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Abstract: The following important question is frequenctly overlooked: Which variables
should we select to control? It is shown that the idea of selecting the variables that achieve
“self-optimizing control” providesalink between steady-state optimization, feedback control,

time scale separation and uncertainty.
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1. INTRODUCTION

If we consider the control system in a highly auto-
mated chemical plant, then we find that it is structured
hierarchialy into severd layers, each operating on a
different time scale. Typically, layers include include
scheduling (weeks), site-wide optimization (day), lo-
cal optimization (hour), supervisory/predictivecontrol
(minutes) and regulatory control (seconds); see Figure
1.

The layers are interconnected through the controlled
variables. More precicely, the controlled variables ¢
are the (internal) variables that link two layers in a
control hiearchy, whereby the upper layer computes
the setpoint ¢, to beimplemented by the lower |ayer.

Which shouldtheseinternal variablesbe? That is, what
should we control? Or to phrase the question in an-
other way: Why do we in a chemical plant select to
control alot of internal variables (e.g. compositions,
pressures, temperatures, etc.) for which there are noe
explicit control requirements?

To be more specific, consider adistillation column in-
side alarge chemical plant. By “inside’” we mean that
the column is not producing any final products. Thus
thereare no excplicit requirementson the product puri-
ties; rather their (optimal) values are determined by the
overall plant economics. Still, we find in many practi-

cal cases that we select to control at least one of the
product purities at a given setpoint. Why do we keep
this composition constant rather than keeping a flow
constant?

The method presented in this paper follows the ideas
of Morari et al. (1980) and is very simple. The basis
is to define mathematically the quality of operationin
terms of a scalar cost function J to be minimized. To
achieve truly optimal operation we would need a per-
fect model, wewould need to measureal| disturbances,
and we would need to solve the resulting dynamic op-
timization problem on-line. Thisisunrealistic in most
cases, and the questioniisif it ispossibleto find asim-
pler implementation which still operates satisfactorily
(with an acceptable | 0ss).

The simplest would be if we could obtain acceptable
operation with constant val ues (setpoints) for the con-
trolled variables, thus effectively turning the complex
optimization probleminto asimplefeedback problem,
and thus achieve “ self-optimizing control” .

Self-optimizing control is when we can
achieve an acceptable loss with constant
setpoint values ¢, for the controlled vari-
ables

(The reader is probably familiar with the term self-
regulation, which is when acceptable dynamic control



Scheduling
(weeks)

Y

Site-wide optimization
(day)

Y\ |
|
Local optimization

(hour)

Y|

Supervisory
control
(minutes)

Control
layer

Regulatory
control
(seconds)

Fig. 1. Typica control hierarchy in achemical plant.

performance can be obtained with constant manipu-
lated inputs.Self-optimizing control is a direct gener-
alization to the case where we can achieve acceptable
(economic) performance with constant controlled vari-
ables)

Inspired by the work of Findeisen (e.g. see Findeisen
et al. (1980)), Morari et al. (1980) gaveaclear descrip-
tion of what we here denote sel f-optimizing control, in-
cluding a procedure for selecting controlled variables
based on evauating the loss. However, it seems that
nobody, including the authors themselves, has picked
up on the idea. One reason was probably that no good
example was given in the paper.

More generally, the issue of selecting controlled vari-
ables is one of the subtasks in the control structure
design problem (Foss, 1973); (Morari, 1982); (Skogestad
and Postlethwaite, 1996)

(1) Seectionof controlled variablesc (variableswith
setpoints C's)

(2) Selection of manipulated variables

(3) Selection of measurements(for control purposes
including stabilization)

(4) Selection of a control configuration (structure of
the controller that interconnects measurements &
setpoints and manipul ated variabl es)

(5) Sdlection of controller type (control law specifi-
cation, e.g., PID, decoupler, LQG, etc.).

Note that these structural decisions need to be made
before we can start the actual design the controller. In
most cases the control structure is designed by a mix-
ture between a top-down consideration of control ob-
jectives and which degrees of freedom are availableto
meet these (tasks 1 and 2), combined with a bottom-up
design of thecontrol system, startingwiththe stabiliza-
tion of the process (tasks 3,4 and 5). In most practical
cases the problemis solved without the use of any the-
oretical tools.

The main objective of this paper is to demonstrate,
with a few examples, that the issue of selecting con-
trolled variables (task 1) isvery important and that the
concept of self-optimizing control provides a useful
tool.

2. OPTIMIZATION AND CONTROL
2.1 The optimization problem

The optimizing control problem can be formulated as

H}}n J(u,d) Q)

subject to theinequality constraints
g(u,d) <0 )

where u are the V,, independent variables we can af-
fect (degrees of freedom) and d are independent vari-
ables we can not affect (disturbances). Here the con-
straintsfor instance may be

e product specifications (e.g. zp > 0.95)
e manipulated variable saturations (e.g. 0 < V' <

Vmax)
o other operational limitation (e.g. avoid flooding)

Theanaysisinthispaper isbased on steady-state mod-
elsand use of constant setpointsc; at each steady-state
(operating point). To analyze the effect of disturbances
we may time-average various steady-states. The main
justification for using a steady-state anaysis is that
the economic performance is primarily determined by
steady-state considerations.

If we formulate the optimizing control problem in the
usual mathematical fashionasgivenin (1), thenwewe
find that a centralized solution is the optimal choice.
Here thereisone“big” controller, which based on al
available measurements and other given information
(including amodel of the system and expected uncer-
tainty), computestheoptimal valuesof al manipul ated
variables. Nevertheless, in practice we almost aways
decomposethe control systeminto many separate parts
and layers. In the simplest case we may have two lay-
ers.

o A steady-stateoptimizationlayer which computes
the optimal setpoints ¢, for the controlled vari-
ables, and



o A feedback control layer which implements the
setpoints, to get ¢ &2 c;.

2.2 Introductory example: Distillation

With a given feed stream and a specified pressure, a
conventional two-product distillation column has two
degrees of freedom at steady state (N, = 2). (From
a control point of view the column has 5 degrees of
freedom, but two degrees of freedom are needed to
control the reboiler and condenser holdupswhich have
no steady-state effect, and one degree of freedom is
used to control thepressure at itsgiven value). Thetwo
remining degrees of freedom, e.g. selected to be the
reflux flow L and the ditillate flow D, may be used
to optimize the operation of the plant. However the
questionis: Which two variables ¢ should be specified
during operation?

Let us assume that the distillate product must contain
at least 95% light component, xp > «p min = 0.95,
and that to avoid flooding the capacity of the column
is limited by a maximum alowed vapor load, V' <
Vmax .

Consider first a case where the distillate is the val-
ueable product and energy costs are low. In this case
it is optimal to operate the column at maximum load
(Gordon, 1986) (to reduce loss of light component in
the bottom) and with the distillate composition at its
specification (to maximize distillateflow), i.e.

Vopt = Vmax; LD opt = LD min = 0.95

Thus, the optimum lies at constraintsand implementa-
tionis obvious. We should select the vapor rate V' and
the digtillate composition xzp as the controlled vari-

ables,
[ ! ]
c =
D

In practice, we implement this using a lower-level
feedback control system where we

o adjusttheboilup V' to keep the pressure drop over
the column, an indicator of flooding, below acer-
tain limit

o adjust reflux L (or some other flow depending
on how the level and pressure control system is
configured) so that « p is kept constant

Next, consider a case where energy costs are rela
tively high, and wherethe bottomsproductsisthemore
valueable. In this case the optimum may be uncon-

strained, and assume for the discussion that
Zp opt = 0.973 > xpmin; Ve = 0.76Vi0ar

Implementation in this case is not obvious. Some can-
didate sets of controlled variables are

rp j_‘top rp
c1 = B y C2 = Toim ; 3 = %

o= [t] - (1]

and there are many others. Controlled variables ¢; and
c2 Will yield a “two-point” control system where we
close two loops for quaity control; ¢3 yields a “one-
point” control system where only one quality loop
is closed; wheras ¢4 and ¢5 are “open-loop” policies
which requireno additional feedback oops (except for
thelevel and pressureloopsalready mentioned). All of
these choices of controlled variables will have differ-
ent self-optimizing control properties, as we will see
from the case study below.

3. SELECTION OF CONTROLLED VARIABLES

In this section we present our procedureFor a given
disturbance d we can solve the optimization problem

ming J(u, d) = J(uepe(d), d) = Jope(d)

and obtainthe optimal valueu,: (d). Fromthiswecan
obtain a table with the corresponding optimal val ue of
any other dependent variable, including ¢, (d).

In actual operationwe adjust « to keep ¢ approximatelt
at itsnominaly optomal vaue, i.e.

Cs = uopt(dO) (3)

where d is the nominal disturbance. The difference
between the actual « and the optimal wp:(d) results
isaloss L. between the actual operating costs and the
optimal operating cost,

L(u,d) = J(u,d) — J(uope (d), d) (4

Comparedtothecost ./, theloss L hasthe advantage of
providing a better “absolute scale” on which to judge
whether a given set of controlled variables ¢ is “good
enough”, and thusis self-optimizing.

We next present two approaches for selecting con-
trolled variables ¢ for usein a closed-loop policy (but
notethat we can actually obtainthe* open-loop” policy
as a special case by sdlecting ¢ = wu). Approach 1
yieldsmost insight, but is not actually used any further
inthe paper. Instead we use Approach 2 whichisbased
on directly evauating the loss.

3.1 Approach 1: Evaluating the error

Consider an closed-loop implementation where we at-
tempt to keep ¢ constant at the value ¢, With thisim-
plementation the operation may be non-optimal (with
a positiveloss) due to the presence of a setpoint error
and an implementation error.

(1) The setpoint efror e.; = ¢, — cope(d) iSthe
difference between the setpoint value and truly
optimal value



(2) Theimplementation error d. = ¢ — ¢, isthedif-
ference between the actual valueand the setpoint.

The overall efror e. = ¢ — ¢qpe(d), the difference
between the actua value and the optimal value (which
causes a positiveloss), isthe sum of the two,

€e = €es T dc (5)

To compare various choicesof controlledvariables, we
need to consider what effect a nonzero error e, hason
theerror inthe“original” (base set) degrees of freedom
u, i.e. what effect e, hason e, = u — u,p¢. Clearly,
wewould likethat alarge value of e, resultsinonly a
small valueof ¢, that is, wewant « to beinsensitiveto
changesin ¢ (or equivaently, wewant ¢ to be sensitive
to changesin u).

In summary, agood candidate for acontrolled variable
¢ has the following properties:

Property 1. Itsoptimal vaue isinsensitiveto distur-
bances (so that the setpoint error e.; = ¢; — copt (d)
issmal)

Property 2. Itiseasy tocontrol accurately (sothat the
implementation error d. issmall)

Property 3. Its value is sensitive to changes in the
manipulated variables u (so that even alargeerror in
the controlled variablec resultsinonly asmall error
inuw).

3.2 Approach 2: Evaluating the loss

To compare dternative choicesfor citisprobably sim-
plest to directly evaluate the cost function (or equiver
lently the lossfunction) for expected values of the dis-
turbance d and the implementation error d.. The opti-
mal choicefor of controlled variables ¢ isthen the one
that with constant valuesof ¢ (moreprecicaly, ¢ = ¢+
d.) minimizes some average value of theloss /. for the
expected set of disturbances d € D, and expected set
of implementation (control) errorsd. € D..

3.3 Procedure for selecting controlled variables

Based on approach 2 we are now in a position to for-
mulate aprocedurefor selecting controlled variablesc.

Step 1: Degree of freedom analysis. Determine the
number of degrees of freedom (N,) available for
optimization, and identify a base set () for the de-
grees of freedom.

Step 2: Cost function. Define the optimal operation
problem by formulating a scalar cost function J to
be minimized for optimal operation.

Step 3: Optimization. First solve the nomina opti-
mization problem with disturbances d,. In addi-
tion, after having specified the disturbance set in
step 5, we usually solve the optimization problem
for the disturbances d in question. This is needed

to check whether there exists a feasible solution
uopt (d) for al disturbances d, and to find the op-
timal cost .J(uop:, d) needed if we want to evalu-
ate the loss. In addition, we could try to identify
controlled variables by looking for variables which
optimal value is only weakly dependent of distur-
bances (Fisher et al. (1988) p. 163; also recall prop-
erty 1 presented above).

Step 4: Candidatecontrolled variables. At thisstage
we may identify candidate controlled variables. Typ-
ically, these are measured variables or simple com-
binations thereof. Insight and experience may be
helpful at thisstage, because the possible number of
combinations may be extremely large.

Step 5: Disturbances. Identify themost important dis-
turbances (uncertainty). These may be caused by

o Errorsintheassumed (nomina) model (includ-

ingtheeffect of incorrect nominal valuesfor the
disturbances used in the optimization)

o Disturbancesd—d, (including parameter changes)

occuring after the optimization

o Implementation errors (d.) for the controlled

variables (e.g. due to measurement error)

It may be important to include model uncertainty
since, as pointed out by Shinnar (1981), some con-
trol structures are very sensitive to model uncer-
tainty whereas others are not.

Step 6: Evaluation of loss. We compute the mean
value of the loss for alternative sets of controlled
variables c. Thisisdone by evaluating the loss

L(u,d) = J(u, d) — J(uope(d),d)  (6)

u=f""(cs + de, d)
with fixed setpoints ¢, for the defined set of dis
turbances d and implementation errors d.. We here
select the setpoints as the nominal optimal values,
¢s = Copt(dp).

Step 7: Further analysis. We select for further con-
Sideration the sets of controlled variables with ac-
ceptable loss (and which thus yield self-optimizing
control). These could then be analyzed to seeif they
are adequate with respect to other criteria that may
be relevant, such like the region of feasibility and
the expected dynamic control performance (input-
output controllability)

4. REACTOR CASE STUDY

We consider acontinoudly stirred tank reactor (CSTR)
where two irreversible first-order reactions take place

A — B;
B —=C; rp=kprp[s™!]
Let z; and z; denote mole fractions of component ¢ in
the feed and reactor, respectively, and let ' [mol/s] be
thefeed rateand M [mol] thereactor holdup. Thereare

only three components, A, B and C, and steady-state
materia balances yield

ZAF—l‘AF—k’Al‘AM:O

r4 = k’Al‘A[S_l]



2l —xplF +kgxaM —kpegM =0
rc=1—x4 —2xp
We consider following nomina data:
24 =08 ks =15t kp=1s"1; F = Imol/s
and two cases

Casel NoCinfeed (z5 = 1 — 24).
Case2 NoBinfeed (zc = 1 — z4).

Step 1: Degree of freedom analysis With a given
feed the reactor has one degree of freedom at steady-
state, which may be selected as the reactor holdup, i.e
u = M [mol]. The value of M should be adjusted to
optimize the operation.

Step 2: Cost function In this example component B
isthe desired product and the objectiveisto maximize
the concentration of B, i.e. we choose thecost function

J=-100-zp

(in most cases we would recycle unreacted A, but this
is not the case in thisexample).

Step 3: Optimization The optima holdup and cor-
responding optima compositionsfor the two nomina
Cases are;

Casel: M =0.6; 24 = 0.5,z =0.3125
Case2: M =1.0; 24 =04, 25 =0.2

Step 4: Candidate controlled variables Thefollow-
ing candidates for the controlled variable ¢ have been
suggested

B
Cle;sz7;03:9&4;64:9@4;6521‘0;66:—96
A

plus the following two property variables
ey =01 =10x4 +20xp + 30z¢

cg =0y =10x4 + 30xp + 202¢

which may represent a boiling temperature, a viscoc-
ity, arefraction index or similar.

Which controlled variableis preferred? It seems clear
that it will be better to keep A/ F rather than M con-
stant, because the optimal residencetime A/ F' isinde-
pendent of the feed rate, whereas the optimal value of
theholdup M clearly dependsonthefeedrate. Itisalso
rather obviousthat a policy based on keeping « 5 con-
stant is most likely to fail, because = goes through a
maximum asweincrease M, and if we specify avalue
of z g above this maximum, then operation isinfeasi-
ble. However, otherwise it isnot at al clear, even in
thissimple case, what the best choice of the controlled
variableis.

Step 5: Disturbances To answer the question in a
guantitative manner we need to specify the distur-
bances (errors). We will consider disturbance in feed
rate, feed composition and in the rate constants. In ad-
dition, we have an implementation error for the con-
trolled variable; e.g., due to measurement error, for
which we use the following values

M:10%

M/ F:20%

XA, TB and xe: 5%
l‘A/l‘B: 10%

6, and 6, 1 unit (about 5%)

Step 6: Evaluation of loss To compare the aterna
tives we compute the [oss

L=J- Jopt = IOO(l‘Byopt - l‘B)

with each of the candidate variableskept constant at its
nominal optimal value.

The results for case 1 with no C in feed are given in
Table 1 for the 8 candidate variables and the 6 distur-
bances. The loss is quite small in most cases, but in
some casesthereisno feasible solution (marked asinf.
inthetable). Asexpected, thisisthe caseif we specify
rp = cqs = 0.3125 higher than its maximum value.
But note that infeasibility may occur for most choices
of controlled variablesif the disturbanceis sufficiently
large. For example, if we specify x4 = ¢35, = 0.5then
we would obvioudy get infeasibility with z4 < 0.5.
Note that thereis usually no “warning”, in terms of a
large value of the loss, as we approach infeasibility.

We find that variable cs = x4 istheided variable
to keep constant when there are disturbancesin z4 (it
can be proven anayticaly that the optimal value for
x4 i1s 0.5 irrespective of the value of z4), and keep-
ing z4 constant also yields a small loss when there
are other disturbances. Conseguently, as seen from the
table, the smallest average loss (0.18) is obtained by
keeping cs = x4 constant. Keeping ¢ = ¢, constant
also givesavery small average loss (0.20). Except for
the choices ¢4, = xp and ¢cs = xp/x4, for which
we get infeasibility, the worst average loss (0.89) is
obtained when we keep the holdup ¢; = M constant.
This value is reduced to 0.81 if we include “feedfor-
ward” action from the feedrate F' and keep the resi-
dencetimec, = M/ F constant, but the improvement
issosmall that we would probably notincludeitinthis
case.

With the numbers given above, theimplementation er-
ror is not very important. However, in many cases it
may be acritical factor which eliminates an otherwise
good candidate controlled variable. Assume for exam-
ple, that the property variable 6, was a temperature
measurement and that the expected implementation er-
ror was 10 units rather than 1 unit used above (e.g.,
1 unit could represent 0.1 K). In this case the loss for
case ds withimplementation error (wherewe specified



0, at 26.875 rather than at its optimal value of 16.875)
would be 20.0 and the average loss for 4, would be
3.49 rather than 0.20.

Consider next the evaluation of the loss for case 2
where thefeed contains component C rather than com-
ponent B. Otherwise all the dataisthe same. Variable
s = wp/ra herereplaces ¢ = x4 astheided
variable with respect to disturbancesin z4 (this can
be proven analytically), but keeping ¢5 constant is not
good when there are disturbancesin therate constants.
Therefore, the average loss for ¢5 is high as 0.74. In
this case loss is smallest (0.10) when ¢, = M/F' is
kept constant; it is0.52 with 3 = x4 constant, and it
is0.82with¢g = 6, constant. Thuswefind, somewhat
surprisingly, that theranking isalmost reversed in case
2 compared to case 1.

Step 7: Candidates for self-optimizing control If
we assume that the requirement for acceptable oper-
ation (self-optimizing control) is that the mean loss
is less than 0.5, then none of the proposed controlled
variablesare acceptableif thisneedsto be satified both
for case 1 and case 2. On the other hand, ¢35 = x4,
es = x¢ and c; = 0 are acceptable if we consider
only case 1 (no Cin feed), whereasc¢; = M and ¢5 =
M/ F are acceptable if we consider only case 2 (no B
infeed); at least if we evaluate the loss by considering
onedisturbance at atime.

It isnot easy to explain why these particular variables
are preferred in the two cases.

5. CONCLUSION

In this paper we have presented a procedure for se-
lecting controlled variables ¢ based on eval uating with
constant setpointsc, theloss L = J — J,,, for possi-
ble disturbances. If thelossisacceptable then we have
“self-optimizing” control.

The procedure requires a process model and a clear
definition of the cost function JJ to be minimized dur-
ing operation. However, thereusualy existsvery many
possible control structures and going through all of

Lossfor Lossfor Lossfor
Disturbance zp o M = cis % = C2s T4 = C3s
=0.6 =0.6 =0.5
Nominal 0.3125 0 0 0
dy : F =07 0.3125 0.60 0 0
dy :z4 =06 04167 2.60 2.60 0
ds :zp =1.0 0.2500 1.56 1.56 0
dy :ka =15 0.3624 0.05 0.05 0.52
ds :kp =15 0.2679 0.47 0.47 0.47
dg : impl. error 0.3125 0.04 0.15 0.08
Average loss 0.89 0.81 0.18

Ranking 6 4 1

Table 1. Loss for reactor case study; case 1

these using the procedure can betedious. For asimpler
analysis, it should be noted a good candidate for acon-
trolled variable ¢ should havethefollowing properties:

Property 1. Itsoptimal vaue isinsensitiveto distur-
bances

Property 2. Itiseasy to control accurately

Property 3. Its vaue is sensitive to changes in the
manipul ated variables
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