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1 Introduction

The purpose of this paper is to demonstrate, by way of an example, how the structured
singular value (SSV, �) framework, Doyle [4], may be used to design a robust controller for
a given control problem. The problem involves an uncertain system and control objectives
that cannot be directly incorporated into the �-framework. In particular, we consider how
to approximate the given problem as a �-problem by deriving suitable frequency dependent
weights. These de�ne the model uncertainty and control objectives in the �-framework.

The control problem studied in this paper was introduced by Limebeer [9] as a benchmark
problem at the 1991 CDC, where it formed the basis for a design case study aimed at
investigating the advantages and disadvantages of various controller design methods for ill-
conditioned systems.

The problem originates from Skogestad et al. [18] where a simple model of a high pu-
rity distillation column was used to demonstrate that ill-conditioned plants are potentially
extremely sensitive to model uncertainty. In [18] uncertainty and performance speci�ca-
tions were given as frequency dependent weights, i.e. the problem was de�ned to suit the
�-framework and therefore a �-optimal controller yields the optimal solution to that problem.

However, in the CDC benchmark problem [9] uncertainty is de�ned in terms of parametric
gain and delay uncertainty and the control objectives are a mixture of time domain and
frequency domain speci�cations. These speci�cations cannot be directly transformed into
frequency dependent weights, but have to be approximated to �t into the �-framework.

The distillation problem in [18] and variants of this problem, like the CDC problem [9],
has been studied by several authors, e.g Freudenberg [6], Yaniv and Barlev [22], Lundstr�om
et al. [11], Hoyle et al. [7], Postlethwaite et al. [15], Yaniv and Horowitz [23] and Zhou
and Kimura [25]. In three recent studies; Limebeer et al. [10], van Diggelen and Glover
[3] and Whidborne et al. [21], two degree of freedom controllers are designed for the CDC
problem. The three latter papers are all based on the loop shaping design procedure of
McFarlane and Glover [14], where uncertainties are modeled as H1-bounded perturbations
in the normalized coprime factors of the plant. To obtain the desired performance, [10] use a
reference model design approach, [3] use the Hadamard weighted H1-Frobenius formulation
from [2], while [21] use the method of inequalities (Zakian and Al-Naib [24]) where the
performance requirements are explicitly expressed as a set of algebraic inequalities.

The two degree of freedom design in this paper di�ers from [10], [3] and [21] in that we
use �-synthesis for our design. With this method uncertainty is modeled as linear fractional
uncertainty and performance is speci�ed as in a standard H1-control problem. Like [10], we
specify some of the control objectives as a model-matching problem.

The paper is organized as follows: A brief introduction to the �-framework is presented
in Section 2. The benchmark problem is de�ned in Section 3. In Section 4 we outline the
design method used in this paper. In Section 5 we gradually transform (approximate) the
given problem into a �-problem and demonstrate the e�ect of di�erent weight adjustments.
The �nal controller designed in this section demonstrates that the control objectives de�ned
by Limebeer [9] are achievable. Finally the results are discussed and summarized.

All of the results and simulations presented in this paper were computed using the MAT-
LAB \�-Analysis and Synthesis Toolbox" [1].
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2 CDC problem de�nition

The plant model and design speci�cations for the CDC benchmark problem [9] are presented
in this section.

2.1 Plant model

The process to be controlled is a distillation columnwith re
ux 
ow and boilup 
ow as manip-
ulated inputs and product compositions as outputs. The resulting model is ill-conditioned,
as is here given by

Ĝ(s) =
1

75s+ 1

�
0:878 �0:864
1:082 �1:096

� �
k1e

��1s 0
0 k2e

��2s

�
(1)

ki 2 [0:8 1:2] ; �i 2 [0:0 1:0] (2)

In physical terms this is equivalent to a gain uncertainty of �20% and a delay of up to 1
min in each input channel. The set of possible plants de�ned by Eq.1-2 is denoted � in the
sequel.

2.2 Design speci�cations

Speci�cations S1 to S4 should be ful�lled for every plant Ĝ 2 �:

S1 Closed loop stability.

S2 For a unit step demand in channel 1 at t = 0 the plant outputs y1 (tracking) and y2
(interaction) should satisfy:

� y1(t) � 0:9 for all t � 30 min.

� y1(t) � 1:1 for all t

� 0:99 � y1(1) � 1:01

� y2(t) � 0:5 for all t

� �0:01 � y2(1) � 0:01

Corresponding requirements hold for a unit step demand in channel 2.

S3 ��(KyŜ) < 316; 8!. This speci�cation is mainly added to avoid saturation of the plant
inputs.

S4 Alt.1: ��(ĜKy) < 1 for ! � 150

S4 Alt.2: ��(Ky Ŝ) < 1 for ! � 150

Here Ky denotes the feedback part of the controller and Ŝ = (I+ ĜKy)�1 the sensitivity

function for the worst case Ĝ.
Speci�cations S3 and S4 are not explicitly stated in [9], but formulated as \the closed

loop transfer function between output disturbance and plant input [KyŜ] be gain limited to
about 50 dB [� 316 (S3)] and the unity gain cross over frequency of the largest singular value
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Figure 1: Block diagram without weight functions.

should be below 150 rad/min [(S4)]." Di�erent researchers have given the latter speci�cation
di�erent interpretations, e.g. [3] use Alt.1. while [21] use Alt.2. For the purpose of this
paper, this diversity is advantageous, since it gives us the opportunity to start with the
easier alternative (Alt.1) and then show how to re�ne the �-problem to achieve the tougher
requirement (Alt.2).

In practice, speci�cation S4 Alt.1 is implied by S1, so the actual performance require-
ments are S2 and S3 (and S4 Alt.2).

Most of the speci�cations in this paper may be viewed as bounds on transfer functions
from some inputs to some outputs. The notation for these transfer functions is de�ned by
Fig. 1 and the matrices in Eq. 4 - 5. The controller K in Fig. 1 may be a One Degree of
Freedom controller (ODF) or a Two Degree of Freedom controller (TDF). A TDF controller
may be partitioned into two parts

K = [Kr Ky] =

"
AK BKr BKy

CK DKr DKy

#
(3)

where Ky is the feedback part of the controller and Kr is the pre�lter part.
For an ODF controller Kr = Ky, which yields the following transfer functions:2

64
e
y
u

3
75 =

2
64

S T � Tyr;id �T
S T �T

�KyS KyS �KyS

3
75
2
64
d
r
n

3
75 (4)

where S = (I+GKy)�1 is the sensitivity function, T = (I +GKy)�1GKy is the complemen-
tary sensitivity function and Tyr;id is the reference model for the setpoint change. Note that
if Tyr;id = I, then the transfer function from r to e is T � Tyr;id = �S.

For a TDF controller Kr 6= Ky, which yields the following transfer functions:2
64
e
y
u

3
75 =

2
64

S SGKr � Tyr;id �T
S SGKr �T

�KyS (I +KyG)�1Kr �KyS

3
75
2
64
d
r
n

3
75 (5)

In this case, the transfer function from r to e is not equal to �S if Tyr;id = I.

3 The �-framework

This section gives a very brief introduction to �-analysis and synthesis and de�nes some of
the nomenclature used in the rest of the paper. For further details, the interested reader

4



∆

P
K

d e
zv

u y

U
∆U

∆P

M M
MM

11

21 22

12

Figure 2: General problem description

may consult for example [18], [19] and [1].
The H1-norm of a transfer function M(s) is the peak value of the maximum singular

value over all frequencies.
jjM(s)jj1 � sup

!
��(M(j!)) (6)

The left block diagram in Fig.2 shows the general problem formulation in the �-framework.
It consists of an augmented plant P (including a nominal model and weighting functions), a
controller K and a (block-diagonal) perturbation matrix �U = diagf�1; � � � ;�ng represent-
ing the uncertainty.

Uncertainties are modeled by the perturbations (�i's) and uncertainty weights included
in P . These weights are chosen such that k�Uk1 � 1 generates the family of all possible
plants to be considered. In principle �U may contain both real and complex perturbations,
but in this paper only complex perturbations are used.

The performance is speci�ed by weights in P which normalize d and e such that a closed-
loop H1-norm from d to e of less than 1 (for the worst case �U) means that the control
objectives are achieved 1.

The framework in Fig.2 may be used for both one degree of freedom (ODF) and two
degree of freedom (TDF) controller design. In the ODF case the controller input y is the
di�erence between set-points and measured plant outputs, y = r � ym, while in the TDF

case y =
h
rT � yTm

iT
.

The right block diagram in Fig.2 is used for robustness analysis. M is a function of
P and K, and �P (k�Pk1 � 1) is a �ctitious \performance perturbation" connecting e
to d. Provided that the closed loop system is nominally stable the condition for Robust
Performance (RP) is:

RP , �RP = sup
!
��(M(j!)) < 1 (7)

where � = diagf�U ;�Pg.
� is computed frequency-by-frequency through upper and lower bounds. Here we only

consider the upper bound
��(M(j!)) � inf

D2D
��(DMD�1) (8)

1Note that d and e in Fig. 2 are not equivalent to d and e in Fig. 1, but may contain d and e among

other signals.
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where D = fDjD� = �Dg.
At present there is no direct method to synthesize a �-optimal controller, however, �-

synthesis (DK-iteration) which combines �-analysis and H1-synthesis often yields good re-
sults. This iterative procedure was �rst proposed in [5] and [16]. The idea is to attempt to
solve

min
K

inf
D2D

sup
!

��(DMD�1) (9)

(whereM is a function of K) by alternating between minimizing sup! ��(DMD�1) for either
K or D while holding the other �xed. The iteration steps are:

DK1 Scale the interconnection matrixM with a stable and minimumphase rational transfer
matrix D(s) with appropriate structure (an identity matrix with right dimensions is a
common initial choice).

DK2 Synthesize an H1-controller for the scaled problem, minK sup! ��(DMD�1).

DK3 Stop iterating if the performance is satisfactory or if the H1-norm does not decrease,
else continue.

DK4 Compute the upper bound on � (Eq.8) to obtain new D-scales as a function of fre-
quency D(j!).

DK5 Fit the magnitude of each element of D(j!) to a stable and minimum phase rational
transfer function and go to DK1.

Each of the minimizations (steps DK2 and DK4) are convex, but joint convexity is not
guaranteed.

The H1-controller synthesized in step DK2 has the same number of states as the aug-
mented plant P plus twice the number of states of D, hence it is desirable to keep the order
of P and the D-scales as low as possible whilst satisfying the controller speci�cation criteria.

4 Design procedure

The CDC speci�cations in Section 2 cannot be directly applied in the �-framework. The
reasons for this are: 1) The gain-delay uncertainty in Eq. 1-2 has to be approximated into
linear fractional uncertainty (Fig.2); 2) Speci�cation S2 needs to be approximated since it
is de�ned in the time domain; 3) In the �-framework, it is not possible to directly bound the
four SISO transfer functions associated with S2 and the 2 � 2 transfer function associated
with S3 (and S4 Alt.2). Instead these control objectives must be re
ected in the H1-norm
of the transfer function from d to e (Fig.2).

The following approach makes it possible to apply �-synthesis to this kind of problem:

1 Approximate the given problem into a �-problem.

2 Synthesize a robust controller for the �-problem.

3 Verify that the controller satis�es the original speci�cations (S1-S4) for the original set
of plants (�).
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Step 1 is our major concern in this paper. Several approaches may be used to obtain the
�-problem, however, the following are general guidelines: A) Choose d and e such that all
essential control objectives are re
ected in the H1-norm of the transfer function between
these signals. At the same time keep the dimension of d and e as small as possible. B) Use
low order uncertainty and performance weights to keep the order of P and thereby the order
of the controller low. The complexity and order of these weights may be increased later, if
required. C) Use weighting parameters with physical meaning, since these parameters are
the `tuning knobs' during the design stage. The derivation of such weighting functions for
the CDC problem is treated in detail in the next section.

Step 2 is fairly straightforward using DK-iteration and the available software (e.g. [1]).
Experience with this iterative scheme shows that, for the �rst few iterations, it is best if
the controller synthesized in step DK2 is slightly sub-optimal (H1-norm 5-10% larger than
the optimal) and that the D-scale �t in step DK5 is of low order. In subsequent iterations,
controllers that are close to optimality and higher order D-scales may be used if required.
However, it is also recommended that the �nal controller is slightly sub-optimal since this
yields a blend of H1 and H2 optimality with generally better high frequency roll-o� than
the optimal H1-controller.

Step 3 is, in this paper, performed using time simulations with the four extreme combi-
nations of gain uncertainty (Eq.2) and a 1 min delay (approximated as a second order Pad�e
approximation).

5 Controller design

In this section we design controllers for the benchmark problem, using the design procedure
outlined above. Actually, we start with a controller designed for the \original" problem
de�ned in Skogestad et al. [18] and check the performance of this controller with respect to
the CDC speci�cations de�ned in Section 2. We then gradually re�ne the �-formulation by
adding further input and output signals to d and e and by adjusting the uncertainty and
performance weighting functions.

This gradual approach clearly demonstrates the e�ect of the weighting function re�ne-
ments, and thereby is of tutorial value. Moreover, it is also a good approach for \real"
problems, since one should not put more e�ort into the �-formulation than required, that
is, one should start with a simple problem formulation, and re�ne the problem formulation
if the speci�cations are not met.

5.1 ODF-controller for \original" speci�cations

The \original" problem presented in Skogestad et al. (1988) [18] is de�ned in the frequency
domain in terms of Fig. 3 and the following transfer function matrices.

G(s) =
1

75s+ 1

�
0:878 �0:864
1:082 �1:096

�
(10)

W�(s) =
(s+ 0:2)

(0:5s + 1)
I2�2 (11)

We(s) =
1

2

(20s + 2)

20s
I2�2 (12)
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Figure 3: Original ODF-problem formulation.
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Table 1: Control performance for ODF-original with gain uncertainty and a second order
Pad�e approximation of a 1 min delay. (See also Fig.4)

step gain unc. set-point tracking interaction
ch. k1 k2 t = 30 max t = 100 max t = 100
1 1.2 1.2 0.989 1.008 1.000 0.856 0.000
1 1.2 0.8 0.934 1.001 1.001 1.047 0.000
1 0.8 1.2 0.941 1.006 1.000 0.427 -0.001
1 0.8 0.8 0.889 1.000 1.000 0.625 0.000
2 1.2 1.2 0.993 1.095 1.000 0.859 0.001
2 1.2 0.8 0.964 1.007 1.000 0.536 -0.001
2 0.8 1.2 0.956 1.198 1.001 0.934 0.000
2 0.8 0.8 0.929 1.000 1.000 0.627 0.000

The performance speci�cation in the original problem is expressed as a bound on the
sensitivity function S. Fig. 6 shows the maximum and minimum singular values of the
sensitivity function for the four extreme combinations of uncertainty. From this plot we see
that the original performance requirement ��(S) < j1=Wej is not satis�ed for ! � 2 rad/min
despite the fact that �RP < 1:0. The explanation is that the uncertainty weight W� only
covers a time delay of about 0.9 min, whereas the actual delay is 1 min.

In conclusion, the one degree-of-freedom controller designed for the \original problem",
almost satis�es the tracking requirements for the CDC-problem, but the closed-loop su�ers
from strong interactions and excessive use of manipulated inputs, in particular at very high
frequencies (! > 10 rad/min). We next see if a two degree-of-freedom (TDF) design can
alleviate these problems.

5.2 TDF-controller for \original" speci�cations

Strictly speaking, the original problem formulation of Skogestad et al. [18] cannot take
advantage of a TDF controller, because the speci�cation is on the sensitivity function S =
(I + GKy)�1, which depends only on the feedback part of the controller, Ky. However, if
instead, we interpret the speci�cation in terms of the transfer function from references r to
errors e, SGKr� I (see Eq. 5, with Tyr;id = I), then robust performance can be improved by
use of a TDF controller. Lundstr�om et al. [11] interpreted the speci�cations in this way and
were able to reduce �RP from 0.978 to 0.926 with a TDF controller. We denote this design
\TDF-original".

Simulations and tabulated data for the TDF-original design are shown in Fig. 7 and Table
2. The setpoint tracking speci�cation is still not quite satis�ed, but the interactions have
almost disappeared compared to the ODF-original response. However, there are unpleasant
high frequency oscillations in all responses. These oscillations also show up as a \ringing
peak" in the closed-loop transfer functions, for example, the peak at approximately 2 rad/min
in Fig. 8. This phenomena could have been eliminated if a better uncertainty weight had
been used, i.e. an uncertainty weight that covers a 1 min delay (rather than only 0.9 min).
More seriously, as illustrated in Fig. 8, speci�cation S3 with respect to input usage is not
satis�ed. The reason is that we have not included in the speci�cations any explicit penalty
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Table 2: Control performance for TDF-original with gain uncertainty and a second order
Pad�e approximation of a 1 min delay. (See also Fig.7)

step gain unc. set-point tracking interaction
ch. k1 k2 t = 30 max t = 100 max t = 100
1 1.2 1.2 0.889 1.008 1.003 0.175 0.004
1 1.2 0.8 0.913 1.000 1.000 0.497 0.000
1 0.8 1.2 0.902 1.000 1.000 0.257 0.000
1 0.8 0.8 0.905 1.000 1.000 0.156 0.000
2 1.2 1.2 0.891 1.014 1.005 0.175 0.004
2 1.2 0.8 0.917 1.000 1.000 0.126 0.000
2 0.8 1.2 0.928 1.000 1.000 0.368 0.000
2 0.8 0.8 0.921 1.000 1.000 0.156 0.000

for input usage.
We conclude that we are not able to meet the CDC-speci�cations by designing a �-

optimal controller using the \original" uncertainty and performance weights. We therefore
need to modify the uncertainty weight, and consider the CDC-speci�cations explicitly, e.g.
by including a weight on KyS to satisfy S3.

5.3 Weight selection for CDC speci�cations

In this section we approximate the CDC speci�cations as frequency dependent weights.

5.3.1 Uncertainty weights

As already noted, the gain-delay uncertainty in Eq.2 is not quite covered by the uncertainty
weight de�ned in Eq.11. A better weight is presented in [13]:

W�(s) =
(1 + kr

2 )�maxs+ kr
�max
2 s+ 1

I2�2 =
1:1s + 0:2

0:5s + 1
I2�2 (17)

where kr = 0:2 is the relative gain uncertainty and �max = 1 is the maximum delay. This
weight has the same low order as that of Eq. 11 and it almost covers the gain and delay uncer-
tainty. A slight modi�cation to Eq.17 yields a weight that completely covers the uncertainty
([13]), but is of higher order:

W�(s) =
1:1s+ 0:2

0:5s + 1
�
�

s

2:363

�2
+ 2 � 0:838 s

2:363 + 1�
s

2:363

�2
+ 2 � 0:685 s

2:363 + 1
I2�2 (18)

It is often fruitful to start with the simpler weight (Eq. 17) and if the performance
veri�cation (step 3 of the design procedure in Section 4) shows that this uncertainty model
does not yield a robust controller for the set of plants �, then the more rigorous uncertainty
model (Eq. 18) should be used. This is the approach taken here.
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5.3.2 ODF performance weights

A simple way to approximate the performance speci�cations S2 and S3 into a �-problem is
shown in Fig.9, where Ky is an ODF-controller.

Here, the weight WS2 on the sensitivity function represents speci�cation S2 and weight
WS3 represents speci�cation S3. A reasonable choice for WS2 is the following which is taken
from the original formulation.

WS2(s) =
1

MS

�cls+MS

�cls+A
I2�2: (19)

For jjWS2Ŝjj1 < 1 this weight yields: 1) Steady-state error less than A; 2) Closed-loop band-
width higher than !B = 1=�cl; and 3) Ampli�cation of high-frequency output disturbances
less than a factor MS . The values used in [18] were Ms = 2, A = 0 and �cl = 20.

To satisfy speci�cation S3 (kKyŜk1 < 316), we choose the weight

WS3 =
1

MKS

I2�2 (20)

As a starting point we may choose MKS = 316; the value given in S3. However, in practice
this value will be too low (too tight). The reason for this is discussed in Section 5.4.

In accordance with the results in Section 5.1, we found that a ODF-controller did not
yield the required performance; thus in the following we focus on the TDF-design.

5.3.3 TDF performance weights

For the TDF-design we use the block diagram in Fig.10. The objective for the �-synthesis is
to minimize the worst-case weighted transfer function from references r and noise n to control
error e and input signals u (the hats used in the �gure indicate that the signals have been
weighted). Note that the noise signal n and input signal u were not included in our �-optimal
design for the original problem, but these are needed to satisfy the CDC-speci�cations.

Figure 10 gives �
ê
û

�
=
�
WeN11Wr �WeN12Wn

WuN21Wr �WuN22Wn

� �
r̂
n̂

�
(21)

Here
N11 = Tyr � Tyr;id = SGKr � Tyr;id; N12 = GKyS = T

N21 = (I +KyG)
�1Kr; N22 = (I +KyG)

�1Ky = KyS

where S = (I+GKy)�1. (Strictly speaking G and S should have a subscript p to denote the
perturbed plant, Gp = G(I + �UWU), but this has been omitted to simplify the notation.)
We now need to select the four performance weights, We;Wr;Wn;Wu and the ideal tracking
response Tyr;id.

The set-point tracking should ideally be decoupled and the response and overshoot re-
quirements are the same for both channels. To keep the order of Tyr;id small, while at the
same time have the freedom to allow for some overshoot in the ideal response, we use a
second order reference model in each channel

Tyr;id =
1

� 2ids
2 + 2�id�ids+ 1

I2�2 (22)
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For simplicity, we use scalar times identity weights for the four weights, that is, Wi =
wiI2�2. To determine the weights we should �rst consider the resulting bounds on the four
closed-loop transfer functions N11, N12, N21 and N22. We note that WeWr forms a bound on
N11, which is closely related to speci�cation S2. Furthermore,WuWn forms a bound on N22,
which is directly related to speci�cations S3 (and to speci�cation S4, alt.2). The following
should be considered when selecting the four weights.

1. Since the weights are scalar, we may choose one of them freely. Thus we choose
Wr = I at all frequencies.

2. In order to penalize the di�erence between the actual and ideal tracking the combined
weight WeWr may be chosen similar to WS2(s) in Eq. 19, i.e, we choose We = WS2.

3. Speci�cation S3 limits the peak value of KyS, which is the transfer function from
output disturbances (noise) to inputs. In practice, the peak occurs at higher frequencies
just beyond the closed-loop bandwidth. Thus, we must make sure that WuWn = 1=MKS at
frequencies where KyS has its peak. For simplicity, we select Wu = 1=MKS (a constant). It
then follows that Wn should approach 1 at high frequencies, and one should make sure that
it reaches this value around the bandwidth (which is approximately equal to 1=�cl with the
selected weight for We).

4. The inverse of WeWn forms an upper bound on N12 = T , the complementary sensi-
tivity. Since We is large at low frequency, its inverse is small at these frequencies. However,
the magnitude of T is greater or equal to 1 at low frequency, so it follows that Wn must be
small at low frequencies. To be speci�c, let MT denote the maximum value of T (i.e, the
in�nity norm of T ) at low frequencies, then Wn should be selected such that WeWn = 1=MT

at low frequencies. (Note that simply selecting Wn(s) = (MTWe(s))�1 may not satisfy the
above requirement that Wn should approach 1 at high frequencies.)

5. Note that WuWr = Wu = 1=MKS forms a bound on N21 = (I +KyS)�1Kr which is
the transfer function from references to inputs. Although, there is no speci�cation on this
transfer function, is seems reasonable that it should be limited in a way similar to KyS.

The following weights satisfy the above requirements:

Wr(s) = I2�2 (23)

We(s) =
1

MS

�cls+MS

�cls+A
I2�2 (24)

Wu(s) =
1

MKS

I2�2 (25)

Wn(s) =
�cls+A

�cls+MT

I2�2 (26)

For the input uncertainty we use the weight in Eq.17 for design TDF-Alt.1 and the slightly
tighter weight in Eq.18 for design TDF-Alt.2. Note that the perturbation matrix �U in
Eq. 13 is diagonal. However, to simplify the numerical calculations we use an unstructured
perturbation matrix �U which yields a very simple D-scale for the �-synthesis, D(s) =
diagfd(s); d(s); I4�4g. In any case, for this particular plant it seems that the structure of
the input uncertainty does not matter. Initially d(s) is set to 0.01, obtained from a natural
physical scaling (`logarithmic compositions' [17]). This simple scaling substantially reduces
the number of iterations required to obtain `good' D-scales.
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Table 3: Final weight parameters and D-scales for design TDF-Alt.1

Weight parameters
�id �id �cl A MS MT MKS

8.0 0.71 9.5 10�4 3.5 2.0 630

D(s) = diagfd(s); d(s); I4�4g

d(s) = 0:00299
(s+ 5:70)

(s + 0:0144)

(s2 + 2 � 0:6645 � 0:112s + 0:1122)

(s2 + 2 � 0:622 � 0:568s + 0:5682)

5.4 TDF-controller for CDC speci�cations; Alt.1

In this section we synthesize a TDF controller for CDC speci�cations S1, S2, S3 and S4,
Alt.1, by adjusting the parameters in the above weights. Since all of the parameters have
physical signi�cance it is easy to �nd reasonable values, and almost all of them were deter-
mined directly from the original speci�cations in Section 2. Based on these speci�cations we
may as a starting point choose A = 0:01, �cl = 20, MS = 2 and MKS = 316; the value given
in S3. However, it is likeley that these values for MS and MKS are too small. The reason
is that the formulation in Fig. 10 lumps the four SISO requirements of S2 and the 2 � 2
requirement of S3 into a bound on the entire 4 � 4 transfer function given in Eq.21. From
relations of the kind

maxf��(A); ��(B)g � ��([A B]T ) �
p
2maxf��(A); ��(B)g (27)

it is clear that the physical interpretation of the weights results in performance requirements
that are slightly too tight.

Based on this, the initial weight parameters were chosen to: 1) Yield an ideal response
which satis�es S2 with some margin without too large an overshoot (�id = 8; �id = 0:71); 2)
Require a close �t to the ideal response at low frequencies (A = 10�4) and a looser �t at
high frequencies (�cl = 10;MS = 3); 3) Yield a loose requirement on KySp to be tightened if
required (MT = 3;MKS = 630 (56dB)).

Only two DK-iterations were needed to ensure �RP < 1, however, the S2 and S3 perfor-
mance speci�cations were not satis�ed. MS, MT and �cl were adjusted to 3.5, 2.0 and 9.5,
respectively. After two more DK-iterations a controller which satis�ed S1-S4 was obtained.
The controller has 24 states, yields a closed loop H1-norm of 1.015 and may be synthesized
using the �nal weights and D-scales given in Table 3.

The performance of the TDF controller is demonstrated in Fig.11 where time responses
for the four extreme combinations of uncertainty are shown. The simulation results are also
summarized in Table 4 and are seen to satisfy speci�cation S2. The maximum peak of
��(KyŜ) is 306 (Fig. 12), which is less than 316 (50 dB), as required in S3, and the unit gain

cross over frequency, ��(ĜKy) = 1, is at 1 rad/min, well below 150 rad/min, as required in
S4 Alt.1. Speci�cation S4 Alt.2 is not satis�ed as shown in Fig. 12.

The transfer functions N12 and N21, which are not part of the CDC problem, have peak
values of 3.4 and 420, respectively.
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Table 4: Control performance for TDF-Alt.1 with gain uncertainty and second order Pad�e
approximation of a 1 min delay. (See also Fig.11)

step gain unc. set-point tracking interaction
ch. k1 k2 t = 30 max t = 100 max t = 100
1 1.2 1.2 1.066 1.092 0.998 0.051 0.001
1 1.2 0.8 0.984 1.036 0.999 0.471 -0.001
1 0.8 1.2 0.969 1.030 1.000 0.426 0.001
1 0.8 0.8 0.906 1.000 1.000 0.138 0.000
2 1.2 1.2 1.052 1.074 0.999 0.051 0.001
2 1.2 0.8 0.987 1.030 1.000 0.265 0.001
2 0.8 1.2 1.002 1.038 0.999 0.310 0.000
2 0.8 0.8 0.950 1.002 1.000 0.138 0.000

5.5 TDF-controller for CDC speci�cations; Alt.2

Recall that there were two alternative interpretations of speci�cation S4. In this section we
show that we can also satisfy speci�cation S4 Alt.2, which was used in [21], using the design
procedure presented in this paper. We again use the problem formulation in Fig.10, but
the signal weights Wu and Wn need to be modi�ed. In addition we need to use the tighter
uncertainty weight from Eq. 18.

Speci�cations S3 and S4 Alt.2 require:

��(KyŜ(j!)) <

(
50 dB ! < 150 rad/min
0 dB ! � 150 rad/min

(28)

which is more more di�cult to satisfy than in Alt.1. We use the same procedure as in the
previous design; �rst approximating Eq. 28 by a rational transfer function (WS34), whose
inverse forms an upper bound on Ky Ŝ, and then deriving Wu and Wn such that WuWn �
WS34 at high frequency. Let

WS34 =
1

MKS

0
B@

M
1=n
KS

!0
s+ 1

1
c!0

s+ 1

1
CA
n

I2�2 (29)

The weight is equal to 1=MKS at low frequencies, and then starts increasing sharply and
crosses 1 at about the frequency !0 (which should then be about 150 rad/min). It levels o�
at the value cn at high frequency. The parameter n is an integer. By increasing n, a tighter
approximation of Eq. 28 is achieved, but on the other hand the complexity of the control
problem increases.

We decided to select n = 3 and c = 5. Following the procedure in Section 5.3 we selected
Wu and Wn as follows

Wu(s) =
1

MKS

0
B@

M
1=n
KS

!0
s+ 1

1
c!0

s+ 1

1
CA
(n�1)

I2�2 (30)

Wn(s) =
�cls+A

�cls+MT

0
B@

M
1=n
KS

!0
s+ 1

1
c!0

s+ 1

1
CA I2�2 (31)
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Table 5: Final weight parameters and D-scales for design TDF-Alt.2

Weight parameters
�id �id �cl A MS MT MKS !0 c n

8.0 0.71 9.5 10�4 3.0 2.5 1000 200 5 3

D(s) = diagfd(s); d(s); I4�4g

d(s) = 7:3 � 10�4 (s+ 23:1)(s2 + 2 � 0:637 � 0:116s + 0:1162)

(s+ 0:0213)(s + 0:372)(s + 0:673)

Table 6: Control performance for TDF-Alt.2 with gain uncertainty and second order Pad�e
approximation of a 1 min delay. (See also Fig.11)

step gain unc. set-point tracking interaction
ch. k1 k2 t = 30 max t = 100 max t = 100
1 1.2 1.2 1.063 1.082 0.991 0.036 0.008
1 1.2 0.8 0.976 1.013 0.990 0.464 -0.001
1 0.8 1.2 0.977 1.031 0.999 0.424 0.010
1 0.8 0.8 0.908 0.998 0.998 0.130 0.002
2 1.2 1.2 1.050 1.067 0.994 0.036 0.008
2 1.2 0.8 0.995 1.036 1.001 0.264 0.008
2 0.8 1.2 0.994 1.019 0.992 0.305 0.001
2 0.8 0.8 0.951 0.999 0.999 0.130 0.002

After a few iterations and parameter adjustments a controller which satis�es S1, S2, S3
and S4 Alt.2 was obtained. The �nal weight parameters and D-scales are given in Table 5.
The controller yields a closed loop H1-norm of 1.0 and has 34 states. The number of states
was reduced to 22 using optimal Hankel norm approximation, without violating the control
objectives. The performance of the 22 state controller is shown in Fig.13. The simulation
results are also summarized in Table 6 and are seen to satisfy speci�cation S2.

Fig. 14 shows that the maximum peak of ��(Ky Ŝ) is 313, which is less than 316 (50 dB),

as required in S3, and the unit gain cross over frequency, ��(KyŜ) = 1, is below 150 rad/min,
as required in S4 Alt.2.

We obtained this reduction in controller gain with almost no deterioration in performance.
Compared to TDC-Alt.1 the peak value of N12 = T̂ was reduced from 3.4 to 2.6 (which is
an advantage), whereas the peak value of N21 = (I +KyĜ)�1Kr increased from 420 to 435.

6 Discussion and Conclusion

The inability to independently penalize separate elements of the closed loop transfer function
complicates the performance weight selection in the �-framework. The Hadamard weighted
approach [3] does not exhibit this problem and will therefore yield better performance with
respect to the speci�cations in the CDC problem, S1 - S4. However, for a practical engi-
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neering problem the transfer functions N12 and N21 in Fig.10 are of importance, so it seems
reasonable to include them in the control problem.

The paper has shown how a demanding design problem, involving parametric gain-delay
uncertainty and a mixture of time domain and frequency domain performance speci�cations,
can be reformulated and solved using the structured singular value framework. A two degree-
of-freedom controller was needeed to satisfy the speci�cations. The results, in terms of
meeting the speci�cations, are comparable or better than those given in Limebeer et al. [10],
van Diggelen and Glover [3] and Whidborne et al. [21],

Acknowledgments. Support from NTNF is gratefully acknowledged.
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Figure 4: Output responses for ODF-original controller with plant-model mismatch. yij
shows response in output i for step change of set-point j at t = 0. All responses with 1 min
delay (2nd order Pad�e).
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Figure 5: Maximum and minimum singular values of KyŜ for ODF-original controller for
four di�erent plants.
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Figure 6: Maximum and minimum singular values of Ŝ for ODF-original controller. Dashed:
Original upper bound on S (1/We, Eq.12).
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Figure 7: Output responses for TDF-original controller with plant-model mismatch. yij
shows response in output i for step change of set-point j at t = 0. All responses with 1 min
delay (2nd order Pad�e).
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Figure 8: Maximum and minimum singular values of KyŜ for TDF-original controller for
four di�erent plants.
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Figure 9: Block diagram for one degree of freedom controller.
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Figure 10: Block diagram for two degree of freedom controller.
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Figure 11: Output responses for TDF-Alt.1 controller with plant-model mismatch. yij shows
response in output i for step change of set-point j at t = 0. All responses with 1 min delay
(2nd order Pad�e).
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Figure 12: Maximum and minimum singular values of KyŜ for TDF-Alt.1 controller for four
di�erent plants.
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Figure 13: Output responses for TDF-Alt.2 controller with plant-model mismatch. yij shows
response in output i for step change of set-point j at t = 0. All responses with 1 min delay
(2nd order Pad�e).
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Figure 14: Maximum and minimum singular values of KyŜ for TDF-Alt.2 controller for four
di�erent plants.
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