
12 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 1, JANUARY 1999

Two-Degree-of-Freedom Controller Design for an Ill-
Conditioned Distillation Process Using-Synthesis

Petter Lundstr̈om, Sigurd Skogestad,Member, IEEE,and John C. Doyle,Member, IEEE

Abstract—The structured singular value framework is applied
to a distillation benchmark problem formulated for the 1991
IEEE Conference on decision and control (CDC). A two degree
of freedom controller, which satisfies all control objectives of
the CDC problem, is designed using�-synthesis. The design
methodology is presented and special attention is paid to the
approximation of given control objectives into frequency domain
weights.

Index Terms—H-infinity control, process control, robustness,
structured singular value, uncertainty.

I. INTRODUCTION

T HE PURPOSE OF THIS paper is to demonstrate, by
way of an example, how the structured singular value

(SSV, ) framework [4] may be used to design a robust
controller for a given control problem. The problem involves
an uncertain system and control objectives that cannot be
directly incorporated into the -framework. In particular, we
consider how to approximate the given problem as a-
problem by deriving suitable frequency dependent weights.
These define the model uncertainty and control objectives in
the -framework.

The control problem studied in this paper was introduced by
Limebeer [9] as a benchmark problem at the 1991 Conference
on Decision and Control (CDC), where it formed the basis
for a design case study aimed at investigating the advantages
and disadvantages of various controller design methods for
ill-conditioned systems.

The problem originates from Skogestadet al. [18] where a
simple model of a high purity distillation column was used
to demonstrate that ill-conditioned plants are potentially ex-
tremely sensitive to model uncertainty. In [18] uncertainty and
performance specifications were given as frequency dependent
weights, i.e., the problem wasdefinedto suit the -framework
and therefore a-optimal controller yields the optimal solution
to that problem.

However, in the CDC benchmark problem [9] uncertainty
is defined in terms of parametric gain and delay uncertainty
and the control objectives are a mixture of time domain and
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frequency domain specifications. These specifications cannot
be directly transformed into frequency dependent weights, but
have to be approximated to fit into the-framework.

The distillation problem in [18] and variants of this problem,
like the CDC problem [9], has been studied by several authors,
e.g., Freudenberg [6], Yaniv and Barlev [22], Lundström et al.
[11], Hoyle et al. [7], Postlethwaiteet al. [15], Yaniv and
Horowitz [23] and Zhou and Kimura [25]. In three recent
studies; Limebeeret al. [10], van Diggelen and Glover [3]
and Whidborneet al. [21], two degree of freedom controllers
are designed for the CDC problem. The three latter papers are
all based on the loop shaping design procedure of McFarlane
and Glover [14], where uncertainties are modeled as-
bounded perturbations in the normalized coprime factors of the
plant. To obtain the desired performance, [10] use a reference
model design approach, [3] use the Hadamard weighted-
Frobenius formulation from [2], while [21] use the method
of inequalities [24] where the performance requirements are
explicitly expressed as a set of algebraic inequalities.

The two degree of freedom design in this paper differs from
[10], [3], and [21] in that we use -synthesis for our design.
With this method uncertainty is modeled as linear fractional
uncertainty and performance is specified as in a standard-
control problem. Like [10], we specify some of the control
objectives as a model-matching problem.

This paper is organized as follows: A brief introduction to
the -framework is presented in Section II. The benchmark
problem is defined in Section III. In Section IV we outline the
design method used in this paper. In Section V we gradually
transform (approximate) the given problem into a-problem
and demonstrate the effect of different weight adjustments.
The final controller designed in this section demonstrates that
the control objectives defined by Limebeer [9] are achievable.
Finally the results are discussed and summarized.

All of the results and simulations presented in this paper
were computed using the MATLAB “-Analysis and Synthesis
Toolbox” [1].

II. CDC PROBLEM DEFINITION

The plant model and design specifications for the CDC
benchmark problem [9] are presented in this section.

A. Plant Model

The process to be controlled is a distillation column
with reflux flow and boilup flow as manipulated inputs
and product compositions as outputs. The resulting model
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is ill-conditioned, as is here given by

(1)

(2)

In physical terms this is equivalent to a gain uncertainty of
20% and a delay of up to 1 min in each input channel. The

set of possible plants defined by (1)–(2) is denotedin the
sequel.

B. Design Specifications

SpecificationsS1 to S4 should be fulfilled foreveryplant
:

S1 Closed-loop stability.
S2 For a unit step demand in channel 1 at the plant

outputs (tracking) and (interaction) should satisfy:

• for all min;
• for all ;
• ;
• for all ;
• .

Corresponding requirements hold for a unit step demand
in channel 2.

S3 . This specification is mainly added
to avoid saturation of the plant inputs.

S4 Alt.1: for .
S4 Alt.2: for .

Here denotes the feedback part of the controller and
the sensitivity function for the worst case.

SpecificationsS3 and S4 are not explicitly stated in [9],
but formulated as “the closed-loop transfer function between
output disturbance and plant input be gain limited
to about 50 dB [ (S3)] and the unity gain cross over
frequency of the largest singular value should be below 150
rad/min .” Different researchers have given the latter
specification different interpretations, e.g., [3] use Alt.1. while
[21] use Alt.2. For the purpose of this paper, this diversity is
advantageous, since it gives us the opportunity to start with
the easier alternative (Alt.1) and then show how to refine the

-problem to achieve the tougher requirement (Alt.2).
In practice, specificationS4 Alt.1 is implied by S1, so the

actual performance requirements areS2andS3(andS4Alt.2).
Most of the specifications in this paper may be viewed

as bounds on transfer functions from some inputs to some
outputs. The notation for these transfer functions is defined by
Fig. 1 and the matrices in (4)–(5). The controllerin Fig. 1
may be a one degree of freedom controller (ODF) or a two
degree of freedom controller (TDF). A TDF controller may be
partitioned into two parts

(3)

where is the feedback part of the controller and is the
prefilter part.

Fig. 1. Block diagram without weight functions.

Fig. 2. General problem description.

For an ODF controller , which yields the following
transfer functions:

(4)

where is the sensitivity function,
is the complementary sensitivity function

and is the reference model for the setpoint change. Note
that if , then the transfer function from to is

.
For a TDF controller , which yields the following

transfer functions:

(5)

In this case, the transfer function fromto is not equal to
if .

III. T HE -FRAMEWORK

This section gives a very brief introduction to-analysis
and synthesis and defines some of the nomenclature used in
the rest of the paper. For further details, the interested reader
may consult for example [18], [19] and [1].

The -norm of a transfer function is the peak value
of the maximum singular value over all frequencies

(6)

The left block diagram in Fig. 2 shows the general problem
formulation in the -framework. It consists of an augmented
plant (including a nominal model and weighting functions),
a controller and a (block-diagonal) perturbation matrix

representing the uncertainty.
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Uncertainties are modeled by the perturbations (’s) and
uncertainty weights included in . These weights are chosen
such that generates the family of all possible
plants to be considered. In principle may contain both
real and complex perturbations, but in this paper only complex
perturbations are used.

The performance is specified by weights inwhich nor-
malize and such that a closed-loop -norm from to
of less than 1 (for the worst case ) means that the control
objectives are achieved.1

The framework in Fig. 2 may be used for both one degree of
freedom (ODF) and two-degree-of-freedom (TDF) controller
design. In the ODF case the controller inputis the difference
between set-points and measured plant outputs, ,
while in the TDF case .

The right block diagram in Fig. 2 is used for robustness
analysis. is a function of and , and
is a fictitious “performance perturbation” connectingto .
Provided that the closed-loop system is nominally stable the
condition for robust performance (RP) is

RP (7)

where .
is computed frequency-by-frequency through upper and

lower bounds. Here we only consider the upper bound

(8)

where .
At present there is no direct method to synthesize a-

optimal controller, however, -synthesis (DK-iteration) which
combines -analysis and -synthesis often yields good
results. This iterative procedure was first proposed in [5] and
[16]. The idea is to attempt to solve

(9)

(where is a function of ) by alternating between min-
imizing for either or while holding
the other fixed. The iteration steps are as follows.

DK1 Scale the interconnection matrix with a stable and
minimum phase rational transfer matrix with
appropriate structure (an identity matrix with right
dimensions is a common initial choice).

DK2 Synthesize an -controller for the scaled problem,
.

DK3 Stop iterating if the performance is satisfactory or if
the -norm does not decrease, else continue.

DK4 Compute the upper bound on (8) to obtain new
-scales as a function of frequency .

DK5 Fit the magnitude of each element of to a
stable and minimum phase rational transfer function
and go toDK1.

1Note thatd ande in Fig. 2 are not equivalent tod and e in Fig. 1, but
may containd ande among other signals.

Each of the minimizations (stepsDK2 andDK4) are convex,
but joint convexity is not guaranteed.

The -controller synthesized in stepDK2 has the same
number of states as the augmented plantplus twice the
number of states of , hence it is desirable to keep the order
of and the -scales as low as possible whilst satisfying the
controller specification criteria.

IV. DESIGN PROCEDURE

The CDC specifications in Section II cannot be directly
applied in the -framework. The reasons for this are: 1) The
gain-delay uncertainty in (1)–(2) has to be approximated into
linear fractional uncertainty (Fig. 2); 2) SpecificationS2needs
to be approximated since it is defined in the time domain; 3)
In the -framework, it is not possible to directly bound the
four SISO transfer functions associated withS2 and the 2
2 transfer function associated withS3 (andS4 Alt.2). Instead
these control objectives must be reflected in the-norm of
the transfer function from to (Fig. 2).

The following approach makes it possible to apply-
synthesis to this kind of problem.

1 Approximate the given problem into a-problem.
2 Synthesize a robust controller for the-problem.
3 Verify that the controller satisfies the original specifica-

tions (S1–S4) for the original set of plants .

Step 1 is our major concern in this paper. Several approaches
may be used to obtain the-problem, however, the following
are general guidelines: 1) Choose and such that all
essential control objectives are reflected in the-norm of the
transfer function between these signals. At the same time keep
the dimension of and as small as possible. 2) Use low-order
uncertainty and performance weights to keep the order of
and thereby the order of the controller low. The complexity and
order of these weights may be increased later, if required. 3)
Use weighting parameters with physical meaning, since these
parameters are the “tuning knobs” during the design stage. The
derivation of such weighting functions for the CDC problem
is treated in detail in the next section.

Step 2 is fairly straightforward using DK-iteration and the
available software (e.g., [1]). Experience with this iterative
scheme shows that, for the first few iterations, it is best if the
controller synthesized in stepDK2 is slightly suboptimal ( -
norm 5–10% larger than the optimal) and that the-scale fit in
stepDK5 is of low order. In subsequent iterations, controllers
that are close to optimality and higher order-scales may be
used if required. However, it is also recommended that the
final controller is slightly suboptimal since this yields a blend
of and optimality with generally better high frequency
roll-off than the optimal -controller.

Step 3 is, in this paper, performed using time simulations
with the four extreme combinations of gain uncertainty (2)
and a 1 min delay (approximated as a second-order Padé
approximation).

V. CONTROLLER DESIGN

In this section we design controllers for the benchmark
problem, using the design procedure outlined above. Actually,
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Fig. 3. Original ODF-problem formulation.

we start with a controller designed for the “original” problem
defined in Skogestadet al. [18] and check the performance of
this controller with respect to the CDC specifications defined
in Section II. We then gradually refine the-formulation by
adding further input and output signals to and and by
adjusting the uncertainty and performance weighting functions.

This gradual approach clearly demonstrates the effect of
the weighting function refinements, and thereby is of tuto-
rial value. Moreover, it is also a good approach for “real”
problems, since one should not put more effort into the-
formulation than required, that is, one should start with a
simple problem formulation, and refine the problem formu-
lation if the specifications are not met.

A. ODF-Controller for “Original” Specifications

The “original” problem presented in [18] is defined in the
frequency domain in terms of Fig. 3 and the following transfer
function matrices:

(10)

(11)

(12)

(13)

Remark: As shown in [12], the uncertainty weight in (11)
does not quite cover (include) the gain and delay uncertainty
defined in Section II; the allowed time delay is about 0.9 min
rather than 1 min, and the magnitude of the weight approaches
2.0 at high frequencies rather than 2.2.

The resulting -synthesis problem is then

(14)

Skogestadet al. (1988) [18] used DK-iteration with some early
-software to design a controller with six states giving

a value of . Lundstr̈om et al. [11] assumed full
block uncertainty (for numerical convenience) and used
the state-space -software to obtain a -optimal controller
with 22 states and . In the following we use a
slightly improved controller with 18 states and .
This controller may be synthesized using -synthesis and
the following -scales:

(15)

TABLE I
CONTROL PERFORMANCE FORODF-ORIGINAL WITH GAIN UNCERTAINTY AND A

SECOND-ORDER PADÉ APPROXIMATION OF A 1-MIN DELAY. (SEE ALSO FIG. 4)

TABLE II
CONTROL PERFORMANCE FORTDF-ORIGINAL WITH GAIN UNCERTAINTY AND A

SECOND-ORDER PADÉ APPROXIMATION OF A 1-MIN DELAY. (SEE ALSO FIG. 7)

where

(16)

We denote this controller “ODF-original.” In fact, it can be
shown [8] that the resulting controller has the form of a SVD-
controller where is diagonal and
and are the input and output singular vector matrices for
the plant , which in this case are real and independent
of frequency.

The performance of this controller applied to the CDC
problem is demonstrated in Fig. 4 where time responses are
shown for the four extreme uncertainty combinations defined
in (1), i.e., the four gain combinations with maximum input
delay. The simulation results are also summarized in Table I
where bold entries mark violations onS2. We see that the
closed-loop system is stable, ensuring thatS1 is satisfied. The
setpoint tracking requirements inS2 are almost satisfied, but
the interaction is far too strong.

The performance with respect toS3 is demonstrated in
Fig. 5. It is clear that [the gain from setpoints ,
noise and output disturbances to manipulated inputs ,
see (4)] is far too high at high frequencies and also around the
closed-loop bandwidth ( rad/min).

The performance specification in the original problem is
expressed as a bound on the sensitivity function. Fig. 6
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Fig. 4. Output responses for ODF-original controller with plant-model mis-
match.yij shows response in outputi for step change of set-pointj at t = 0.
All responses with 1 min delay (second-order Pad´e).

Fig. 5. Maximum and minimum singular values ofKyŜ for ODF-original
controller for four different plants.

shows the maximum and minimum singular values of the
sensitivity function for the four extreme combinations of un-
certainty. From this plot we see that the original performance
requirement is not satisfied for rad/min
despite the fact that . The explanation is that the
uncertainty weight only covers a time delay of about 0.9
min, whereas the actual delay is 1 min.

In conclusion, the one degree-of-freedom controller de-
signed for the “original problem,” almost satisfies the tracking
requirements for the CDC-problem, but the closed-loop suffers
from strong interactions and excessive use of manipulated
inputs, in particular at very high frequencies ( rad/min).
We next see if a two degree-of-freedom (TDF) design can
alleviate these problems.

Fig. 6. Maximum and minimum singular values of̂S for ODF-original
controller. Dashed: Original upper bound onS [(1=We, (11)].

B. TDF-Controller for “Original” Specifications

Strictly speaking, the original problem formulation of Sko-
gestadet al. [18] cannot take advantage of a TDF controller,
because the specification is on the sensitivity function

, which depends only on the feedback part
of the controller, . However, if instead, we interpret the
specification in terms of the transfer function from references

to errors , (see (5), with ), then robust
performance can be improved by use of a TDF controller.
Lundstr̈om et al. [11] interpreted the specifications in this way
and were able to reduce from 0.978 to 0.926 with a TDF
controller. We denote this design “TDF-original.”

Simulations and tabulated data for the TDF-original design
are shown in Fig. 7 and Table II. The setpoint tracking spec-
ification is still not quite satisfied, but the interactions have
almost disappeared compared to the ODF-original response.
However, there are unpleasant high-frequency oscillations in
all responses. These oscillations also show up as a “ringing
peak” in the closed-loop transfer functions, for example, the
peak at approximately 2 rad/min in Fig. 8. This phenomena
could have been eliminated if a better uncertainty weight had
been used, i.e., an uncertainty weight that covers a 1 min
delay (rather than only 0.9 min). More seriously, as illustrated
in Fig. 8, specificationS3 with respect to input usage is not
satisfied. The reason is that we have not included in the
specifications any explicit penalty for input usage.

We conclude that we are not able to meet the CDC-
specifications by designing a-optimal controller using the
“original” uncertainty and performance weights. We therefore
need to modify the uncertainty weight, and consider the CDC-
specifications explicitly, e.g., by including a weight on
to satisfy S3.

C. Weight Selection for CDC Specifications

In this section we approximate the CDC specifications as
frequency dependent weights.
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Fig. 7. Output responses for TDF-original controller with plant-model mis-
match.yij shows response in outputi for step change of set-pointj at t = 0.
All responses with 1-min delay (second-order Pad´e).

Fig. 8. Maximum and minimum singular values ofKyŜ for TDF-original
controller for four different plants.

Uncertainty Weights:As already noted, the gain-delay un-
certainty in (2) is not quite covered by the uncertainty weight
defined in (11). A better weight is presented in [13]

(17)

where is the relative gain uncertainty and
is the maximum delay. This weight has the same low order as
that of (11) and italmostcovers the gain and delay uncertainty.
A slight modification to (17) yields a weight thatcompletely
covers the uncertainty ([13]), but is of higher order

(18)

Fig. 9. Block diagram for one degree of freedom controller.

It is often fruitful to start with the simpler weight (17) and if
the performance verification (Step 3 of the design procedure in
Section IV) shows that this uncertainty model does not yield a
robust controller for the set of plants, then the more rigorous
uncertainty model (18) should be used. This is the approach
taken here.

ODF Performance Weights:A simple way to approximate
the performance specificationsS2 andS3 into a -problem is
shown in Fig. 9, where is an ODF-controller.

Here, the weight on the sensitivity function represents
specificationS2 and weight represents specificationS3.
A reasonable choice for is the following which is taken
from the original formulation:

(19)

For this weight yields: 1) Steady-state error
less than ; 2) Closed-loop bandwidth higher than

; and 3) Amplification of high-frequency output distur-
bances less than a factor . The values used in [18] were

and .
To satisfy specificationS3 , we choose

the weight

(20)

As a starting point we may choose ; the value
given in S3. However, in practice this value will be too low
(too tight). The reason for this is discussed in Section V-D.

In accordance with the results in Section V-A, we found
that a ODF-controller did not yield the required performance;
thus in the following we focus on the TDF-design.

TDF Performance Weights:For the TDF-design we use the
block diagram in Fig. 10. The objective for the-synthesis is
to minimize the worst-case weighted transfer function from
references and noise to control error and input signals
(the hats used in the figure indicate that the signals have been
weighted). Note that the noise signaland input signal were
not included in our -optimal design for the original problem,
but these are needed to satisfy the CDC-specifications.

Fig. 10 gives

(21)

Here



18 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 1, JANUARY 1999

Fig. 10. Block diagram for two-degree-of-freedom controller.

where . (Strictly speaking and should
have a subscript to denote the perturbed plant,

, but this has been omitted to simplify the
notation.) We now need to select the four performance weights,

and the ideal tracking response .
The set-point tracking should ideally be decoupled and the

response and overshoot requirements are the same for both
channels. To keep the order of small, while at the same
time have the freedom to allow for some overshoot in the
ideal response, we use a second-order reference model in each
channel

(22)

For simplicity, we use scalar times identity weights for
the four weights, that is, . To determine the
weights we should first consider the resulting bounds on the
four closed-loop transfer functions and .
We note that forms a bound on , which is closely
related to specificationS2. Furthermore, forms a bound
on , which is directly related to specificationsS3 (and to
specificationS4, Alt.2). The following should be considered
when selecting the four weights.

1) Since the weights are scalar, we may choose one of them
freely. Thus we choose at all frequencies.

2) In order to penalize the difference between the actual
and ideal tracking the combined weight may
be chosen similar to in (19), i.e, we choose

.
3) SpecificationS3 limits the peak value of , which is

the transfer function from output disturbances (noise) to
inputs. In practice, the peak occurs at higher frequencies
just beyond the closed-loop bandwidth. Thus, we must
make sure that at frequencies where

has its peak. For simplicity, we select
(a constant). It then follows that should

approach one at high frequencies, and one should make
sure that it reaches this value around the bandwidth
(which is approximately equal to with the selected
weight for ).

4) The inverse of forms an upper bound on
, the complementary sensitivity. Since is large at

low frequency, its inverse is small at these frequencies.
However, the magnitude of is greater or equal to one
at low frequency, so it follows that must be small
at low frequencies. To be specific, let denote the
maximum value of (i.e, the infinity norm of ) at
low frequencies, then should be selected such that

at low frequencies. (Note that simply
selecting may not satisfy the
above requirement that should approach one at high
frequencies.)

5) Note that forms a bound on
which is the transfer function

from references to inputs. Although, there is no specifi-
cation on this transfer function, is seems reasonable that
it should be limited in a way similar to .

The following weights satisfy the above requirements:

(23)

(24)

(25)

(26)

For the input uncertainty we use the weight in (17) for
design TDF-Alt.1 and the slightly tighter weight in (18) for
design TDF-Alt.2. Note that the perturbation matrix in
(13) is diagonal. However, to simplify the numerical calcula-
tions we use an unstructured perturbation matrix which
yields a very simple -scale for the -synthesis,

. In any case, for this particular plant
it seems that the structure of the input uncertainty does not
matter. Initially is set to 0.01, obtained from a natu-
ral physical scaling (“logarithmic compositions” [17]). This
simple scaling substantially reduces the number of iterations
required to obtain “good” -scales.

D. TDF-Controller for CDC Specifications; Alt.1

In this section we synthesize a TDF controller for CDC
specificationsS1, S2, S3 and S4, Alt.1, by adjusting the pa-
rameters in the above weights. Since all of the parameters have
physical significance it is easy to find reasonable values, and
almost all of them were determined directly from the original
specifications in Section II. Based on these specifications we
may as a starting point choose
and ; the value given inS3. However, it is
likeley that these values for and are too small. The
reason is that the formulation in Fig. 10 lumps the four SISO
requirements ofS2 and the 2 2 requirement ofS3 into a
bound on the entire 4 4 transfer function given in (21).
From relations of the kind

(27)

it is clear that the physical interpretation of the weights results
in performance requirements that are slightly too tight.

Based on this, the initial weight parameters were chosen
to: 1) Yield an ideal response which satisfiesS2 with some
margin without too large an overshoot ;
2) Require a close fit to the ideal response at low frequencies

and a looser fit at high frequencies
; 3) Yield a loose requirement on to be

tightened if required [ (56 dB)].



LUNDSTRÖM et al.: TWO-DEGREE-OF-FREEDOM CONTROLLER DESIGN 19

TABLE III
FINAL WEIGHT PARAMETERS AND D-SCALES FORDESIGN TDF-ALT.1

Fig. 11. Output responses for TDF-Alt.1 controller with plant-model mis-
match.yij shows response in outputi for step change of set-pointj at t = 0.
All responses with 1-min delay (second-order Padé).

Only two DK-iterations were needed to ensure ,
however, theS2 and S3 performance specifications were not
satisfied. , , and were adjusted to 3.5, 2.0 and
9.5, respectively. After two more DK-iterations a controller
which satisfiedS1–S4 was obtained. The controller has 24
states, yields a closed-loop -norm of 1.015 and may be
synthesized using the final weights and-scales given in
Table III.

The performance of the TDF controller is demonstrated in
Fig. 11 where time responses for the four extreme combina-
tions of uncertainty are shown. The simulation results are also
summarized in Table IV and are seen to satisfy specification
S2. The maximum peak of is 306 (Fig. 12), which is
less than 316 (50 dB), as required inS3, and the unit gain cross
over frequency, , is at 1 rad/min, well below 150
rad/min, as required inS4 Alt.1. SpecificationS4 Alt.2 is not
satisfied as shown in Fig. 12.

The transfer functions and , which are not part
of the CDC problem, have peak values of 3.4 and 420,
respectively.

E. TDF-Controller for CDC Specifications; Alt.2

Recall that there were two alternative interpretations of
specificationS4. In this section we show that we can also
satisfy specificationS4 Alt.2, which was used in [21], using
the design procedure presented in this paper. We again use
the problem formulation in Fig. 10, but the signal weights

Fig. 12. Maximum and minimum singular values ofKyŜ for TDF-Alt.1
controller for four different plants.

TABLE IV
CONTROL PERFORMANCE FORTDF-ALT.1 WITH GAIN UNCERTAINTY AND

SECOND-ORDER PADÉ APPROXIMATION OF A 1 MIN DELAY. (SEE ALSO FIG. 11)

and need to be modified. In addition we need to use the
tighter uncertainty weight from (18).

SpecificationsS3 and S4 Alt.2 require

dB rad/min
dB rad/min

(28)

which is more difficult to satisfy than in Alt.1. We use the same
procedure as in the previous design; first approximating (28)
by a rational transfer function ( ), whose inverse forms
an upper bound on , and then deriving and such
that at high frequency. Let

(29)

The weight is equal to at low frequencies, and then
starts increasing sharply and crosses 1 at about the frequency

(which should then be about 150 rad/min). It levels off at
the value at high frequency. The parameteris an integer.
By increasing , a tighter approximation of (28) is achieved,
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Fig. 13. Output responses for TDF-Alt.2 controller with plant-model mis-
match.yij shows response in outputi for step change of set-pointj at t = 0.
All responses with 1-min delay (second-order Pad´e).

Fig. 14. Maximum and minimum singular values ofKyŜ for TDF-Alt.2
controller for four different plants.

but on the other hand the complexity of the control problem
increases.

We decided to select and . Following the
procedure in Section V-C we selected and as follows:

(30)

(31)

After a few iterations and parameter adjustments a controller
which satisfiesS1, S2, S3, and S4 Alt.2 was obtained. The
final weight parameters and -scales are given in Table V.

TABLE V
FINAL WEIGHT PARAMETERS AND D-SCALES FORDESIGN TDF-ALT.2

TABLE VI
CONTROL PERFORMANCE FORTDF-ALT.2 WITH GAIN UNCERTAINTY AND

SECOND-ORDER PADÉ APPROXIMATION OF A 1-MIN DELAY. (SEE ALSO FIG. 13)

The controller yields a closed-loop -norm of 1.0 and has
34 states. The number of states was reduced to 22 using
optimal Hankel norm approximation, without violating the
control objectives. The performance of the 22 state controller is
shown in Fig. 13. The simulation results are also summarized
in Table VI and are seen to satisfy specificationS2.

Fig. 14 shows that the maximum peak of is 313,
which is less than 316 (50 dB), as required inS3, and the unit
gain crossover frequency, , is below 150 rad/min,
as required inS4 Alt.2.

We obtained this reduction in controller gain at high fre-
quencies with almost no deterioration in performance. Com-
pared to TDC-Alt.1 the peak value of was reduced
from 3.4 to 2.6 (which is an advantage), whereas the peak
value of increased from 420 to 435.

VI. DISCUSSION AND CONCLUSION

The inability to independently penalize separate elements of
the closed-loop transfer function complicates the performance
weight selection in the -framework. The Hadamard weighted
approach [3] does not exhibit this problem and will therefore
yield better performance with respect to the specifications in
the CDC problem,S1–S4. However, for a practical engineering
problem the transfer functions and in Fig. 10 are
of importance, so it seems reasonable to include them in the
control problem.

The paper has shown how a demanding design problem,
involving parametric gain-delay uncertainty and a mixture of
time domain and frequency domain performance specifica-
tions, can be reformulated and solved using the structured
singular value framework. A two degree-of-freedom controller
was needeed to satisfy the specifications. The results, in terms
of meeting the specifications, are comparable or better than
those given in [10], [3], and [21].
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