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Abstract

The paper discusses optimal operation of a general heat exchanger network with given structure, heat exchanger areas and
stream data including predefined disturbances. A formulation of the steady state optimization problem is developed, which is
easily adapted to any heat exchanger network. Using this model periodically for optimization, the operating conditions that
minimize utility cost are found. Setpoints are constant from one optimization to the next, and for implementing the optimal
solution special attention is paid to the selection of controlled variables such that the operation is insensitive to uncertainties
(unknown disturbances and model errors). This is the idea of self-optimizing control. In addition to heat exchanger networks, the
proposed method may also be applied to other processes where the optimum lies at the intersection of constraints. © 1999
Elsevier Science Ltd. All rights reserved.

1. Introduction

Methods for heat exchanger network (HEN) synthe-
sis have been developed during the last decades and
these methods aim to design a HEN that yields a
reasonable trade-off between capital and operating cost
in the nominal case. Since the mid 1980s several au-
thors have also investigated flexibility of HENs, e.g.
Kotjabasakis and Linnhoff (1986) who introduced sen-
sitivity tables to find which heat exchanger areas should
be increased in order to make a nominal design suffi-
ciently flexible. In Papalexandri and Pistikopoulos
(1994), HEN synthesis and flexibility are considered
simultaneously using mathematical programming.

The total design effort (on a systems level) required
for a HEN typically involves the following three stages:
a. Nominal design. Synthesize one or more networks

with good properties for nominal stream data.
b. Flexibility and controllability. Investigate the net-

works with regard to flexibility and controllability,
and possibly introduce some modifications (e.g. in-
creased area) such that at least one HEN shows
satisfactory results.

c. Operation. Design a control system to operate the
HEN properly. This involves control structure selec-
tion and possibly some method for on-line
optimization

For each step, some networks may be rejected or the
designer may go back to the preceding step to find
other alternatives. The steps are usually carried out in a
sequential manner, however, the design may also be of
a more simultaneous character, depending on the meth-
ods used.

Compared to synthesis of nominal and flexible
HENs, much less effort has been dedicated to find
methods for the operation of HENs (step c). Mathisen,
Skogestad and Wolff (1992) investigated bypass selec-
tion for control of HENs, without considering the
utility consumption. In Mathisen, Morari and Skoges-
tad (1994) method for operation of HENs that mini-
mizes utility consumption is proposed. The method is
based on structural properties of the network, however,
the variable control configuration may result in poor
dynamic performance. A method based on repeated
steady state optimization is suggested by Boyaci, Uz-
türk, Konukman and Akman (1996), but their focus is
not on the control structure for closed loop implemen-
tation. Recently, Aguilera and Marchetti (1998) pro-
posed a method for on-line optimization and control of
HENs. They also discussed degrees of freedom with
respect to optimization of HENs during operation.
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In this paper, we consider optimal operation of
HENs. This is normally done in two steps:
1. Obtaining the optimal solution at regular time inter-

vals (normally using steady state data).
2. Implementing the optimal solution by specifying the

optimal values (setpoints) for some variables with
the aim of achieving ‘self-optimizing control’.

Step 1 is usually solved by numerically optimizing the
degrees of freedom in the model, and in Section 5 we
present a simple formulation of the optimization prob-
lem where the bypass fractions do not explicitly appear.
This makes the problem less nonlinear. An alternative
way of solving the optimization problem, which works
in some cases, is to use structural information only.
This procedure is discussed in Mathisen et al. (1994)
and Glemmestad (1997), and is not discussed any fur-
ther here.

The importance of selecting the right variables in step
2 is often overlooked. It will be shown that the choice
of optimization variables affects the steady state perfor-
mance of the (controlled) HEN when unknown distur-
bances are present, and a procedure for optimal
selection of these variables is presented. The procedure
extends ideas for selection of controlled outputs pre-
sented in Skogestad and Postlethwaite (1996).

In the following, it is assumed that the stream data
(heat capacity flowrates and supply/target tempera-
tures), network structure and heat exchanger areas are
given and that the HEN is sufficiently flexible. To
manipulate the network it is assumed that utility duties
can be adjusted and that a variable bypass is placed
across each process-to-process heat exchanger. In case
of stream splits, we may also assume that split fractions
can be varied. Variable split fractions introduce nonlin-
earities in the steady state optimization problem.

The remaining part of the paper is organized as
follows: First, the complete method is outlined. In
Section 3 the procedure for selection of optimization
variables will be described in detail, and robust opti-
mum is explained in Section 4. The steady state opti-
mization model is presented in Section 5, and the
complete method is applied to an example in Section 6.
Finally some conclusions are drawn in Section 7.

2. Outline of method

With the term optimal operation, we mean that the
following two goals are fulfilled:
� Primary goal: Satisfy targets (usually outlet

temperatures).
� Secondary goal: Minimize operating cost.

A prerequisite for performing a meaningful on-line
optimization is that there is at least one extra degree of
freedom during operation, and most HENs have this
feature. As an example, consider the network in Fig. 1

where there are four manipulations (two bypasses and
heater and cooler duties) to control the three outlet
temperatures to their targets (primary goal). Hence we
have one manipulation ‘in excess’ which implies one
degree of freedom. This extra degree of freedom can be
used to minimize utility cost, i.e. to achieve the sec-
ondary goal.

Note that the number of degrees of freedom during
operation is different from the synthesis stage. Within
the ‘synthesis terminology’, the HEN in Fig. 1 has
minimum number of units and no degrees of freedom
(constraints on DTmin, etc. have no relevance during
operation). In some cases the degrees of freedom that
affects the objective during operation may be less than
the number of excess manipulations, however, this is
not discussed any further in this paper (see Glemmes-
tad, 1997).

Figure 2a shows a schematic block diagram of the
method that will be described. The optimizer contains a
scalar objective function (criterion) J which indicates
how well the HEN is operated and a steady state model
of the HEN. As objective function we will typically use
total utility cost which is a linear function, see Eq. (4)
in Section 5. The model is optimized regularly and
reference values for the optimization variables are
passed to the controller K2. The reference values (set-
points) are constant in the period between each
optimization.

All inputs (manipulations) u and outputs (measure-
ments) y are separated into u= [u1 u2]T and y= [y1 y2]T,
respectively. y1 are those outputs which have given
target (reference) values and u1 are those manipulations
dedicated to keep y1 at their target values. Satisfying
the targets for y1, is simply the primary goal of optimal
operation. Now, we close the control loops for the
primary outputs with controller K1 (‘base control’) and
assume integral action in the loops (no steady state
control error). This leads to Fig. 2b where focus is on
the remaining part of the system, i.e. the secondary
variables (u2, y2 and setpoints r2) and the optimizer. It
is simply assumed that the base control is implemented
and that it works. The problem can be formulated as

min
u 2

J(x, d)

f(x, d)=0

Fig. 1. Simple HEN with one degree of freedom during operation.
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Fig. 2. General optimizing control structure.

g(y2)50

where the latter equations represent the constraints. As
explained above we assume that the constraints on y1

are satisfied using the base control system and thus will
enter the model equations f(x, d)=0 (as equality
constraints).

We want to focus on the secondary goal of optimal
operation; utility cost minimization (variables associ-
ated with this goal have index 2). u2 is the ‘excess’
manipulation(s) which represent the degree(s) of free-
dom that we will use to minimize utility cost. Of course,
one could compute optimal values for u2 and apply
these directly (open-loop implementation) as indicated
by the dashed line in Fig. 2a and b. Alternatively, the
optimizer could pass reference values for some ‘extra’
measurements y2 (closed-loop implementation). If the
disturbance d was perfectly known (and constant), it
would not matter (at steady state) which variables were
chosen. However, from the explanation below it will be
clear that the selection of which variables that are
passed from the optimizer down to the control level
affects how close to optimum the HEN can be
operated.

The variables (setpoints) r2 that are passed from the
optimizer to the control level will be denoted optimiza-
tion variables.

Let the disturbance d be partitioned into the follow-
ing two contributions:

d=d0+du (1)

where d0 is the information that the optimizer has
about the disturbances when it performs an optimiza-
tion, and du (unknown disturbances) are all deviations
from d0 and the real disturbance until a new optimiza-
tion is carried out. That is, du consists of, for example,
unknown disturbances and model errors in addition to
changes of the disturbances in the period between two
optimizations (optimization interval). Measurement/es-
timation errors will not be handled explicitly in this

paper, but these errors may be included in du and
treated as any other uncertainty.

Since the optimizer has no specific information about
du, the optimization is based on d=d0. In practice,
however, du may vary within some known (or selected)
bounds. The effect of du"0 should be taken care of in
the optimizer in order to avoid that the HEN becomes
infeasible (primary goal cannot be satisfied) for some
disturbances. Figure 3 shows a typical situation for a
general plant with one degree of freedom (one extra
manipulation) and an objective function J that should
be minimized. The plant has one disturbance input and
two candidate measurements A and B (y2= [y2,A y2,B]T)
that can be controlled to a desired value using the extra
manipulation u2 (since subscripts 1 and 2 are used to
distinguish between the primary and secondary sets of
inputs and outputs, we uses letters A, B, etc. to denote
individual elements of u and y). Also, remember that
base control to keep primary outputs at fixed setpoints
is already implemented. See Fig. 1 where two candi-
dates for secondary controlled temperatures (y2,A and
y2,B) are indicated. The primary controlled measure-
ments are the outlet temperatures of the three streams.
Notice, however, that the HEN in Fig. 1 actually is a
constrained process and the curves in Fig. 4 are more
realistic (see below).

Figure 3a shows J as a function of y2,A with the
disturbance as a parameter. The solid line is for du=0,
and the two dashed lines represent the extremes for du.
Figure 3b shows similar curves as a function of y2,B.
Since we have to base our optimal values on du=0, we
can choose to keep either y2,A:0.5 or y2,B:0.4 using
feedback control. From the figure, however, we see that
when keeping y2,B constant, J is less sensiti6e to both
variations in y2 (control error) and to unknown distur-
bances, than when keeping y2,A constant. Therefore, we
prefer to keep y2,B constant between the optimizations.
This simple example illustrates how the choice of opti-
mization variables affects the objective function for an
unconstrained process. Figure 4 shows similar curves as
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in Fig. 3 for a process where the optimum is con-
strained, which is typical for most HENs (minimum
utility consumption corresponds to maximum utiliza-
tion of process-to-process exchangers which again
means that some bypasses are closed).

In Fig. 4a the process is infeasible when y2,A is
specified too small (marked with ‘+ ’) and in Fig. 4b
when y2,B is too large. In a HEN this typically happens
when a bypass saturates such that a target temperature
no longer can be met. As an example see Fig. 1. If y2,A

is specified too low the outlet temperature of stream C1
will not be reached even if bypass around the process
heat exchanger to the right is fully closed. Thus the
HEN operation becomes infeasible. This represents a
serious problem when implementing the optimal solu-
tion. For example, if we compute the nominally optimal
value of y2,A (with du=0), then we see from Fig. 4a
that this will lead to infeasibility if the disturbance
increases (e.g. to du,max). Two simple approaches can be
used to avoid the infeasibility:
1. ‘Back-off’ from the nominal optimum by imple-

menting the value where b is the back-off. This
approach has been suggested by Arkun and
Stephanopoulos (1980) and Narraway, Perkins and
Barton (1991). The value of b should be such that
the solution is feasible for all expected disturbances
(as indicated by the vertical lines in Fig. 4.

2. Introduce safety margin on the constraints during
the nominal optimization, i.e. replace g(u, y)50 by
g(u, y)5o where again the safety margin o should
be such that the solution is feasible for all expected
disturbances.

These two approaches only require that the nominal
problem (with du=0) is solved on-line as b or o are
assumed to be precomputed. A third more computa-
tionally demanding approach is also possible:

3. Find the robust optimal solution (the truly
optimal value of y2 taking into account all possible
disturbances). This approach is discussed in Section 4.

The following steps summarize the main parts of the
complete procedure for on-line optimization of HENs
(the notation is as in Fig. 2):

1. Determine which manipulations (u1) that should be
used to control the primary outputs y1 and design a
control configuration and controllers for the pri-
mary goal (base control).

2. For each excess manipulation u2 choose a measure-
ment y2 (among all candidates) such that the opera-
tion is insensitive to disturbances (see more details
in next section). The additional constraints (safety
margins) on u1 are also found. Design decentralized
controllers for control of y2.

3. Implement the steady state model including the
constraints found in step 2 in the optimizer.

These three steps are carried out prior to operation.
With the steady state optimizer from step 3 imple-
mented, the optimizer computes setpoints for the opti-
mization variables and apply these to the controller K2

(see Fig. 2) at regular intervals during operation. Step
one (base control) is considered rather trivial in most
cases and is not treated in detail in this paper, see e.g.
step 1 in the example in Section 6. The important step
of selecting optimization variables (secondary measure-
ments, step 2) is treated in the section below.

3. Selection of controlled outputs

This section describes a procedure for selection of the
controlled variables (step 2 in the complete method
given above). The selection of outputs for optimizing
control is discussed by Skogestad and Postlethwaite
(1996), chapter 10) where a method based on choosing
outputs that maximize s(G22) (smallest singular value)
for a properly scaled system is proposed. In this paper
a more direct method is applied (which is also men-
tioned in Skogestad & Postlethwaite, 1996). In this
section, we assume that the HEN is capable of reaching
all targets (primary goal of optimal operation) for all
disturbances that are encountered, and we also require
that targets are satisfied for prespecified bounds on the
unknown disturbances du. Before the procedure is pre-
sented, the following notation is introduced:

Fig. 3. Unconstrained process.
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Fig. 4. Constrained process (typical for HENs).

y2,cand is a vector containing all candidates to y2

is the optimal value of y2,cand for a givenyopt

du

is a fixed value of y2,cand such that theyopt
s

objective function is minimized while the
network is feasible for all du

J s is J(yopt
s ) for a given value of du

Du1 is the constraint imposed on u1 such that
an optimization problem based on du=0
gives feasibility for all du within prespe-
cified bounds.

The steps in the procedure are listed below and some of
the points will be further explained. For simplicity, we
will assume there is only one degree of freedom (one
optimization variable).
a. Select (i) minimum and maximum values for du; (ii)

the objective function J ; (iii) the entries of y2,cand;
(iv) the values for du that should be included in the
computations; and (v) define the type of Jmean that
will be used for choosing optimization variable. This
last step consists in selecting whether Jmean should
be based on arithmetic mean or some weighted
average of J for the different unknown disturbances
du.

b. Compute yopt and Jopt for ‘all’ cases of du (i.e. the
values from step (iv) in the previous point), see
Table 1. This table may also include row(s) for u2,opt

(open-loop implementation). Note that du,j is case j
of du while yopt,i denotes element i in yopt.

c. Keep y2,cand,j=yopt,i
s for each output candidate, and

evaluate Ji
s(du,j) and the resulting Jmean. In general,

the setpoint y s
opt,i should be optimized in order to

minimize Jmean, but for constrained processes it will
be some extreme value from Table 1 (to ensure
feasibility for all du, see remark 2 at the end of
Section 6 for an explanation for the example). No-
tice that for the Monte Carlo method described in
the next section, y s

opt,i will not be any extreme value
from Table 1.

d. Choose the variable that gives the smallest Jmean

from the last column in Table 2 as optimization
variable, i.e. this measurement should be controlled
to a setpoint which is updated periodically by the
optimizer.

We have now found the best optimization variables. To
simplify the on-line optimization we may want to use
only the nominal disturbance set, du=0. To ensure that
we find the correct value of y s

opt (which ensures feasibil-
ity for all disturbances), we may impose some con-
straint (‘safety margin’) for the optimizer, e.g. ul]Du1.
This will be explained in more detail for a simple
example in Section 6 (see also remark 1 at the end of
this section). The ‘safety margin’ on u1 should of course
not be implemented in the regulatory control level.

Until now we have only considered one degree of
freedom. If there were two degrees of freedom, two
elements of y2,cand would have to be fixed at a time.
Tables 1 and 2 would need as many rows as there are
possibilities to pick two variables out of the total
number of candidate measurements, and each row
would contain two parameter values. For example, if
there are six candidate measurements and two degrees
of freedom, the number of combinations is 6!/2!4!=15.

For cases with more than one degree of freedom, it
may be difficult to pick the optimal parameter values
based on reasoning. In such cases, the optimal parame-
ter values may be found as follows: for each distur-
bance du,j in Table 1, fix the parameters to the optimal
value yopt(du,j) and let a computer evaluate the steady

Table 1
yopt and Jopt for all cases of du

du,jdu,1 du,2

yopt,A yopt, A(du,j)yopt, A(du,1) yopt, A(du,2)
yopt, B(du,1)yopt,B yopt, B(du,j)yopt, B(du,2)

yopt, i(du,2)yopt,i yopt, i(du,j)yopt, i(du,1)
Jopt(du,2) Jopt(du,j)Jopt(du,1)Jopt
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Table 2
J s for all cases of du

du,2 du,jdu,1 Jmean

JA
s (du,j)JA

s (du,2)JA
S (du,1) Jmean,AJa

s

Jmean,BJB
s (du,j)JB

s JB
S(du,1) JB

s (du,2)
Jmean,iJ s

i (du,j)J s
i (du,2)J s

i (du,1)J s
i

y2,A=0.55. It is clear that the nominal optimal value
cannot be applied since this will result in infeasiblity for
some unknown disturbances.

Mathematically, if we have an objective function J(x,
d) where the value of the variable (argument) x can be
selected/manipulated and d represent the disturbances,
we can write

Nominal optimum: Jnopt=opt(J(x, d=d0))
Jropt=opt(J(x, d�D))Robust optimum:

In operation, we are not interested in the objective
value directly, however, the argument (e.g. manipula-
tions or setpoints) that minimize the objective is more
relevant:

Nominally optimal argument:

xnopt=arg opt
x

( f(x, d=d0))

Robust optimal argument:

xropt=arg opt
x

( f(x, d�D))

The set D represents the possible values of the un-
known disturbances. D may also represent a probability
distribution of the unknown disturbances. The distur-
bances may for instance be assumed to be normally
distributed with a given mean (nominal) value and a
given standard deviation. If the probability distribution
is not bounded, we cannot require the process to be
feasible for all possible disturbances. Instead, we could
require feasibility with a specified probability, such as
requiring feasibility in 99% of the operating time. We
shall, however, use a different approach where the
disturbances are specified by probability distributions:
When a HEN is announced infeasible during operation,
this normally does not imply that the HEN cannot be
operated. Typically, the reason for infeasibility is that it
is impossible to reach the targets for the primary mea-
surements (outlet temperatures). Instead of requiring
that the targets are satisfied, we choose to penalize the
deviation (control error in primary control loop). In
this way, the constrained problem is transformed into
an unconstrained problem, however, the new objective
function will often be asymmetric. This implies that the
robust optimum is different from the nominal
optimum.

In the search for the robust optimum, several ap-
proaches may be used depending on the assumptions
made and the external conditions. Here, we shall focus
on two methods: (1) a Monte Carlo method where the
unknown disturbances are specified as probability dis-
tributions; and (2) requiring that targets are satisfied for
some corner points of the unknown disturbances, i.e.
similar to the assumptions made in the previous section.
These two methods are described below.

state equations describing the HEN for all unknown
disturbances du,j. The parameter values that result in
feasibility for all du,j should be used to generate Table 2
in step c. This procedure is repeated for all (sets of)
candidate measurements. It is emphasized that indus-
trial HENs usually do not have more than one (or in
some cases, two) degrees of freedom available for opti-
mization after regulatory control is implemented. Thus,
problems involving many degrees of freedom will not
appear frequently in real applications.

Remark 1. It is clear that the value of Dul may
depend on d0, i.e. the value of the safety margin imple-
mented in the optimizer to ensure feasibility may de-
pend on the operating point. This may be due to
nonlinearities in the model or due to the fact that the
active constraints may not the same for all operating
points. We assume that this change in Du1 is small and
that the value can be used for all d0. In practice, one
should carry out the procedure for selection of opti-
mization variables at different operating points to ver-
ify that Du1 does not change too much. The worst case
value should be chosen if it is not acceptable to violate
the primary goal, while a mean value can be used if the
resulting violation of the targets is tolerable.

4. Robust optimum

This section introduces the term robust optimum. It
will be clear that, when we have made a selection of
variable(s) for y2, we seek the value of this variable that
corresponds to the robust optimum. The robust opti-
mal value is the optimal value when unknown distur-
bances and model errors are encountered. The robust
optimum will often be different from the nominal opti-
mum, where no disturbances (only nominal disturbance
values) or model errors are considered.

For the unconstrained and smooth objective function
in Fig. 3, the value of y2 resulting in robust optimum is
approximately equal to the value resulting in nominal
optimum. For the constrained objective function in Fig.
4, the situation is different. We require that the process
is feasible for the unknown disturbances. When y2,A is
selected, the nominal optimal value is y2,A=0.30,
whereas the value resulting in robust optimum is y2,A=
0.50. When y2,B is selected, the nominal optimal value is
y2,B=0.65, whereas robust optimum is achieved for
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4.1. Monte Carlo method

In this case, the unknown disturbances are given as
probability distributions. If a disturbance is, for exam-
ple normally distributed, we cannot require that targets
are satisfied for all disturbances since this would require
infinite back-off. Instead of requiring targets to be
satisfied, control error is penalized. Since the con-
straints on the outputs (targets) are removed, there will
always exist a feasible solution. The constraints on the
manipulations are still present, but control errors re-
sulting from satisfying these targets will be penalized in
the objective function J. To find an (estimate) for the
robust optimal value, Monte Carlo simulations are
applied. That is, random disturbances are generated
from the given probability distribution. For each set of
random disturbances the objective J is computed as a
function of the selected secondary variable. This is
repeated for a large set of randomly generated distur-
bances, and the robust optimum is the optimum of the
mean value of J for the set of disturbances. All in-
stances of the randomly generated values, including
those that result in control error is used for the compu-
tation of robust optimum.

An example is shown in Fig. 5 below. There are two
different disturbances and they are both normally dis-
tributed. The thin solid line shows the objective J as a
function of the selected secondary measurement y2 for
the nominal disturbances. Starting from a high value of
y2, the objective decreases when y2 decreases until the
nominal optimum where y2=150. Decreasing y2 fur-
ther, the primary outputs can no longer be kept at
target. This is penalized in the objective function result-
ing in a steep increase of the objective.

The four dashed lines show the objective for four
different sets of the disturbances. The location where
the primary targets are violated and objective increases
steeply, depends on the value of the disturbances. The
most interesting curve in Fig. 5, however, is the thick

solid curve. This curve is the average of 1000 randomly
generated sets of disturbances. While each fixed distur-
bance results in a sharp break of the corresponding
curve, the average curve is smooth. To reach the robust
optimum, a setpoint of y2:153 should be applied. The
robust optimum is slightly above 150, which is higher
than the nominal optimum of J=145. However, apply-
ing the nominally optimal values of y2=150, the ex-
pected value of the objective is roughly J:170. Since
we do not know the exact value of the disturbances,
only the probability distribution, the optimal setpoint
for y2 is the value corresponding to the robust optimum
(y2:153).

The curves in Fig. 5 are actually based on the results
for the HEN in the example in Section 6, when the
disturbances are normally distributed. The supply tem-
perature of stream H1 has a mean value of 190°C and
a standard deviation of 3°C, while CPC2 has a mean
value of 0.50 kW/°C and a standard deviation of 0.01
kW/°C. The variable selected for y2 is the setpoint for
temperature T1 (in Fig. 7) and the objective function is:

J=utility consumption (kW)+25�TC2
o −TC2

t �+25�y2

−r2�
That is, a deviation of 1°C in the bypass controlled

temperature or in T1, is assumed to ‘cost’ the same as
25 kW. This type of objective function is suitable if the
control error (deviation from target) corresponds ap-
proximately linearly to increase in operating cost. In
such cases the weights should be selected to reflect the
real change in operating cost. In other cases the rela-
tionship between control error and operating cost will
be strongly nonlinear and difficult to estimate. As an
example, a control error in an outlet temperature from
the HEN corresponding the inlet temperature of a
reactor may strongly affect the conversion or even
extinguish the reaction. In such cases where the detailed
correlation between control error and operating cost is
not known, the control error may be given a quadratic
penalty and the weights will have to be based on the
best engineering judgment available.

4.2. Method requiring target satisfaction

This method is similar to the assumptions made in
Section 3. That is, a prespecified (discrete) set of un-
known disturbances is defined (typically corner-points),
and target satisfaction is demanded for this discrete set
of disturbances. If this results in infeasibility for some
disturbances (during step b of the procedure) some
assumptions such as the magnitude of unknown distur-
bances need to be relaxed. Alternatively, the plant will
have to be modified.

This second method has some disadvantages com-
pared to the Monte Carlo method:Fig. 5. Robust optimum.



B. Glemmestad et al. / Computers and Chemical Engineering 23 (1999) 509–522516

1. The worst case may not be at the corner points for
the disturbances, thus finding the worst case distur-
bances may be a difficult task itself.

2. Even a corner point check may be time consuming
and even prohibitive when there are many indepen-
dent disturbances.

3. If there are more than just a few disturbances, the
probability that all have the worst case values at the
same time is very small.

Taking these three points into account, it is assumed
that Monte Carlo simulations will give reasonable re-
sults for most practical applications. Using the Monte
Carlo approach, it is also straightforward to include
dependencies between different disturbances when such
information is available. Despite this preference for the
Monte Carlo approach in real applications, the exam-
ple in Section 6 requires that the HEN is feasible at the
corner points for the two disturbances. Further, requir-
ing targets to be satisfied also forms the basis for the
steady state optimization model presented in the next
section.

A disadvantage with the Monte Carlo method is that
a large number of disturbance sets may have to be
generated in order to get good results, and it is difficult
to say in advance how many disturbance sets that are
necessary. However, as it is explained in the previous
section, the robust optimum is only determined once
(or for a few cases) and this is done off-line. The
difference in the nominal and robust optimal values are
used to find a constraint on the primary manipulations
u1. With this constraint, the (approximate) robust opti-
mum is found periodically from the measured and
inaccurate values of the disturbances.

5. A steady state formulation of the optimization
problem

This section presents a simple steady state formula-
tion of the optimization problem that can be adapted to
any HEN. The formulation has the advantage of not
explicitly including the bypass fractions, thus a major
source to nonlinearities in the model is avoided. In
addition, the formulation is based on heat balances
around each heat exchanger in a way that is simple to
understand and implement. It is developed primarily
for implementation in the optimizer, however, it may
also be used in the procedure for selection of optimiza-
tion variables (to generate Tables 1 and 2).

Before we present the general formulation, consider
the two alternatives to model a single heat exchanger
with bypass, see Fig. 6. The first alternative is to use
Eq. (2a) and Eq. (2b) while the second alternative is to
use Eq. (3).

At steady state it is of no consequence whether the
bypass is placed across the hot side or cold side, and

Fig. 6. Single heat exchanger with bypass.

the choice in Fig. 6 is arbitrary. The temperature driv-
ing force DTm(·) may be the logarithmic mean or some
approximation to it. Note particularly the difference
between Eq. (2a) and Eq. (3) regarding the arguments
of DTm(·).

Q=UA DTm(Thot,in, Tcold,in, T*hot,out, Tcold,out) (2a)

Thot,out=uThot,in+ (1−u)T*hot,out (2b)

Q5UA DTm(Thot,in, Tcold,in,Thot,out, Tcold,out) (3)

Eqs. (2a) and (2b) includes the hot exit temperature
before it is mixed with the bypass stream and this
results in bilinearities in Eq. (2b). The inequality in Eq.
(3) expresses a constraint on Q when the boundary is
placed outside the bypass splitter and mixer. The bypass
fraction u does not even occur in Eq. (3) but the
equality part of Eq. (3) corresponds to u=0. In the
optimization model, we choose the second alternative
for each heat exchanger since this eliminates the bilin-
earities in the bypass mixer. If u is needed, it can be
found after the optimization of the network by solving
one nonlinear equation for each bypass fraction. This
equation can be found from solving Eq. (2b) for T*hot,out

and inserting this expression into Eq. (2a), which is
solved for u through iteration (solving one unknown in
one nonlinear equation n times is much simpler than
solving n unknowns in n nonlinear equations simulta-
neously). As it will be shown, the value of u is often not
required explicitly as it normally is the manipulated
input in a feedback control loop.

The steady state formulation for a general HEN uses
the following sets of heat exchangers:

PHX: set of all process-to-process heat exchangers.
HBT: subset of PHX with hot side outlet directly
entering a bypass controlled target.
CBT: subset of PHX with cold side outlet directly
entering a bypass controlled target.
HUT: subset of PHX with hot side outlet entering a
utility controlled target (through a cooler).
CUT: subset of PHX with cold side outlet entering a
utility controlled target (through a heater).
HS: subset of PHX with hot side inlet directly enter-
ing from a (hot) supply.
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CS: Subset of PHX with cold side inlet directly
entering from a (cold) supply.
The general HEN formulation shown below (Eqs.

(4)–(12b) is an NLP problem The variable c in Eq.
(4) denotes the cost (pr. energy unit) for the utilities.

min
� %

i�HUT

c i
coolersQi

coolers+ %
j�CUT

c j
heatersQj

heaters� (4)

subject to equalities (5) to (9)

Qi=CPi
cold(Ti

cold,out−Ti
cold,in) i�PHX (5a)

Qi=CPi
hot(Ti

hot,in−Ti
hot,out) i�PHX (5b)

Qi
cooler=CPi

hot(Ti
hot,out−Ti

t) i�HUT (6a)

Qi
heaters=CPi

cold(Ti
t−Ti

cold,out) i�CUT (6b)

Ti
hot,out=Ti

t i�HBT (7a)

Ti
cold,out=Ti

t i�CBT (7b)

Ti
hot,in=Ti

S i�HS (8a)

Ti
cold,in=Ti

S i�CS (8b)

Interconnection equations (problem specific) (9)

Inequalities, Eqs. (10), (11), (12a) and (12b)

Qi5ai Ui Ai DTmi i�PHX (10)

Qi50 i�PHX (11)

Qi
coolers]0 i�HUT (12a)

Qi
heaters]0 i�CUT (12b)

Note that the index denotes heat exchangers and not
streams (which is common in many other models),
and that DTm denotes the temperature driving force
outside the bypass stream as in Eq. (3). As an exam-
ple, the network in Fig. 7 will lead to the following
sets: PHX={A, B}, HUT={B}, CUT={A},
HBT=¥, CBT={B}, HS={A} and CS={A, B},
and the only interconnection Eq. (9) is TA

hot,out=
TB

hot,in.
During each optimization, Tt, Ts, CP and UA for

each heat exchanger are treated as constants. The
model is valid without modifications for networks
with fixed stream split fractions since CP denotes heat
flow capacity in each heat exchanger. For networks

with variable stream splits, CP in the split streams
can be regarded as variables, and equations that pre-
serve the mass balance in the splitter(s) and energy
balance in the mixer(s) must be included. During op-
eration, variable stream splits can be used as manipu-
lated inputs.

When the model above is used during operation, it
is important to ensure a feasible solution for all pos-
sible cases that may be encountered. This may be
implemented by a hierarchical strategy for constraint
satisfaction. For example, if infeasibility is encoun-
tered, then the least critical target in Eqs. (7a) and
(7b) is removed and a new optimization is performed.
If this problem also result in infeasibility, the second
least critical target is removed and so on until feasi-
bility is achieved. Alternatively, all constraints in Eqs.
(7a) and (7b) may be removed and control error may
be penalized in the objective function (Eq. (4)). This
is similar to the Monte Carlo approach in the previ-
ous section.

The constant a in Eq. (10) is a factor that may
limit the duty of a heat exchanger somewhat below
its theoretical maximum. This is simply the way that
the constraint on u1, is implemented. Instead of im-
plementing u1]Du1, directly (which is impossible
since the model does not include u1), the correspond-
ing value for a has to be computed. This is done
separately for each heat exchanger that controls a
primary output. The example below explains how this
can be done. Notice that the relationship between Du1

and a may depend on the operating point. For heat
exchangers associated with u2, we have a=1.

The model does not include any upper constraints
on the duty of the utility exchangers, and this implies
the assumption that these are designed to handle the
required duty. If this is not the case, additional con-
straints have to be added to the model, e.g. an upper
limit on the duty.

The only possible source of nonlinearities in the
model (for networks without variable splits) is the
term DTm in Eq. (10). In other words, if arithmetic
mean (as opposed to logarithmic mean) is used as the
temperature driving force, the model can be solved as
an LP problem. The following procedure for solving
the model has proven to be reliable: First, use arith-
metic mean in Eq. (10) for all exchangers and solve
the corresponding LP problem. Second, replace arith-
metic mean with logarithmic mean (or e.g. Paterson
or Chen approximations, see Paterson, 1984 and
Chen, 1987) and solve the NLP problem using the LP
solution as the initial value. In the case of one or
more variable split fractions, the steady state model
(Eqs. (4)–(12b)) have to be modified to incorporate
this. Then the problem becomes nonlinear even if
DTm is approximated by arithmetic mean.Fig. 7. Heat exchanger network used in example.
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Table 3
Values for yopt and Jopt for all cases of du in the examplea

Case 3 Case 4Case 1 Case 2 Case 5

du,1=
�0

0

n
du,3=

� −3

+0.01

n
du,5=

� +3

+0.01

n
du,2=

� −3

−0.01

n
du,4=

� +3

−0.01

n
151.9151.0 151.9149.0T1,opt 150.0

104 0 107.4T2,opt 106.7 105.4 107.4
94.9 98.0T3,opt 95.0 95.1 95.8

0.0000.292 0.0000.105uA,opt 0.000
0.000 0.000 0.038 0.011uB,opt 0.000

149.0 146.9Jopt 145.0 147.0 144.7

a Case 1 is the nominal disturbance.

6. Example

The HEN used in the example is shown in Fig. 7.
The primary outputs are the outlet temperatures of
each stream which should be controlled to their target
values of 30, 160 and 130°C for streams H1, C1 and
C2, respectively. That is, we have

y1= [TH1
o TC1

o TC2
o ]T

where superscript ‘o’ denotes outlet temperature. There
is a total of four manipulations (two bypasses and two
variable utility duties) which gives

u= [uA uB qc qh]T

There are two disturbances; 910°C in the supply tem-
perature of stream H1 and 90.05 kW/°C in the CP of
stream C2. These values represent the maximum varia-
tions d that may be present. The smaller variations/er-
rors (du) that may occur within the optimization
interval is defined in step 2a of the procedure. UA for
heat exchangers A and B are 0.523 and 1.322 kW/°C,
respectively. For simplicity, it is assumed that the utility
exchangers are able to deliver sufficient duty for all
possible cases. With this assumption and the given
UA-values, all target temperatures can be reached for
all combinations of disturbances mentioned
above.Applying the procedure step by step yields:

Step 1. Assign primary manipulations.
We use the main rule for selection of manipulations in
HENs which is to choose the manipulation closest to
the measurement (e.g. Mathisen, 1994, chapter 4). This
implies that the primary manipulations u1 become qc, qh

and uB and these control the outlet temperatures of
streams H1, C1 and C2, respectively.

Step 2. Selection of optimization variable.
There is one excess manipulation, u2=uA, and the steps
(a) to (d) below illustrate the selection of optimization
variable.

(2a) We assume:

i. du= [93°C, 90.01 kW/°C]T (maximum variations/
errors of the disturbances within the optimization
interval).

ii. The objective function is J=qc+qh (utility
consumption).

iii. Possible candidates to y2 are y2,cand= [T1 T2 T3 uA]T

(see Fig. 7). Note that the open-loop implementa-
tion (uA) is an alternative.

iv. The computations are done for the four ‘corner
points’ of du, in addition to du=0. Jmean, is the
arithmetic mean of these five cases. (We require that
target temperatures have to be reached for the five
cases).

(2b) yopt and Jopt for different du are shown in Table
3. The table is generated for d0= [0 0]T, i.e. for nominal
values of the disturbances (190°C and 0.5 kW/°C). Also
a row for uB,opt is included for extra information.

(2c) Table 4 shows J for optimal fixed values of
y2,cand. Note that in this example, the values for y2,cand

can be found without optimization, but simply from
Table 3 and physical insight (see remark 2 at the end of
this section). If there is a possibility that the optimum is
not constrained one would have to resort to conven-
tional optimization.

(2d) From the last column of Table 4 it is clear that
keeping T1, constant is preferred.

Step 3. Implementation of optimizer.
The model (including the sets and connection equa-
tions) was described in the previous section The con-
straint (‘safety margin’) that should be included in the
optimizer is uB]0.025. We will explain how this value
is obtained, but first we explain the details in the
implementation of this constraint. To implement the
constraint, we first find qB=55 kW for du=0 (55 kW is
the deficit heat of stream C2). Then we find aB=0.946
from qB=aBUABDTm,B, where the last term is the
logarithmic mean for heat exchanger B for du=0 and
T1=151.9°C. Implementing aB=0.946 (and aA=1.0)
in Eq. (10) will ensure the required safety margin on uB

when unknown disturbances du are present.
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Table 4
J s for the possible choices of measurement and for all cases of du in the example

Case 5 JmeanCase 3 Case 4Case 1 Case 2

148.9144.8J(T s
1=151.9) 148.9 153.0 150.8 147.0

153.0155.0159.2J(T s
2=104 0) 149.0153.0 151.2

155.1 146.9 149.1J(T s
3=98 0) 151.0151.0 152.9

149.0 153.2J(u s
A=0.292) 151.0151.1 151.1151.2

Note that all values for uB (and the constraint DuB)
differ from the values given in Glemmestad, Skogestad
and Gundersen (1997) for the same example. The val-
ues in that paper actually refer to the bypass fractions
on the hot side of heat exchanger B (which is inconsis-
tent with Fig. 7), while the correct values for the
bypass fractions on the cold side are given here.

The actual value for the safety margin (DuB=0.025)
is obtained as follows: The values of uA and uB for the
five cases in Table 4 corresponding to T1=151.9°C
(first row in Table 4) are given in Table 5. For cases 4
and 5, uA saturates at zero which implies that uA just is
capable of maintaining T1=151.9°C for these distur-
bances. The computations in the optimizer is based on
du=0 (case one, see Table 3) where uB takes the value
of 0.025, see Table 5. Thus, in order to handle cases 4
and 5 without violating T1=151.9°C, a safety margin
of DuB=0.025 has to be used by the optimizer. Note
that if we accepted that T1 deviated from its setpoint
(due to saturation in uA) it would be possible to further
reduce utility consumption somewhat. Then the set-
point for T1, could be reduced slightly below 151.9°C
until uB saturated for some disturbance. In this exam-
ple we require that setpoints for secondary measure-
ments have to be satisfied.

The reason for implementing the ‘safety margin’ on
uB as an inequality constraint is that other values of d0

(i.e. other operating points) may give uB,opt\0.025.
Requiring uB=0.025 in such cases will result in
infeasibility.

The value for Jmean of 148.9 kW in Table 4 should
be compared to the mean value of Jopt from Table 3
which is 146.5 kW. That is, it costs 1.6% of the utility
consumption to guarantee feasibility for the worst case
unknown disturbance.

Figure 8 shows the results for the example when T1

is selected as secondary measurement (optimization
variable). Figure 8a shows that To

C2 can be controlled
to its setpoint for all unknown disturbances around the
nominal operating point d0= [0 0]T. Note from Fig. 8b
and c, that the time up to zero corresponds to case 1 of
du. from 0 to 20 min corresponds to case 2, from 20 to
40 min is case 3 and so on. Bypass fractions are shown
in Fig. 8d, and uA drops to close to zero after 40
minutes (case 4 and 5). The perhaps most important
curves are shown in Fig. 8e. The steady state values for

the utility consumption corresponds to the values in
Table 4 (upper row). The optimal values (when du is
perfectly known) from the lower row of Table 3 is also
plotted for comparison. The utility consumption
should be compared with the ‘traditional’ scheme with-
out optimization also shown in Fig. 8e. The latter is
implemented by fixing uA at a value such that the
network is just feasible for all possible disturbances, i.e.
d= [910, 90.05]T, using uB only (this requirement
gives uA=0.680). From the results given in Fig. 8 and
Table 4, it is clear that the main reduction in utility
consumption compared to the traditional case is due to
the periodic optimization (about 13% nominally),
whereas the selection of optimization variable consti-
tutes 2.75% (between best and worst case).

Figure 8 has shown results around the nominal oper-
ating point corresponding to the cases 1–5 in Tables 3
and 4. Only one optimization is done prior to the
simulations, and the optimal setpoint for T1 found here
is maintained during the simulation (see Fig. 8f). Fig-
ure 9 shows similar results, but for a larger part of the
operating region (with respect to disturbances) and
with optimizations updating the setpoint for T1 at 0, 20
and 40 min.

At tB0, we have T s
H1=200°C and CPC2=0.45 kW/

°C (i.e. d= [10 −0.05]T). For this operating state uA is
saturated at zero. For the steady state optimization
carried out before the simulations started the con-
straint on uB was not active. From Fig. 9d we see that
uB (:0.13) is larger than the safety margin of 0.025
for tB0, thus uB will not saturate if unknown distur-
bances (within the prespecified bound of du5 [93 9
0.01]T) should occur. At time equal to zero, nominal
operating conditions are encountered and an optimiza-
tion is performed immediately after. Figure 9f shows
how T1 is controlled to its new setpoint (which now
has the same value as in Fig. 8). At t=20, the (known)
disturbance d= [−7 0.04]T is applied and a new opti-
mization is done. At t=40, an unknown disturbance of

Table 5
Values of uA and uB when T1=151.9°C

Case 1 Case 2 Case 3 Case 4 Case 5

0.207uA 0.354 0.354 0 0
0.0380.025uB 0.0120.0380.012
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Fig. 8. Results for example. (a) Controlled output TC2
o with setpoint 130°C. (b) Disturbance T s

H1. (c) Disturbance CPC2. (d) Bypass uA (thick line)
and bypass uB (thin line). (e) Utility consumption. (f) Temperature T1 (secondary measurement), thick line shows actual value while thin line shows
setpoint (constant at 152°C).

du= [−3 0.01]T is applied which brings the operating
state to the opposite corner of where we started. Since
the new disturbance is unknown, the optimizer now
returns the same setpoint for T1 as it computed at
t=20. The steady state value for uB at this corner point
is close to zero.

Note that the utility consumption at the last part of
the simulation is similar for the ‘traditional’ approach
(uA is fixed at 0.680) and the proposed method. This is
because this corner point is limiting uA for the tradi-
tional approach, thus this approach is optimal for this
corner of the operating region. After 40 min (the ex-
treme corner point) the traditional approach actually
has lower utility consumption than the proposed
method. This can be explained from the requirement we
have made in this example that also the setpoint for T1

should be satisfied when unknown disturbances are
present. As mentioned above, relaxing this requirement
could reduce the utility consumption somewhat further
for this example.

Remark 2. From Fig. 7, it is clear that decreasing T1,
T3 (by decreasing uA) or uA will reduce utility consump-
tion (J), i.e. optimal values for these variables in Table

3 are minimum values (smaller values will violate the
primary goal). Therefore, the case with the largest value
has to be chosen as this is the smallest value feasible for
all du. For T2, a similar (but opposite) argument leads
to choosing the smallest value in Table 3.

7. Conclusions

A method for optimal operation of heat exchanger
networks based on periodic steady state optimization is
proposed. A fixed control structure for the outlet tem-
peratures (primary measurements) is selected prior to
operation. Thus, all outlet temperatures are usually
controlled by the heat exchanger located immediately
upstream, and a fast response is obtained. The periodic
steady state optimization concerns the setpoints for
measurements internally in the HEN, which are con-
trolled by the remaining manipulations. An important
issue is to make the implementation insensitive to un-
certainty (self-optimizing control): which outputs (mea-
surements) should be kept constant between each
optimization. The outputs are selected such that the
sensitivity to unknown disturbances and model errors is
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Fig. 9. Results for example. The different curves show the same as Fig. 8 but for a larger part of the operating region, and with steady state
optimization done at 0, 20 and 40 min.

as small as possible. Optimal operating conditions for
heat exchanger networks are normally located at the
intersection of constraints. Implementing the setpoints
computed by the optimizer without considering uncer-
tainty (nominal optimum) will cause infeasible opera-
tion for certain disturbances. This infeasibility is
avoided by introducing constraints in the steady state
formulation in the optimizer. It is proposed to compute
the constraints such that the optimizer finds the robust
optimal solution, i.e. the optimal setpoints taking into
account all possible uncertainties. This provides an
optimal back-off from the nominal optimum.

A steady state formulation for heat exchanger net-
works avoiding the nonlinearities due to bypass frac-
tions is proposed. This general model concerns heat
exchanger networks in particular, however, the method-
ology comprising periodic steady state optimization
combined with self-optimizing control is well suited
also for other processes than heat exchanger networks.

8. Notation

c cost data

heat capacity flowrateCP
disturbanced
control errore
element in transfer function/matrixg

G process transfer function
objective functionJ
transfer function for controllerK

Q heat load (duty) of heat exchanger
reference (setpoint)r
temperatureT
timet
manipulated input (bypass fraction)u

y output (measurement)

Superscripts
bypassBP
utilityU
actual output or outlet (temperature)o

s supply (temperature)
t target or reference (temperature)

Subscripts
0 nominal

primary1
secondary2
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Ci cold stream I
Hj hot stream j
m mean value
nopt nominal optimum

robust optimumropt
u unknown
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