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1. INTRODUCTION

If we consider the control system in a highly auto-
mated chemical plant, then we find that it is structured
hierarchially into several layers, each operating on a
different time scale. Typically, layers include include
scheduling (weeks), site-wide optimization (day), lo-
cal optimization (hour), supervisory/predictivecontrol
(minutes) and regulatory control (seconds); see Figure
1.

The layers are interconnected through the controlled
variables. More precicely, the controlled variables c
are the (internal) variables that link two layers in a
control hiearchy, whereby the upper layer computes
the setpoint cs to be implemented by the lower layer.

Which should these internal variables be? That is, what
should we control? Or to phrase the question in an-
other way: Why do we in a chemical plant select to
control a lot of internal variables (e.g. compositions,
pressures, temperatures, etc.) for which there are noe
explicit control requirements?

To be more specific, consider a distillation column in-
side a large chemical plant. By “inside” we mean that
the column is not producing any final products. Thus
there are no excplicit requirements on the product puri-
ties; rather their (optimal) values are determined by the
overall plant economics. Still, we find in many practi-

cal cases that we select to control at least one of the
product purities at a given setpoint. Why do we keep
this composition constant rather than keeping a flow
constant?

The method presented in this paper follows the ideas
of Morari et al. (1980) and is very simple. The basis
is to define mathematically the quality of operation in
terms of a scalar cost function J to be minimized. To
achieve truly optimal operation we would need a per-
fect model, we would need to measure all disturbances,
and we would need to solve the resulting dynamic op-
timization problem on-line. This is unrealistic in most
cases, and the question is if it is possible to find a sim-
pler implementation which still operates satisfactorily
(with an acceptable loss).

The simplest would be if we could obtain acceptable
operation with constant values (setpoints) for the con-
trolled variables, thus effectively turning the complex
optimization problem into a simple feedback problem,
and thus achieve “self-optimizing control”.

Self-optimizing control is when we can
achieve an acceptable loss with constant
setpoint values cs for the controlled vari-
ables

(The reader is probably familiar with the term self-
regulation, which is when acceptable dynamic control
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Fig. 1. Typical control hierarchy in a chemical plant.

performance can be obtained with constant manipu-
lated inputs.Self-optimizing control is a direct gener-
alization to the case where we can achieve acceptable
(economic) performance with constant controlled vari-
ables.)

Inspired by the work of Findeisen (e.g. see Findeisen
et al. (1980)), Morari et al. (1980) gave a clear descrip-
tion of what we here denote self-optimizingcontrol, in-
cluding a procedure for selecting controlled variables
based on evaluating the loss. However, it seems that
nobody, including the authors themselves, has picked
up on the idea. One reason was probably that no good
example was given in the paper.

More generally, the issue of selecting controlled vari-
ables is one of the subtasks in the control structure
design problem (Foss, 1973); (Morari, 1982); (Skogestad
and Postlethwaite, 1996)

(1) Selection of controlled variables c (variables with
setpoints Cs)

(2) Selection of manipulated variables
(3) Selection of measurements(for control purposes

including stabilization)
(4) Selection of a control configuration (structure of

the controller that interconnects measurements &
setpoints and manipulated variables)

(5) Selection of controller type (control law specifi-
cation, e.g., PID, decoupler, LQG, etc.).

Note that these structural decisions need to be made
before we can start the actual design the controller. In
most cases the control structure is designed by a mix-
ture between a top-down consideration of control ob-
jectives and which degrees of freedom are available to
meet these (tasks 1 and 2), combined with a bottom-up
design of the control system, startingwith the stabiliza-
tion of the process (tasks 3,4 and 5). In most practical
cases the problem is solved without the use of any the-
oretical tools.

The main objective of this paper is to demonstrate,
with a few examples, that the issue of selecting con-
trolled variables (task 1) is very important and that the
concept of self-optimizing control provides a useful
tool.

2. OPTIMIZATION AND CONTROL

2.1 The optimization problem

The optimizing control problem can be formulated as

min
u

J(u; d) (1)

subject to the inequality constraints

g(u; d) � 0 (2)

where u are the Nu independent variables we can af-
fect (degrees of freedom) and d are independent vari-
ables we can not affect (disturbances). Here the con-
straints for instance may be

� product specifications (e.g. xD � 0:95)
� manipulated variable saturations (e.g. 0 � V �

Vmax)
� other operational limitation (e.g. avoid flooding)

The analysis in this paper is based on steady-state mod-
els and use of constant setpoints cs at each steady-state
(operating point). To analyze the effect of disturbances
we may time-average various steady-states. The main
justification for using a steady-state analysis is that
the economic performance is primarily determined by
steady-state considerations.

If we formulate the optimizing control problem in the
usual mathematical fashion as given in (1), then we we
find that a centralized solution is the optimal choice.
Here there is one “big” controller, which based on all
available measurements and other given information
(including a model of the system and expected uncer-
tainty), computes the optimal values of all manipulated
variables. Nevertheless, in practice we almost always
decompose the control system into many separate parts
and layers. In the simplest case we may have two lay-
ers:

� A steady-state optimization layer which computes
the optimal setpoints cs for the controlled vari-
ables, and



� A feedback control layer which implements the
setpoints, to get c � cs.

2.2 Introductory example: Distillation

With a given feed stream and a specified pressure, a
conventional two-product distillation column has two
degrees of freedom at steady state (Nu = 2). (From
a control point of view the column has 5 degrees of
freedom, but two degrees of freedom are needed to
control the reboiler and condenser holdups which have
no steady-state effect, and one degree of freedom is
used to control the pressure at its given value). The two
remining degrees of freedom, e.g. selected to be the
reflux flow L and the distillate flow D, may be used
to optimize the operation of the plant. However the
question is: Which two variables c should be specified
during operation?

Let us assume that the distillate product must contain
at least 95% light component, xD � xD;min = 0:95,
and that to avoid flooding the capacity of the column
is limited by a maximum allowed vapor load, V �

Vmax.

Consider first a case where the distillate is the val-
ueable product and energy costs are low. In this case
it is optimal to operate the column at maximum load
(Gordon, 1986) (to reduce loss of light component in
the bottom) and with the distillate composition at its
specification (to maximize distillate flow), i.e.

Vopt = Vmax; xD;opt = xD;min = 0:95

Thus, the optimum lies at constraints and implementa-
tion is obvious: We should select the vapor rate V and
the distillate composition xD as the controlled vari-
ables,

c =

�
V
xD

�

In practice, we implement this using a lower-level
feedback control system where we

� adjust the boilupV to keep the pressure drop over
the column, an indicator of flooding, below a cer-
tain limit

� adjust reflux L (or some other flow depending
on how the level and pressure control system is
configured) so that xD is kept constant

Next, consider a case where energy costs are rela-
tively high, and where the bottomsproducts is the more
valueable. In this case the optimum may be uncon-
strained, and assume for the discussion that

xD;opt = 0:973 > xDmin; Vopt = 0:76Vmax

Implementation in this case is not obvious. Some can-
didate sets of controlled variables are

c1 =

�
xD
xB

�
; c2 =

�
Ttop
Tbtm

�
; c3 =

�
xD
V

�

c4 =

�
L
V

�
; c5 =

�
L=D
V=B

�

and there are many others. Controlled variables c1 and
c2 will yield a “two-point” control system where we
close two loops for quality control; c3 yields a “one-
point” control system where only one quality loop
is closed; wheras c4 and c5 are “open-loop” policies
which require no additional feedback loops (except for
the level and pressure loops already mentioned). All of
these choices of controlled variables will have differ-
ent self-optimizing control properties, as we will see
from the case study below.

3. SELECTION OF CONTROLLED VARIABLES

In this section we present our procedureFor a given
disturbance d we can solve the optimization problem

minuJ(u; d) = J(uopt(d); d) = Jopt(d)

and obtain the optimal valueuopt(d). From this we can
obtain a table with the corresponding optimal value of
any other dependent variable, including copt(d).

In actual operation we adjust u to keep c approximatelt
at its nominally optomal value, i.e.

cs = uopt(d0) (3)

where d0 is the nominal disturbance. The difference
between the actual u and the optimal uopt(d) results
is a loss L between the actual operating costs and the
optimal operating cost,

L(u; d) = J(u; d)� J(uopt(d); d) (4)

Compared to the cost J , the lossL has the advantage of
providing a better “absolute scale” on which to judge
whether a given set of controlled variables c is “good
enough”, and thus is self-optimizing.

We next present two approaches for selecting con-
trolled variables c for use in a closed-loop policy (but
note that we can actually obtain the “open-loop” policy
as a special case by selecting c = u). Approach 1
yields most insight, but is not actually used any further
in the paper. Instead we use Approach 2 which is based
on directly evaluating the loss.

3.1 Approach 1: Evaluating the error

Consider an closed-loop implementation where we at-
tempt to keep c constant at the value cs. With this im-
plementation the operation may be non-optimal (with
a positive loss) due to the presence of a setpoint error
and an implementation error.

(1) The setpoint error ecs = cs � copt(d) is the
difference between the setpoint value and truly
optimal value



(2) The implementation error dc = c � cs is the dif-
ference between the actual value and the setpoint.

The overall error ec = c � copt(d), the difference
between the actual value and the optimal value (which
causes a positive loss), is the sum of the two,

ec = ecs + dc (5)

To compare various choices of controlledvariables, we
need to consider what effect a nonzero error ec has on
the error in the “original” (base set) degrees of freedom
u, i.e. what effect ec has on eu = u � uopt. Clearly,
we would like that a large value of ec results in only a
small value of eu, that is, we want u to be insensitive to
changes in c (or equivalently, we want c to be sensitive
to changes in u).

In summary, a good candidate for a controlled variable
c has the following properties:

Property 1. Its optimal value is insensitive to distur-
bances (so that the setpoint error ecs = cs� copt(d)
is small)

Property 2. It is easy to control accurately (so that the
implementation error dc is small)

Property 3. Its value is sensitive to changes in the
manipulated variables u (so that even a large error in
the controlled variable c results in only a small error
in u).

3.2 Approach 2: Evaluating the loss

To compare alternative choices for c it is probably sim-
plest to directly evaluate the cost function (or equiva-
lently the loss function) for expected values of the dis-
turbance d and the implementation error dc. The opti-
mal choice for of controlled variables c is then the one
that with constant values of c (more precicely, c = cs+
dc) minimizes some average value of the lossL for the
expected set of disturbances d 2 D, and expected set
of implementation (control) errors dc 2 Dc.

3.3 Procedure for selecting controlled variables

Based on approach 2 we are now in a position to for-
mulate a procedure for selecting controlled variables c.

Step 1: Degree of freedom analysis. Determine the
number of degrees of freedom (Nu) available for
optimization, and identify a base set (u) for the de-
grees of freedom.

Step 2: Cost function. Define the optimal operation
problem by formulating a scalar cost function J to
be minimized for optimal operation.

Step 3: Optimization. First solve the nominal opti-
mization problem with disturbances d0. In addi-
tion, after having specified the disturbance set in
step 5, we usually solve the optimization problem
for the disturbances d in question. This is needed

to check whether there exists a feasible solution
uopt(d) for all disturbances d, and to find the op-
timal cost J(uopt; d) needed if we want to evalu-
ate the loss. In addition, we could try to identify
controlled variables by looking for variables which
optimal value is only weakly dependent of distur-
bances (Fisher et al. (1988) p. 163; also recall prop-
erty 1 presented above).

Step 4: Candidate controlled variables. At this stage
we may identifycandidate controlled variables. Typ-
ically, these are measured variables or simple com-
binations thereof. Insight and experience may be
helpful at this stage, because the possible number of
combinations may be extremely large.

Step 5: Disturbances. Identify the most important dis-
turbances (uncertainty). These may be caused by
� Errors in the assumed (nominal) model (includ-

ing the effect of incorrect nominal values for the
disturbances used in the optimization)

� Disturbancesd�d0 (includingparameter changes)
occuring after the optimization

� Implementation errors (dc) for the controlled
variables (e.g. due to measurement error)

It may be important to include model uncertainty
since, as pointed out by Shinnar (1981), some con-
trol structures are very sensitive to model uncer-
tainty whereas others are not.

Step 6: Evaluation of loss. We compute the mean
value of the loss for alternative sets of controlled
variables c. This is done by evaluating the loss

L(u; d) = J(u; d)� J(uopt(d); d) (6)

u = f�1(cs + dc; d)

with fixed setpoints cs for the defined set of dis-
turbances d and implementation errors dc. We here
select the setpoints as the nominal optimal values,
cs = copt(d0).

Step 7: Further analysis. We select for further con-
sideration the sets of controlled variables with ac-
ceptable loss (and which thus yield self-optimizing
control). These could then be analyzed to see if they
are adequate with respect to other criteria that may
be relevant, such like the region of feasibility and
the expected dynamic control performance (input-
output controllability)

4. REACTOR CASE STUDY

We consider a continously stirred tank reactor (CSTR)
where two irreversible first-order reactions take place

A! B; rA = kAxA[s
�1]

B ! C; rB = kBxB[s
�1]

Let zi and xi denote mole fractions of component i in
the feed and reactor, respectively, and let F [mol/s] be
the feed rate andM [mol] the reactor holdup. There are
only three components, A, B and C, and steady-state
material balances yield

zAF � xAF � kAxAM = 0



zBF � xBF + kAxAM � kBxBM = 0

xC = 1� xA � xB

We consider following nominal data:

zA = 0:8; kA = 1s�1; kB = 1s�1;F = 1mol=s

and two cases

Case 1 No C in feed (zB = 1� zA).
Case 2 No B in feed (zC = 1� zA).

Step 1: Degree of freedom analysis With a given
feed the reactor has one degree of freedom at steady-
state, which may be selected as the reactor holdup, i.e
u = M [mol]. The value of M should be adjusted to
optimize the operation.

Step 2: Cost function In this example component B
is the desired product and the objective is to maximize
the concentration of B, i.e. we choose the cost function

J = �100 � xB

(in most cases we would recycle unreacted A, but this
is not the case in this example).

Step 3: Optimization The optimal holdup and cor-
responding optimal compositions for the two nominal
cases are:

Case 1 :M = 0:6; xA = 0:5; xB = 0:3125

Case 2 :M = 1:0; xA = 0:4; xB = 0:2

Step 4: Candidate controlled variables The follow-
ing candidates for the controlled variable c have been
suggested

c1 = M ; c2 =
M

F
; c3 = xA; c4 = x4; c5 = xC ; c6 =

xB
xA

plus the following two property variables

c7 = �1 = 10xA + 20xB + 30xC

c8 = �2 = 10xA + 30xB + 20xC

which may represent a boiling temperature, a viscoc-
ity, a refraction index or similar.

Which controlled variable is preferred? It seems clear
that it will be better to keep M=F rather than M con-
stant, because the optimal residence timeM=F is inde-
pendent of the feed rate, whereas the optimal value of
the holdupM clearly depends on the feedrate. It is also
rather obvious that a policy based on keeping xB con-
stant is most likely to fail, because xB goes through a
maximum as we increase M , and if we specify a value
of xB above this maximum, then operation is infeasi-
ble. However, otherwise it is not at all clear, even in
this simple case, what the best choice of the controlled
variable is.

Step 5: Disturbances To answer the question in a
quantitative manner we need to specify the distur-
bances (errors). We will consider disturbance in feed
rate, feed composition and in the rate constants. In ad-
dition, we have an implementation error for the con-
trolled variable; e.g., due to measurement error, for
which we use the following values

� M : 10%
� M=F : 20%
� xA, xB and xC : 5%
� xA=xB: 10%
� �1 and �2: 1 unit (about 5%)

Step 6: Evaluation of loss To compare the alterna-
tives we compute the loss

L = J � Jopt = 100(xB;opt � xB)

with each of the candidate variables kept constant at its
nominal optimal value.

The results for case 1 with no C in feed are given in
Table 1 for the 8 candidate variables and the 6 distur-
bances. The loss is quite small in most cases, but in
some cases there is no feasible solution (marked as inf:
in the table). As expected, this is the case if we specify
xB = c4s = 0:3125 higher than its maximum value.
But note that infeasibility may occur for most choices
of controlled variables if the disturbance is sufficiently
large. For example, if we specify xA = c3s = 0:5 then
we would obviously get infeasibility with zA < 0:5.
Note that there is usually no “warning”, in terms of a
large value of the loss, as we approach infeasibility.

We find that variable c3 = xA is the ideal variable
to keep constant when there are disturbances in zA (it
can be proven analytically that the optimal value for
xA is 0.5 irrespective of the value of zA), and keep-
ing xA constant also yields a small loss when there
are other disturbances. Consequently, as seen from the
table, the smallest average loss (0.18) is obtained by
keeping c3 = xA constant. Keeping c6 = �1 constant
also gives a very small average loss (0.20). Except for
the choices c4 = xB and c6 = xB=xA, for which
we get infeasibility, the worst average loss (0.89) is
obtained when we keep the holdup c1 = M constant.
This value is reduced to 0.81 if we include “feedfor-
ward” action from the feedrate F and keep the resi-
dence time c2 = M=F constant, but the improvement
is so small that we would probably not include it in this
case.

With the numbers given above, the implementation er-
ror is not very important. However, in many cases it
may be a critical factor which eliminates an otherwise
good candidate controlled variable. Assume for exam-
ple, that the property variable �1 was a temperature
measurement and that the expected implementation er-
ror was 10 units rather than 1 unit used above (e.g.,
1 unit could represent 0.1 K). In this case the loss for
case d6 with implementation error (where we specified



�1 at 26.875 rather than at its optimal value of 16.875)
would be 20.0 and the average loss for �1 would be
3.49 rather than 0.20.

Consider next the evaluation of the loss for case 2
where the feed contains component C rather than com-
ponent B. Otherwise all the data is the same. Variable
c5 = xB=xA here replaces c3 = xA as the ideal
variable with respect to disturbances in zA (this can
be proven analytically), but keeping c5 constant is not
good when there are disturbances in the rate constants.
Therefore, the average loss for c5 is high as 0.74. In
this case loss is smallest (0.10) when c2 = M=F is
kept constant; it is 0.52 with c3 = xA constant, and it
is 0.82 with c6 = �1 constant. Thus we find, somewhat
surprisingly, that the ranking is almost reversed in case
2 compared to case 1.

Step 7: Candidates for self-optimizing control If
we assume that the requirement for acceptable oper-
ation (self-optimizing control) is that the mean loss
is less than 0.5, then none of the proposed controlled
variables are acceptable if this needs to be satified both
for case 1 and case 2. On the other hand, c3 = xA,
c5 = xC and c7 = �1 are acceptable if we consider
only case 1 (no C in feed), whereas c1 = M and c2 =
M=F are acceptable if we consider only case 2 (no B
in feed); at least if we evaluate the loss by considering
one disturbance at a time.

It is not easy to explain why these particular variables
are preferred in the two cases.

5. CONCLUSION

In this paper we have presented a procedure for se-
lecting controlled variables c based on evaluating with
constant setpoints cs the loss L = J � Jopt for possi-
ble disturbances. If the loss is acceptable then we have
“self-optimizing” control.

The procedure requires a process model and a clear
definition of the cost function J to be minimized dur-
ing operation. However, there usually exists very many
possible control structures and going through all of

Loss for Loss for Loss for Loss for Loss for Loss for Loss for Loss for

Disturbance xB;opt M = c1s
M
F

= c2s xA = c3s xB = c4s xC = c5s
xB
xA

= c6s �1 = c7s �2 = c8s

= 0:6 = 0:6 = 0:5 = 0:3125 = 0:1875 = 0:625 = 16:875 = 18:125

Nominal 0:3125 0 0 0 0 0 0 0 0

d1 : F = 0:7 0:3125 0:60 0 0 0 0 0 0 0

d2 : zA = 0:6 0:4167 2:60 2:60 0 inf: 1:37 inf: 0:42 1:37

d3 : zA = 1:0 0:2500 1:56 1:56 0 inf: 0:45 1:56 0:10 0:45

d4 : kA = 1:5 0:3624 0:05 0:05 0:52 4:99 0:02 1:75 0:19 1:32

d5 : kB = 1:5 0:2679 0:47 0:47 0:47 inf: 0:05 4:06 0:20 1:68

d6 : impl: error 0:3125 0:04 0:15 0:08 inf: 0:01 0:31 0:29 1:72

Average loss 0:89 0:81 0:18 inf: 0:32 inf: 0:20 1:09

Ranking 6 4 1 8 3 8 2 5

Table 1. Loss for reactor case study; case 1

these using the procedure can be tedious. For a simpler
analysis, it should be noted a good candidate for a con-
trolled variable c should have the followingproperties:

Property 1. Its optimal value is insensitive to distur-
bances

Property 2. It is easy to control accurately
Property 3. Its value is sensitive to changes in the

manipulated variables
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