Manipulated variables| Nominal value| Allowed variation
Uy Reflux flow (L) 2.7063 1
Us Boilup flow (1) 3.2063 1
U3 Distillate flow (D) 0.5 1
uy | Bottom product flow B) 0.5 1
No. Disturbance Nominal value| Expected variation
dy Feed flow ) 0.5 0.2
d, | Feed compositionz) 1.0 0.1
No. Controlled variables Nominal value| Accepted deviatior
U1 Distillate composition(p) 0.99 0.01
y> | Bottom prod. compositioni(z) 0.01 0.01
Y3 Condenser holdupW(p) 0.5 0.5
m Boiler holdup (M) 0.5 0.5
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Linearized, Scaled Model

L
_a?D_ vV
B . A|B F
MD _{C D] ZF (1)
| Mp | D
B_

A, B, C, D: A given state space modél.

Matlab:

>> sysc = ss(A,B,C,D); %Control

>> sysr = mksys(A,B,C,D); %Robust

>> sysr = mksys(A,B(;,1:4),B(:,5:6),...

C(1:2,:),C(3:4,), ...

D(1:2,1:4),D(1:2,5:6), ...

D(3:4,1:4),D(3:4,5:6),’tss’); %Robust - “two ports”

>> sysm = pck(A,B,C,D); %Mu

>>

>> size(sysc) %Control

State-space model with 4 outputs, 6 inputs, and 82 states.

Robust control toolbox allows for “two ports”.
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Poles with Associated Directions

RRRRRRRR

Polesp =\, (A — Al)z = 0):

p" =[0 0 —0.0052 —0.0830 .. | (2)
* Necessary to stabilize poles in origo.

Pole output directions)f, = Cz, (A — X\ )z = 0):

p: 00 —0.0052 —0.0830 ... (3)
0 0 —0.6270 —0.7793 ... 1 zp
|00 —0.7790 0.6266 ...| x5 "
=101 o0 o .. | M
10 0 0 .| My

* The condenser holdup (/p) and the reboiler holdup (M)
must be stabilized / controlled.
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Pole input directionsu, = Bz, (AT — X\I)z = 0):

D 0 0 —0.0052 —0.0830 ....
[ 0.5735 —0.5774 0.7056 0.1012 ....| L
—0.5735 0.5774 —0.7012 —0.7618 ... | V

| 01147 0 0.0703  0.6360 F 5)
P 0 0 0.0744  0.0698 2p
0 —0.5774 0 0 D
| —05735 0 0 0 B

* The distillate flow (D) may be used to control the condenser
holdup (M)p)

* The bottom product flow (B) may be used to control the re-
boiler holdup (Mp).

Matlab:

>> pole(sysc));’

>> [R DD1] = eig(A); vyp = C*R;
>> [L DD2] = eig(A’); up = B™L;

>> ypn=yp’./(sqrt(sum(yp.*yp)’)*ones(1,4));
>> upn=up’./(sqrt(sum(up.*up)’)*ones(1,6));
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System Manipulation 1

,,,,,,,,,,,, G'-V
i G ‘
ul | | y1
— T G
| 11 12
~ 21 2
uz . yz
K=

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Level control:
GLV = G — Gng([ — GQQK)_ngl = LFT(G, —K)
System Manipulation 2

Split the inputs in manipulable variables) @nd disturbancesi):
y=Gu+ Ggd

oG

* Stable plant with no RHP-zeros.

Matlab:
>> K=diag([-10, -10]); sysm = starp(sysm,-K,2,2);
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Steady State Gain and RGA

Relative gain at steady state:

87.5403 —86.1756
GO0 =1 108 4506 —109.8244] ©)
Disturbance gain at steady state:
7.8789 8.8125
Gal0) = {11.7211 11.1875] (7
Steady-state RGA:
B 1w | 359419 —34.9419
RGAQ) = GO X (GO)" =1 340419 350410 | @)

* Big elements in the steady state RGA indicate strong interac-
tions between the loops

* Negative off-diagonal elements indicate that should pair on
the diagonal elements

Matlab:

>> gw0 = frsp(sysm,0);
>> gwdO= frsp(sysmd,0);
>> RGAO= veval(’.*,gw0,vpinv(vtp(gw0)));
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Disturbance Gains as Function of Frequency

sssssssssssssssss

Magnitude

* To reject disturbances control is necessary for frequencies lower than
0.1s71.

RGA-matrix as Function of Frequency:.

eeeeeeeeeeee

Magnitude

:::::::::

x The diagonal RGA-elements at necessary crossover & 0.1s 1) are about
3. It seems sensible to pair on the diagonal.

Matlab:

>> gwd = frsp(sysmd,w); vplot(liv,im’,gwd,1,”");
>> RGA = veval(.*,gw,vpinv(vtp(gw))); vplot(liv,Im’;RGA,1,");
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Singular Values t@-(jw)

Singulare values - G(jw)
T

Magnitude

Frequency

* No problem with independent control of the outputs for frequencies lower
than 0.1s71,

Input Saturation

GG (P) gains
T

Magnitude

Frequency

x All elements in G~'G, less than 1 indicate no problem with input satura-
tion.

Matlab:

>>vplot(liv,Im’,vsvd(gw),1,”’);
>>vplot(liv,Im’,mmult(minv(gw),gwd),1,’:");
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What Will Limit the Bandwidth for the Two
Diagonal Controllers:

eeeeeeeee

Achievable bandwidth will be limited by-180°.

* Upper band width limits for one of the diagonal controllers
are 0.2s !, so to design two diagonal controllers should be
possible.

Matlab:

>> vplot(liv,p’,mmult(frsp(-1,w),sel(gw,2,2)),sel(gw,1,1))
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Will a Diagonal Controller Be Sufficient?

Performance and disturbance rejection of the individual loop is af-

fected by the other loop.

Performance Relative Gain Array
[(s) = G(5)G™'(5), G(s) = diag(G(s)) (9)
The PRGA
¢ diagonal elements equals the RGA elements.

e The off diagonal element gives interactions from the other loops, under
feedback control.

PRGA as function of frequency:

10”

Magnitude

» Small interactions for higher frequencies than4s—!.

* For lower frequencies than4s~! a reference change in output 1 will affect
the output 2.

Matlab:

>> gwdiag=vdiag(vdiag(gw));
>> prga =mmult(gwdiag,minv((gw)));
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Closed-loop Disturbance Gain (CLDG)

Ga(s) = T'(s)Ga(s) (10)
CLDG gives the apparent disturbance gain as seen when the loops are under di-
agonal control.

maxr

k. j {|édik\,\%'j|}

Can show: Performancét + L;| >

CLDG as function of frequency:

CLGD-elements
T

10°

10" £

Magnitude

10° | Ya12

10— — = "
10° 1072 10" 10° 10

x Effective control is necessary for frequencies lower thaf.3s~!.

Matlab:

>> cldg=mmult(prga,gwd);
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System Manipulation 3
Closing the loopg = (I + GK)'Gd:
d

G

Observed control performance:

Observed control performance

Matlab:

>> k1 = nd2sys([3.76 1], [3.76 l.e-4], 0.261);
>> k2 = nd2sys([3.31 1], [3.31 1l.e-4], -0.375);
>> K = daug(kl,k2);

>> GK = mmult(sysm,K);

>> S = minv(madd(eye(2),GK));

>> SGd = mmult(S,sysmd);

>> Sf=frsp(S,w);

>> d = transp(vpck([1 O; 1 1],[0; 501));

>> y = trsp(SGd,d,100,0.2);

interpolating input vector (zero order hold)

>> vplot(y);

\%
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Concluding Remarks / Summary

e Thecontrollability of a system is its ability to achieve accept-
able control performance.

e Controllability analysis of a system is performed to find out
what control performance can be expected.

e Three different approach for doing controllability analysis:
“Simulation” , “Rigorous” and“Simple Tools” approach.

e A procedure for controllability analysis based on “simple
tools” is presented and demonstrated on a distillation column
example.

e Matlab with its toolboxes is a useful tool for performing
controllability analysis.

— Control System Toolbox is closely integrated with standard
Matlab.

— But: Control System Toolbox is not sufficient for robust
analysis and design.

— Robust Control Toolbox and Synthesis Toolbox have good
tools for robust analysis and design.

— 1 Synthesis Toolbox contains some very useful functions
(e.g. sel.m and vplot.m) and seems best for controllability
analysis purposes.
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